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Abstract

We present a fast algorithm for multiple kernel learning (MKL). Our matrix multi-
plicative weight update (MWUMKL) algorithm is based on a well-known QCQP
formulation [5]. In addition, we propose a novel fast matrix exponentiation rou-
tine for QCQPs which might be of independent interest. Our method avoids the
use of commercial nonlinear solvers and scales efficiently to large data sets. []_-]

1 Introduction

Kernel methods have been extremely successful in a wide variety of machine learning applica-
tions [18, 3} 15 6L 9. The success of these methods relies on an appropriate choice of kernel (or
kernels) and there has been extensive research on learning a combination of multiple kernels which
outperform [5] algorithms that operate with a single kernel. Earliest approaches on multiple ker-
nel learning assigned equal (or weighted) preference to kernels and simply used the weighted sum
of kernel functions [6]. Lanckriet et al. [S]] proposed simultaneously training an SVM and learn-
ing a convex combination of kernel functions, by framing MKL as an optimization over positive
semi-definite kernel matrices. Bach et al. [3] smoothed the above formulation using a block-norm
regularization method. Follow up work employed alternating optimization based techniques that
alternate between updating the classifier parameters and the kernel weights (while sacrificing guar-
antees on accuracy). Examples of such methods include Semi-Infinite Linear Programming [9],
SimpleMKL [7], LeveIMKL [11] and GroupMKL [12].

In this work, we propose a fast MKL algorithm (MWUMKL) that (a) does not require commer-
cial solvers (b) does not make explicit calls to SVM libraries (unlike alternating optimization based
methods), and (c) provably converges in a fixed number of iterations to a solution with guaranteed
accuracy (with respect to the underlying optimization). We focus on the original QCQP formulation
of the MKL problem ([5]) and make it scalable by using the matrix multiplicative weight update
(MMWU) [2] method to solve the underlying QCQP. Taking advantage of the structure of the MKL
problem, we make simplifications to the original formulation, exploit a novel fast routine for ex-
act matrix exponentiation, and perform a number of optimizations to the primal-dual core of the
MMWU method. As we empirically demonstrate, all of these contributions taken together signifi-
cantly improve the running time of our method, allowing to scale to input sizes well beyond prior
methods with no significant loss in quality.

2 Background

Let X = (X1,X2,...,X,) € R"? denote training samples, y = (y1,y2, . ..,¥s) € {—1,+1}" denote the
corresponding binary class labels and w denote the weight vector to be learned. The problem of
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multiple kernel learning can be cast as the problem of minimizing 1||w||* such that y;((w,®(x;)) +
b) > 1 for all j where @ is the feature map associated with the (unknown) kernel x. With the
constraint that kK can be written as k = }.i” | 4;k; (with a trace regularizer) the dual problem takes
the following form [S]:

m
mlénmax 20'1-a'Ga st K=Y pK; tw(K)=c, K=0, p>0
o i=1

where K; is the Gram matrix for X associated with the kernel function x;(-,-), G; =
diag(y)K;diag(y) and G = Y, 1;G;. The kernel K optimizing this expression can be found by
solving the following convex optimization problem [5, Theorem 20]:
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where r € R and tr(K;) = r;. This program is an example of a class of convex programs called

quadratically constrained quadratic programs (QCQPs). Since the class of QCQPs is a subset of

SOCPs (second order cone program), Lanckriet et al. [S] proposed solving the above program with

efficient SOCP solvers such as Mosek [ 1] or SeDuMi [[10].

3 Algorithm

Our algorithm is a matrix multiplicative-weight-update method [2]] applied to the optimization for-
mulated in (2:T)). Such a method works as follows. Firstly, it guesses a value of the objective solution.
Next, it runs a primal-dual update scheme in order to determine the variable settings that yield this
value. The primal-dual scheme uses an oracle call (typically a linear program) to determine whether
the current variable settings yield a feasible solution. If so, the algorithm then tries a smaller value of
the objective and repeats (as in binary search). If not, the primal-dual update continues by updating
the relevant variables and trying again. This last update is performed via a matrix exponentiation
(for more details, see [2]]).

We now describe how we implement and improve upon the three core steps of the process by ex-
ploiting structure in the MKL SDP. Algorithm [1| describes the entire procedure. For the sake of
brevity, we have compressed and abstracted out key details in this extended abstract.

