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Abstract

A very efficient and robust visual object tracking algo-
rithm based on the particle filter is presented. The method
characterizes the tracked objects using color and edge ori-
entation histogram features. While the use of more features
and samples can improve the robustness, the computational
load required by the particle filter increases. To acceler-
ate the algorithm while retaining robustness we adopt sev-
eral enhancements in the algorithm. The first is the use of
integral images [34] for efficiently computing the color fea-
tures and edge orientation histograms, which allows a large
amount of particles and a better description of the targets.
Next, the observation likelihood based on multiple features
is computed in a coarse-to-fine manner, which allows the
computation to quickly focus on the more promising regions.
Quasi-random sampling of the particles allows the filter to
achieve a higher convergence rate. The resulting tracking
algorithm maintains multiple hypotheses and offers robust-
ness against clutter or short period occlusions. Experimen-
tal results demonstrate the efficiency and effectiveness of the
algorithm for single and multiple object tracking.

1 Introduction

Object tracking is an important task in many computer
vision applications including surveillance, gesture recog-
nition, smart rooms, vehicle tracking, augmented reality,
video compression, and medical imaging, etc. The tracking
of real-world objects is a challenging problem due to the
presence of noise, occlusion, clutter and dynamic changes
in the scene other than the motion of objects of interest.
A variety of tracking algorithms have been proposed and
implemented to overcome these difficulties; they can be
roughly classified into two categories: deterministic meth-
ods and stochastic methods.

Deterministic methods typically track by performing an
iterative search for the local maxima of a similarity cost
function between the template image and the current im-
age. The cost function widely used is the sum of squared

differences (SSD) between the template and the current im-
age such as in [24, 16, 2]. More robust similarity mea-
sures have been applied and the mean-shift algorithm or
other optimization techniques have been utilized to find the
optimal solution [3, 5, 8, 11, 7]. Model-based tracking
algorithms incorporate a priori information about the ob-
jects to develop representations such as skin complexion,
body blobs, kinematic skeleton, silhouettes or layer infor-
mation [38, 36, 5, 33, 32, 6]. Appearance-based approaches
apply recognition algorithms to learn the objects either in
some basis such as the eigenspace formed from observa-
tions or in kernel space [4, 1, 35].

On the other hand, the stochastic methods use the state
space to model the underlying dynamics of the tracking sys-
tem. In a linear-Gaussian model with linear measurement,
there is always only one mode in the posterior probability
density function (pdf), the Kalman filter propagates and up-
dates the mean and covariance of the distribution. For non-
linear or non-Gaussian problems, it is impossible to evalu-
ate the distributions analytically and many algorithms have
been proposed to approximate them. The particle filter, also
known as sequential Monte Carlo [10], is the most popular
approach which recursively constructs the posterior pdf of
the state space using Monte Carlo integration. It has been
developed in the computer vision community and applied
to tracking problem and is also known as the Condensation
algorithm [17].

The particle filter based tracking algorithms usually use
contours, color features, or appearance models [17, 18, 25,
37, 20]. The color histogram is robust against noise and par-
tial occlusion, but suffers from illumination changes, or the
presence of the confusing colors in the background. Most
of all, it ignores the spatial layout information. The compu-
tation is expensive if the tracked region and the number of
samples are large. The contour-based methods are invariant
against the illumination variation but computationally ex-
pensive which restricts the number of samples (particles).
Unfortunately when the dimensionality of the state space
increases, the number of samples required for the sampling
increases exponentially.



To resolve these problems, we adopt the Harr-like rect-
angle features introduced by Viola and Jones [34] for object
detection, and the edge orientation histogram. The rect-
angle features can be efficiently evaluated by a few table
lookup operations from the integral image as shown in [34].
The Harr-like rectangle features yield satisfactory results
unless there are confusing pieces of the background with
color similar to the foreground, or if there are significant
illumination changes.

The edge or contour features are more robust to illumi-
nation variation or presence of confusing background col-
ors, but are sensitive to clutter. One natural way to im-
prove both the color and edge features is to combine them as
in [3, 18, 37]. However, these earlier methods dealing with
the edges are either time-consuming or restricted to simple
shape models. To provide a general way to treat edge fea-
tures instead we manipulate them using the edge orientation
histogram (EOH) [15]. There are two reasons for this: one
is that they can be efficiently computed in the same way as
the rectangle features using the integral image; the other is
that they are robust to scene illumination changes and pro-
vides more information than a simple contour model. Since
both features can be evaluated efficiently, we can generate
many more samples to alleviate the curse of the dimension-
ality and improve robustness.

While evaluating the probability that samples in the tar-
get image appear from the distribution of the original ob-
ject, we will find that for most samples the probability is
extremely low, and they can be pruned immediately by a
bootstrap step in the particle filter. The few surviving sam-
ples are subjected to a more careful scrutiny in the follow-
ing stages. In these following stages, more complicated
and more discriminative features can be used to remove
ambiguities in the first stage. This coarse-to-fine cascade
idea, where the first stages reject most incorrect matches,
while retaining all correct and a few incorrect ones, has
been successfully used in target recognition and face de-
tection [39, 13, 22, 34, 30]. As will be seen it allows for
significant speed-up.

