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Fast multi-source nanophotonic simulations 
using augmented partial factorization

Ho-Chun Lin    , Zeyu Wang & Chia Wei Hsu     

Numerical solutions of Maxwell’s equations are indispensable for 
nanophotonics and electromagnetics but are constrained when it comes 
to large systems, especially multi-channel ones such as disordered media, 
aperiodic metasurfaces and densely packed photonic circuits where the 
many inputs require many large-scale simulations. Conventionally, before 
extracting the quantities of interest, Maxwell’s equations are first solved 
on every element of a discretization basis set that contains much more 
information than is typically needed. Furthermore, such simulations are often 
performed one input at a time, which can be slow and repetitive. Here we 
propose to bypass the full-basis solutions and directly compute the quantities 
of interest while also eliminating the repetition over inputs. We do so by 
augmenting the Maxwell operator with all the input source profiles and all 
the output projection profiles, followed by a single partial factorization that 
yields the entire generalized scattering matrix via the Schur complement, with 
no approximation beyond discretization. This method applies to any linear 
partial differential equation. Benchmarks show that this approach is 1,000–
30,000,000 times faster than existing methods for two-dimensional systems 
with about 10,000,000 variables. As examples, we demonstrate simulations 
of entangled photon backscattering from disorder and high-numerical-
aperture metalenses that are thousands of wavelengths wide.

The interaction between light and nanostructured materials leads to 
rich properties. For small systems such as individual nano/microstruc-
tures and optical components, or for periodic systems such as photonic 
crystals and periodic metamaterials, one can readily solve Maxwell’s 
equations numerically to obtain predictions that agree quantitatively 
with experiments. However, the computational costs are typically 
too heavy for more complex systems such as disordered ones1 that 
not only are large but also couple many incoming channels to many 
outgoing ones, requiring numerous simulations. The alternatives all 
have limitations: the Born approximation does not describe multiple 
scattering, radiative transport and diagrammatic methods can only 
compute some ensemble-averaged properties2 and coupled-mode 
theory requires systems with isolated resonances3,4. For metasurfaces5, 
the widely used locally periodic approximation5,6 is inaccurate when-
ever the cell-to-cell variation is large7–9 and cannot describe nonlo-
cal responses10 or metasurfaces that are not based on unit cells11,12.  

Classical and quantum photonic circuits build on individual compo-
nents that couple very few channels at a time, limiting the number of 
inputs and outputs. Examples beyond photonics also abound. A wide 
range of studies across different disciplines are currently prohibited 
by computational limitations.

Regardless of the complexity of a system, its linear response 
is described exactly by an M′ ×M generalized scattering matrix S 
that relates an arbitrary input vector v to the resulting output vector 
u via13,14

un =
M
∑
m=1

Snmvm. (1)

The M columns of S correspond to M distinct inputs (Fig. 1a,b), which 
can be different incoming angles or beam profiles, different waveguide 
modes, different point dipole excitations, their superpositions or any 
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the eigenmode expansion30 methods use local eigenmodes to utilize 
the intralayer axial translational symmetry, which also results in dense 
matrices and the same scaling as the RGF method.

All these methods solve Maxwell’s equations on every element of 
the discretization basis set, typically one input at a time, after which 
the quantities of interest are extracted from the solutions. Doing so is 
intuitive but leads to unnecessary computations and repetitions. Here, 
we propose the augmented partial factorization (APF) method that 
directly computes the entire generalized scattering matrix of interest, 
bypassing the full-basis solutions and without repeating over the inputs. 
APF is general (applicable to any structure with any type of inputs and 
outputs, including to other linear partial differential equations), exact 
(no approximation beyond discretization), does not store large LU 
factors, scales well with the system size and fully utilizes the sparsities 
of the Maxwell operator, of the inputs and also of the outputs. These 
advantages lead to reduced memory usage and a speed-up of many 
orders of magnitude compared with existing methods (even those 
that specialize in a certain geometry), enabling full-wave simulations 
of massively multi-channel systems that were impossible in the past.