From an QCQP to an SDP The MMWU -
framework is usually applied to an SDP in a Algorithm 1 MWU-MKL
canonical form, so the first step is rewriting Require: g(!) =0;
(2:T) in SDP form. This yields the expression 0, the width of ORACLE;
€, the desired approximation error
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Figure 1: Results for Pima (n =768, d = 8) and Adult (n = 9768, d = 123).

In general, matrix exponentiation is expensive, and Arora and Kale [2] suggest ways to approximate
this computation. However, the matrix M depends primarily on the Q;, which have a very special
block-diagonal structure. This allows us to compute the matrix exponent in closed form, replacing
the (expensive) approximation step by a simple linear time procedure with a small memory footprint.

Computing The Oracle. In the MMWU formulation of an SDP, an oracle call generates dual
updates from a given primal “guess”. In general, the oracle solves a linear program: repeated
invocations of this linear program are viewed as more efficient in principle than solving the (more
complex) SDP.

In the context of MKL, the “primal” variable is the matrix L. computed from the matrix exponentia-
tion process. Given L, the oracle then generates a new update for the dual variables oﬂ Once again,
we take advantage of the block structure of the matrix L to design an oracle that reduces to solving a
single linear inequality by inspection. If the inequality cannot be satisfied, the oracle returns FAIL.
This is a significant improvement over the general linear program that is typically required.

Eliminating Binary Search. A final optimization is to eliminate the generic binary search used to
“guess” the optimal solution to the underlying SDP. By careful use of the KKT conditions and the
fact that the objective function in is linear, we can rescale the problem to fix the optimal value
(all that remains is to find the coefficients o, which are used to generate the desired weights for the
kernels).

Extracting the solution from the MWU Finally, we use the KKT conditions and the & to extract
the coefficients u for the kernels. The transformation is a simple function of L and ¢, and can be
computed efficiently.

Putting it all together Algorithm [I|summarizes the discussion in this section. The parameter € is
the error in approximating the objective function. We set the actual value of € via cross-validation.
The parameter p is the width of ORACLE, a parameter that indicates how much the solution can vary
at each step. p is equal to the maximum absolute value of the eigenvalues of Q; (o (e )), for any i [2].

The total running time is O (cmnln(n) 8%) .

4 Results

There is a natural trade-off in MKL methods between classification accuracy and measured run-
ning time. The quest for scalability asks for the largest sizes (number of points, number of kernels)
we can perform MKL on without sacrificing accuracy in any significant way. We present two pro-
totypical results here (our full version has results for more data sets and more methods). In the
small data regime (n < 2000), we show that the accuracy we obtain is comparable to the best of the
related methods (usually UNIFORM and GROUPMKL). When we move to larger n (n > 10,000)

2The MKL formulation introduces additional linear constraints on ¢ that are not strictly part of the original
SDP. It is easy to show however that these can be folded into the oracle computation.



most methods (other than UNIFORM) suffer severe degradation in running time, to the point where
comparisons are futile. Comparing against UNIFORM, which fixes uniform weights on all kernels
and runs an SVM, our method has comparable accuracy while actually performing faster. These
results are summarized in Figure E} Our results are robust to different choices of data sets, number
of kernels used, as well as error parameters.

A major bottleneck limiting further scaling of our work is the memory utilization of the method. As
currently stated, it requires all kernel matrices to be stored in memory. For m kernels on n points,
this yields a memory requirement of Q(mn?). By computing columns of the kernel matrices on
demand, we can reduce the memory footprint to O(mn), improving scalability without affecting
solution quality. We are currently testing this implementation: preliminary results suggest that we
can indeed scale well beyond tens of thousands of points, as well as many kernels. We note that
recent work on scalable MKL [4]] indicates the ability to deal with millions of kernels, but in effect
also has a memory footprint of Q(mn) which limits their approach to either many kernels or many
points, but not both. Since they do not provide accuracy numbers, a direct head-to-head comparison
is difficult to make.

5 Discussion

Our approach suggests that the matrix multiplicative weight update, while expensive in general,
can be adapted to provide combinatorial algorithms for certain nonlinear optimizations that scale
well. We expect that this approach will prove to be useful for other QCQP-based optimizations
such as distance metric learning as well. We note that the matrix multiplicative weight update
method generalizes the traditional approach in that each “expert” that is updated is really a linear
combination of experts. In effect, the method seems to identify correlations between the original
experts and transforms the space so that the new “experts” are independent of each other and can
be updated independently. It would be interesting to see if this insight can be made explicit, for
example in multi-task learning.
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