Results
Augmented partial factorization
Regardless of the discretization scheme (finite difference, finite ele-
ment, boundary element, T-matrix, spectral methods, etc.), a fre-
quency-domain simulation for the mth input reduces to computing 
xm = A−1bm. Considering M inputs, the collective full-basis solutions are 
X = A−1B where X = [x1,… ,xM] and B = [b1,… ,bM]. The full content of 
this dense and large matrix X is rarely needed. The needed quantities 
are encapsulated in the generalized scattering matrix S, which we can 
write as

S = CA−1B −D. (2)

The matrix C projects the collective solutions X = A−1B onto the M′  
outputs of interest (for example, sampling at the locations of interest, 
a conversion to propagating channels or a transformation from the 
near field to far field15). It is sparse since the projections only use part 

other input of interest. Similarly, the vector u can contain any output 
of interest in the near field or far field.

Computing such a multi-input response typically requires M dis-
tinct solutions of Maxwell’s equations with the same structure given 
different source profiles. Time-domain methods15 are easy to parallelize 
but cannot leverage the multi-input property. Frequency-domain 
methods allow strategies for handling many inputs. After volume 
discretization onto a basis through finite element16 or finite difference17, 
Maxwell’s equations in the frequency domain become a system of linear 
equations Axm = bm. The sparse matrix A is the Maxwell differential 
operator, the column vector bm on the right-hand side specifies the 
mth input and the full-basis solution is contained in the column vector 
xm. When solving for xm = A−1bm using direct methods, the sparsity can 
be utilized via graph partitioning, and the resulting lower–upper (LU) 
factors can be reused among different inputs18,19. However, M forward 
and backward substitutions are still needed, and the LU factors take 
up substantial memory. Iterative methods compute xm = A−1bm by 
minimizing the residual20, avoiding the LU factors. One can iterate 
multiple inputs together21 or construct preconditioners to be reused 
among different inputs22,23, but the iterations still take 𝒪𝒪𝒪M) time.

For homogeneous structures with small surface-to-volume ratio, 
the boundary element method24 can efficiently discretize the interface 
between materials to reduce the size and the condition number of the 
matrix A, though its matrix A is no longer sparse. Instead of a surface 
mesh, the T-matrix method25 uses vector spherical harmonics as basis 
functions, also resulting in a dense matrix A. The hierarchical structure 
of the dense matrix A can be utilized through the fast multipole 
method26 within iterative solvers or through the ℋ-matrix method27 
within direct solvers, but the computing time still scales as 𝒪𝒪𝒪M).

For systems with a closed boundary on the sides and inputs/out-
puts placed on the front and back surfaces, the recursive Green’s func-
tion (RGF) method28 can obtain the full scattering matrix without 
looping over the inputs, which is useful for disordered systems1. How-
ever, the RGF method works with dense Green’s function matrices and 
thus scales unfavourably with the system width W as 𝒪𝒪𝒪W3(d−1)) for 
computing time and 𝒪𝒪𝒪W2(d−1)) for memory usage in d dimensions. For 
layered geometries, the rigorous coupled-wave analysis (RCWA)29 and 
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Fig. 1 | Generalized scattering matrix and augmented partial factorization 
(APF). a,b, Schematic of light scattering from a nanostructure (grey circles). 
Outgoing waves (light-blue and orange arrows) resulting from inputs at two 
different incident angles (dark-blue and brown arrows) correspond to two 
different columns of the scattering matrix S (insets). c, Illustration of equation 
(2), which relates a generalized scattering matrix S to the inverse of the 
discretized Maxwell operator A, source profiles B that generate the incident 

waves, projection profiles C that extract the outputs of interest and the matrix D 
that subtracts the baseline. Each small circle indicates a nonzero element of the 
sparse matrix, coloured based on its spatial location shown in d. d, Discretization 
grids of the illustration in c, with colour coding for different regions of the 
system. e, The augmented sparse matrix K of equation (3), whose partial 
factorization gives the generalized scattering matrix S.
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of the solutions, and it is very fat since the number M′ of outputs of 
interest is generally far less than the number of discretization basis 
elements. The matrix D = CA−10 B − S0  subtracts the baseline  
contribution from the incident field (Supplementary Fig. 1), where A0 
is the Maxwell operator of a reference system (for example, vacuum) 
for which the generalized scattering matrix S0 is known. This ensures 
that S reduces to S0 when A becomes A0. Equation (2) has the same 
superficial structure as scattering matrices in quasi-normal coupled 
mode theory4 but is simpler and does not require the computation of 
quasi-normal modes (which is expensive for large systems).

Given the generalized scattering matrix S, the response to other 
inputs can be obtained from superposition, as in equation (1). Time-
dependent responses are given by Fourier transforming the frequency-
domain response31.

Figure 1c,d illustrates equation (2) with a concrete example. Con-
sider the transverse magnetic fields in two dimensions (2D) for a system 
periodic in y with a relative permittivity profile of εr(r) = εr(x, y). The 
Maxwell differential operator on the out-of-plane electric field Ez(r) at 
wavelength λ is −∇2 − (2π/λ)2εr 𝒪r), which becomes the matrix A when 
volume is discretized with an outgoing boundary in the x direction. Then, 
the matrix A−1 is the retarded Green’s function G𝒪r, r′) of this system. A 
plane wave incident from the left, ei(kinx x+kiny y), can be generated with a 
source proportional to δ𝒪x)eikiny y on the front surface x = 0 where δ(x) is 
the Dirac delta function, and incident waves from the right can be simi-
larly generated. These source profiles become the columns of the matrix 
B when discretized. The coefficients of different outgoing plane waves 
to the left can be obtained from projections proportional to δ𝒪x)e−ikouty y,  
and similarly with outgoing waves to the right. They become the rows of 
the matrix C when discretized. In this particular example, D = I is the 
identity matrix, and equation (2) reduces to the discrete form of the 
Fisher–Lee relation in quantum transport 32 (Supplementary Sects. 1 and 
2 and Supplementary Fig. 1). We only show a few discretized pixels and 
a few angles in Fig. 1c,d to simplify the schematic. In reality, the numbers 
of pixels and input angles can readily exceed millions and thousands, 
respectively. Note that the matrices A, B and C are all sparse here.

Instead of solving for X = A−1B as is conventionally done, we directly 
compute the generalized scattering matrix S = CA−1B − D, which is 
orders of magnitude smaller. To do so, we build an augmented sparse 
matrix K as illustrated in Fig. 1e and then perform a partial factorization:

The factorization is partial as it stops after factorizing the upper left 
block of K into A = LU. Such partial factorization can be carried out 
using established sparse linear solver packages such as MUMPS33 and 
PARDISO34. Notably, we do not use the LU factors, and the L and U in 
this APF formalism do not even need to be triangular. By equating 
the middle and the right-hand side of equation (3) block by block, 
we see that the matrix H, called the Schur complement35, satisfies 
H = D − CA−1B. Thus, we obtain the generalized scattering matrix via 
S = −H. In this way, a single factorization yields what conventional 
methods obtain from M separate simulations. Repetitions over inputs 
are no longer necessary. We name this approach augmented partial 
factorization (APF).

APF is as general as equation (2), applicable to any linear partial dif-
ferential equation, in any dimension, under any discretization scheme, 
with any boundary condition, for any type of inputs generated using 
any scheme (such as equivalent source for arbitrary incident waves 
like waveguide modes17,36, line source and point dipole source) and 
for any type of output projections. As a frequency-domain method, it 
works with arbitrary material dispersion, and the response at different 
frequencies can be computed independently. It is a full-wave method 
as precise as the underlying discretization.

APF avoids a slow loop over the M inputs or a slow evaluation of 
the dense Green’s function. The sparsity patterns of A, B and C are 
maintained in K and can all be utilized during the partial factorization. 
The matrices L and U are not as sparse as A, so their evaluation is slow, 
and their storage is the memory bottleneck for typical direct methods. 
Since APF does not compute the solution X, such LU factors are not 
needed and can be dropped during the factorization. This means that 
APF is better than conventional direct methods even when only one 
input (M = 1) is considered.

APF is more efficient than computing selected entries of the 
Green’s function A−1 (ref. 37), which does not utilize the structure of 
equation (2). While advanced algorithms have been developed to 
exploit the sparsity of the inputs and the outputs during forward and 
backward substitutions38 or through domain decomposition39, they 
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Fig. 2 | Benchmarks on a large-scale disordered system. a, The system 
considered consists of 30,000 randomly positioned cylindrical scatterers in air, 
each with refractive index of 2.0 and diameter between 0.3λ and 0.8λ, where λ is 
the wavelength. A periodic boundary condition is used in the y direction, and 
perfectly matched layers (PMLs) are used in the ±x directions as outgoing 
boundaries. We compute the scattering matrix with up to 2W/λ = 1,000 
plane-wave inputs from either the left or right and with all of the M′ = 2,000 
outgoing plane waves. b, Computing time versus the number M of input angles 
using APF and other methods: conventional FDFD method using MaxwellFDFD 

with direct40 or iterative41 solvers for the full-basis solutions, RCWA using S4  
(ref. 43) and the RGF method42. Open symbols are extrapolated from smaller M or 
smaller systems. The two ‘FDFD direct’ curves correspond to an unmodified 
version of MaxwellFDFD (blue squares) and one modified to have the LU factors 
reused for different inputs (black circles). c, Memory usage of different methods; 
grey-edged bars are extrapolated from smaller systems. d, Breakdown of the APF 
computing time into time used in building the matrix K, analysing and reordering 
it, and partially factorizing it.

K ≡ [
A B

C D
] = [

L 0

E I
] [
U F

0 H
] . (3)
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still require an 𝒪𝒪𝒪M) substitution stage, with a modest speed-up (a fac-
tor of 3 when M is several thousand) and no memory usage reduction. 
APF is simpler yet much more efficient as it obviates the forward and 
backward substitution steps and the need for LU factors.

In most scenarios, the matrix A contains more nonzero elements 
than the matrices B, C and S, and we find the computing time and 
memory usage of APF to scale as 𝒪𝒪𝒪N1.3) and 𝒪𝒪𝒪N), respectively, in 2D 
(Supplementary Fig. 2), where N = nnz(K) is the number of nonzero 
elements in the matrix K and is almost independent of M. When B and/
or C contain more nonzero elements than A, we can compress matrices 
B and C through a data-sparse representation to reduce their numbers 
of nonzero elements to below that of A. For example, a plane-wave 
source spans a large area, but one can superimpose multiple plane-wave 
sources with a Fourier transform to make them spatially localized8,9 
and then truncate them with negligible error (Supplementary Sect. 5 
and Supplementary Figs. 3 and 4).

Our implementation of APF is described in the Methods sec-
tion and Supplementary Sects. 2 and 3, with pseudocodes shown in  
Supplementary Sect. 6.

Below, we consider two multi-channel systems while comparing 
the computing time, memory usage and accuracy of APF versus open-
source electromagnetic solvers including a conventional finite-differ-
ence frequency-domain (FDFD) code named MaxwellFDFD using either 
(1) direct40 or (2) iterative41 methods, (3) an RGF code42 and (4) an RCWA 
code named S4 (ref. 43); see the Methods section for details. We do not 
include time-domain methods in the comparison since their iteration 
by time stepping is typically slower than an iterative frequency-domain 
solver23. We consider transverse magnetic polarization, starting with 
systems small enough for these solvers, then with larger problems that 
only APF can tackle.

Large-scale disordered systems
Disordered systems are difficult to simulate given their large size-to-
wavelength ratio, large number of channels, strong scattering and lack 
of symmetry. Here we consider one that is W = 500λ wide and L = 100λ 
thick, where λ is the free-space wavelength, consisting of 30,000 cylin-
drical scatterers (Fig. 2a), discretized into 11.6 million pixels with a 
periodic boundary condition in y. On each of the −x and +x sides, 
2W/λ = 1,000 channels (plane waves with different angles) are neces-
sary to specify the propagating components of an incident wavefront 
or outgoing wavefront at the Nyquist sampling rate (Supplementary 
Sect. 1A). So, we compute the scattering matrix with M′ = 2,000 outputs 
and up to M = 2,000 inputs (including both sides).

It takes APF 3.3 min and 10 GiB of memory to compute the full 
scattering matrix; the other methods take 3,300–110,000,000 min 
using 7.0–1,200 GiB of memory for the same computation (Fig. 2b,c). 
The computing times of APF (with its breakdown shown in Fig. 2d), RGF 
and RCWA are all independent of M, though APF is orders of magnitude 
faster. MaxwellFDFD takes 𝒪𝒪𝒪M) time due to its loop over the inputs. 
Reusing the LU factors helps, but the M forward and backward substitu-
tions take longer than factorization and become the bottleneck when 
M ≳ 10. Note that APF saves computing time and memory even in the 
single-input (M = 1) case.

The speed and memory advantage of APF grows further with the 
system size (Supplementary Fig. 5). Some of these solvers require more 
computing resources than we have access to, so their usage data (open 
symbols and grey-edged bars in Fig. 2b,c) are extrapolated based on 
smaller systems (Supplementary Fig. 5).

The relative ℓ2-norm error of APF due to numerical round-off is 10−12 
here and grows slowly with an 𝒪𝒪𝒪N1/2) scaling (Supplementary Fig. 6), while 
the iterative MaxwellFDFD method here has a relative ℓ2 error of 10−6.

Above, the matrices B, C and S all have fewer nonzero elements 
than the matrix A even for the largest M at the Nyquist rate, so the APF 
computing time and memory usage are independent of M. Supplemen-
tary Sect. 9 and Supplementary Fig. 7 consider inputs and outputs 
placed in the interior of the disordered medium, where M can grow 
larger. There, we observe that the APF computing time and memory 
usage stay constant until M′M (the number of elements in S) grows 
beyond nnz(A) ≈ 5.8 × 107, above which they scale as 𝒪𝒪𝒪M′M).

It was recently predicted that entangled photon pairs remain 
partially correlated even after multiple scattering from a dynamic dis-
ordered medium44. As an example, we demonstrate such two-photon 
coherent backscattering. Given a maximally entangled input state, the 
correlation between two photons reflected into directions θa and θb is44

Γba = ⟨ψ| ∶ ̂nb ̂na ∶ |ψ⟩ ∝ ||𝒪r2)θb ,−θa ||
2
, (4)

where |ψ⟩ is the two-photon wave function, ̂na is the photon number 
operator in the reflected direction θa, :(…): stands for normal ordering, 
r2 is the square of the medium’s reflection matrix (that is, the scattering 
matrix with inputs and outputs on the same side) and the overbar indi-
cates an ensemble average over disorder realizations. This requires the 
full reflection matrix with all incident angles and all outgoing angles, for 
many realizations, and the disordered medium must be wide (for angu-
lar resolution) and thick (to reach diffusive transport). Figure 3 shows 
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the two-photon correlation function Γba computed using APF before and 
after averaging over 4,000 disorder realizations for a system that is 
W = 700λ wide and L = 400λ thick, consisting of 56,000 cylindrical scat-
terers, with a transport mean free path of ℓt = 9.5λ. We find the correlation 
between photons reflected towards similar directions (∣θb − θa∣ ≲ 0.1λ/ℓt) 
to be enhanced by a factor of 2. This demonstrates the existence of  
two-photon coherent backscattering in disordered media.

Large-area metasurfaces
Metalenses are lenses made with metasurfaces45. When the numerical 
aperture (NA) is high, metalenses need to generate large phase gradi-
ents, so the variation from one unit cell to the next must be large, and 
the locally periodic approximation (LPA)5,6 fails. Full-wave simulation 
remains the gold standard. Here, we consider metalenses with height 
of L = 0.6 μm and width of W ≈ 1 mm, consisting of 4,178 unit cells of 
titanium dioxide ridges on a silica substrate (Fig. 4a), for a hyperbolic46 
phase profile with an NA of 0.86 and a quadratic47 phase profile with 
an NA of 0.71 operating at wavelength λ = 532 nm (see Supplementary 
Sect. 10 and Supplementary Fig. 8 for details). Perfectly matched layers 
(PMLs) are placed on all sides, and the system is discretized with a grid 
size of Δx = λ/40 into over 11 million pixels. We compute the transmis-
sion matrix at the Nyquist sampling rate, with up to M = 2W/λ = 3,761 
plane-wave inputs from the substrate side truncated within the width 
W of the metalens (only considering angles that propagate in air), and 
sampling the transmitted field across a width Wout = W + 40λ (to ensure 
that all the transmitted light is captured) projected onto M′ = 2Wout/λ = 
3,841 transmitted plane waves. Owing to the large aspect ratio of 1 mm 
to 0.6 μm, the number of nonzero elements in the matrices B and C is 
larger than that of A, so we compress B and C and denote this as APF-c 
(Supplementary Sect. 5).

It takes APF-c 1.3 min and 6.9 GiB of memory to compute this trans-
mission matrix, while the other methods take 6,300–6,000,000 min 
using 22–600 GiB (Fig. 4b,c). Some of these values are extrapolated from 
smaller systems (Supplementary Fig. 9). Note that, even though RCWA 
is specialized for layered structures such as the metasurface considered 
here, the general-purpose APF-c still outperforms RCWA by 10,000 
fold in speed and 87 fold in memory. The second-best solver here is 
MaxwellFDFD with the LU factors stored and reused, which takes 4,700 
times longer while using 17 times more memory compared with APF-c.

The transmission matrix fully characterizes the metasurface’s 
response to any input. Here, we use it with angular spectrum propaga-
tion (Supplementary Sect. 12) to obtain the complete angle dependence 

of the exact transmitted profile (two profiles each shown in Fig. 5a,b; 
more shown in Supplementary Videos 1 and 2), the Strehl ratio and the 
transmission efficiency (Fig. 5c,d and Supplementary Sect. 13).

To quantify the accuracy of an approximation, we compute the 
relative ℓ2-norm error ‖I − I0‖2/‖I0‖2, with I0 being a vector containing 
the intensity at the focal plane within ∣y∣ < W/2 calculated from APF 
without compression, and I from an approximation. We consider two 
LPA formalisms: a standard one using the unit cells’ propagating fields 
(LPA I) and one with the unit cells’ evanescent fields included (LPA II) 
(Supplementary Sect. 14). LPA leads to errors up to 366% depending 
on the incident angle, with the angle-averaged error between 18% and 
37% (Fig. 5e,f). Meanwhile, the compression errors of APF-c here aver-
age below 0.01% (Fig. 5e,f ) and can be made arbitrarily small  
(Supplementary Fig. 10).

Discussion
The APF method can enable a wide range of studies beyond the exam-
ples above. Full-wave simulations of imaging inside strongly scattering 
media48 are now possible with APF. Inverse design using the adjoint 
method used to require 2M simulations given M inputs12. With a suitable 
formulation, APF can consolidate the 2M simulations into a single or a 
few computations. Computing the thermal emission into a continuum49 
requires many simulations and can also be accelerated using APF. One 
may use APF to design classical and quantum photonic circuits with 
elements that couple numerous channels.

Beyond photonics, APF can be used for mapping the angle depend-
ence of radar cross-sections, for microwave imaging50, for full wave-
form inversion51 and controlled-source electromagnetic surveys38 in 
geophysics and for quantum transport simulations52. More generally, 
APF can efficiently evaluate matrices of the form CA−1B in numerical 
linear algebra, not limited to partial differential equations.

The present work performs partial factorization using MUMPS33, 
for which the matrix K must be square. Therefore, we pad M′ −M  
columns to matrix B or M −M′ rows to matrix C, which is suboptimal 
when M′ ≫ M (for example, when computing the field profile across a 
large volume for a small number of inputs) or M′ ≪ M. To efficiently 
handle these scenarios with APF, partial factorization that works with 
a rectangular K is desirable.

As the number of channels and the LU factor size are both much 
larger in three dimensions (3D), the advantage of APF over existing 
methods can potentially be greater in 3D than in 2D. In 3D, the memory 
usage due to the LU factors is the bottleneck for direct methods. Future 
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rectangles) on a silica substrate (grey), operating at wavelength λ = 532 nm. PMLs 
are placed on all four sides. We compute the transmission matrix with up to 
2W/λ = 3,761 truncated plane-wave inputs from the left and with 

M′ = 2(W+ 40λ)/λ = 3,841 outgoing plane waves on the right. b,c, Computing 
time (b) and memory usage (c) versus the number M of input angles using 
different methods. See the caption of Fig. 2 for details. APF-c denotes APF with 
the matrices B and C compressed.
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work could develop partial factorization schemes that minimize the 
temporary storage of such factors or even compute CA−1B without 
triangular factors. The expected usage of computing time and memory 
usage by APF in 3D follow that of the factorizing matrix A, which is 𝒪𝒪𝒪N2) 
and 𝒪𝒪𝒪N1.33), respectively, when using nested dissection ordering but 
could potentially be lowered by leveraging the low-rank property of 
the off-diagonal blocks53. APF-c can naturally work with overlapping-
domain distribution strategies7–9. Multi-frontal parallelization can be 
used through existing packages such as MUMPS33, and one may employ 
hardware accelerations with GPUs9,54. For systems with a small surface-
to-volume ratio, it is also possible to apply APF to the boundary element 
method or T-matrix method, using the ℋ-matrix technique27 for fast 
factorization.

Methods
We implement APF under finite-difference discretization on the  
Yee grid in 2D (Supplementary Sect. 2) and compute the Schur  
complement using the MUMPS package33 (version 5.4.1) with its  
built-in approximate minimum degree ordering. Outgoing bounda-
ries are realized with PMLs55. We order the input/output channels  
and/or pad additional channels so that the matrix K is symmetric  
(Supplementary Sect. 3).

We use the same discretization scheme, same grid size and same 
subpixel smoothing56 for the APF, MaxwellFDFD and RGF benchmarks. 
Numerical dispersion is not important for the disordered media exam-
ple in Fig. 2, so we use a relatively coarse resolution of 15 pixels per 
λ there. A finer resolution of 40 pixels per λ = 532 nm is used for the 
metasurface examples in Figs. 4 and 5 to have their transmission phase 
shifts accurate to within 0.1 rad (Supplementary Fig. 11).

In RGF42, the outgoing boundary in the longitudinal direction 
is implemented exactly through the retarded Green’s function of a 
semi-infinite discrete space28. For APF and MaxwellFDFD, one λ of 
homogeneous space and 10 pixels of PML55 are used to achieve an 
outgoing boundary with a sufficiently small discretization-induced 
reflection. The uniaxial PML is used in APF so that the matrix A is sym-
metric. The stretched-coordinate PML is used in MaxwellFDFD to lower 
the condition number57.

For the MaxwellFDFD method with an iterative solver41, we use 
its default biconjugate gradient method with its default convergence 
criterion of relative ℓ2 residual below 10−6. For the MaxwellFDFD method 
with a direct solver40, we consider an unmodified version where the LU 
factors are not reused and a version modified to have the LU factors 
stored in memory and reused for the different inputs.

For the RCWA simulations, we use its default closed-form Fourier-
transform formalism implemented in S4 (ref. 43). For the example in 
Fig. 4, we use a single layer with five Fourier components per unit 
cell where the cell width is 239 nm (that is, 11 Fourier components  
per λ), which gives accuracy comparable to APF, MaxwellFDFD and 
RGF (Supplementary Fig. 11). For the example in Fig. 2, we use 15 lay-
ers per λ axially (the same as the discretization grid size used in the 
other methods) with 4.1 Fourier components per λ laterally (by scal-
ing it down in proportion to the reduced spatial resolution in APF, 
MaxwellFDFD and RGF).

Note that the RGF42 and S4 (ref. 43) codes do not support an outgo-
ing boundary in the transverse y direction. The computing time and 
memory usage for RGF and S4 in Fig. 4 are extrapolated from simula-
tions on smaller systems adopting a periodic transverse boundary 
(Supplementary Fig. 9). To simulate the example in Fig. 4 using RGF or 
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S4, one needs to additionally implement PML in the y direction and to 
further increase the system width. Doing so will slightly increase their 
computing time and memory usage, which we disregard.

All the computing time and memory usage values are obtained 
from computations using a single core without parallelization on 
identical Intel Xeon Gold 6130 nodes on the USC Center for Advanced 
Research Computing’s Discovery cluster with 184 GiB of memory avail-
able per node.

Data availability
Numerical source data for Figs. 2, 4 and 5c–f are available with this 
manuscript in the Source Data section. Numerical source data for 
Figs. 3b–c and 5a,b are available on Zenodo58. All data in this study 
are generated by running our code59, MaxwellFDFD40,41 and S4 (ref. 43).

Code availability
We implement the APF method and the RGF method within our software 
Maxwell’s Equations Solver with Thousands of Inputs (MESTI). The 
code, documentation and examples are available on GitHub59 under 
the GPL-3.0 license. MESTI supports both polarizations, all common 
boundary conditions, real or complex frequencies, with any permittiv-
ity profile and any list of input source profiles and output projection 
profiles (user specified or automatically built). The specific version of 
MESTI used to produce the results in this manuscript is also available 
on Zenodo60.
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