While employing extensively the integral image and the
coarse-to-fine cascade scheme, our method is totally differ-
ent from the object detection algorithms or face detection
such as [39, 13, 22, 34, 30]. Temporal correlation in the se-
quences is ignored in these detection algorithms. If they are
naively applied to object tracking, the false alarms or false
negatives are too high for continuous tracking applications.

A further speed-up is made possible by improving the
convergence of the Monte Carlo integration in the particle
filter. We do so by using a quasi-random generator to gen-
erate the sample points [28]. To improve the running of
the tracking algorithm we also employ the Streaming SIMD
Extensions (SSE) and SSE2 instructions in the Pentium 4
processor. These are especially useful to improve the per-

formance of computing the integral images. All these tech-
niques allow our algorithm to comfortably run in real-time
on a PC desktop.

2 Particle Filter
The particle filter is a Bayesian sequential importance

sampling technique, which recursively approximates the
posterior distribution using a finite set of weighted samples.
It consists of essentially two steps: prediction and update.
Given all available observations z1:t−1 = {z1, . . . , zt−1}
up to time t − 1, the prediction stage uses the probabilistic
system transition model p(xt|xt−1) to predict the posterior
at time t as

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (1)

At time t, the observation zt is available, the state can be
updated using Bayes’ rule

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
, (2)

where p(zt|xt) is described by the observation equation.
In the particle filter, the posterior p(xt|z1:t) is approxi-

mated by a finite set of N samples {xi
t}i=1,...,N with im-

portance weights wi
t. The candidate samples x̃i

t are drawn
from an importance distribution q(xt|x1:t−1, z1:t) and the
weight of the samples are

wi
t = wi

t−1

p(zt|x̃i
t)p(x̃i

t|xi
t−1)

q(x̃t|x1:t−1, z1:t)
. (3)

The samples are resampled to generate an unweighted
particle set according to their importance weights to avoid
degeneracy. In the case of the bootstrap filter [10],
q(xt|x1:t−1, z1:t) = p(xt|xt−1) and the weights become
the observation likelihood p(zt|xt).

3 Observation Models
The observation model is is used to measure the observa-

tion likelihood of the samples, and is an important issue for
object tracking. Many observation models have been built
for particle filtering tracking. In [17], a contour based ap-
pearance template is chosen to model the target. The tracker
based on a contour template gives an accurate description
of the targets but performs poorly in clutter and is generally
time-consuming. The initialization of the system is rela-
tively difficult and tedious. In contrast, color-based track-
ers are faster and more robust, where the color histogram
is typically used to model the targets to combat the partial
occlusion, and non-rigidity [27, 37, 3, 8]. The drawback
of the color histogram is that spatial layout is ignored, and
the trackers based on it are easily confused by a background
with similar colors.



The combination of the two features provides better per-
formance at the price of trading speed for robustness. The
color features provide robust and discriminative description
of the objects using the body information. The edge fea-
tures provide a discriminative description of the objects us-
ing the boundary information. Such a combination signifi-
cantly improves the robustness and discriminative power of
the features at the price of high computational load and slow
tracking speed.

In order to resolve the contradiction between the robust-
ness and the tracking speed, we use the simple rectangle
features which have been used by Viola and Jones in ob-
ject detection [34] and can be used in the bootstrap step as
discussed below. These simple features can be efficiently
evaluated by several table lookup operations on the integral
image. The features are obtained on the grayscale images
and can be easily extended to color images.

The edge information is represented using the edge ori-
entation histogram (EOH). The EOH has been widely used
for gesture recognition [15], pose estimation [31], dis-
tinctive image feature extraction [23], and object detec-
tion [21]. The reasons for using the EOH is that it is invari-
ant to scene illumination changes, is discriminative against
a background with confusing colors, and is simple and fast
to compute.

3.1 Color Rectangle Features
The rectangle features were introduced by Viola and

Jones for real-time object detection [34]. In their method,
the grayscale image was converted to integral image format
(an image in which at each pixel the value is the sum of all
pixels above and to the left of the current position). The
sum of the pixels within any rectangle can then be com-
puted in four table lookup operations on the integral im-
age. The color images can be treated as multi-channel in-
tensity images to generate multi-channel integral images.
The computation can be speeded up by using the SSE/SSE2
instructions that are available on the Pentium 4 CPU, where
128-bit instructions can be used to manipulate four 32-bit
integers simultaneously.

To model the target using color information, we pick
n rectangular regions R1, . . . , Rn within the object to be
tracked. Each rectangle Ri is represented by the mean
(r, g, b) color of the pixels within region Ri (other color
spaces can be considered similarly)

(ri, gi, bi) =
∑

(x,y)∈Ri

(r(x, y), g(x, y), b(x, y)) /Ai, (4)

where Ai is the number of pixels within Ri. The mean color
vector (r�

i , g�
i , b�

i ) of each region Ri can be computed dur-
ing initialization. The reason we choose this color repre-
sentation instead of the popular color histogram is that it
encodes the spatial layout of the targets and offers robust-
ness against noise. Furthermore, most of the targets consist

of several homogenous sub-regions which makes the color
histogram an inefficient representation.

Such a color representation of the targets has been used
in [12] for head tracking, where a hypothesize-and-test pro-
cedure is used to find a match between frames. In [12], for
real time performance they can only consider a relatively
small number of hypotheses, since there was no efficient
way to evaluate the rectangle features. This leads to de-
creased robustness. Here we have such an efficient way and
can consider more hypotheses.

If we denote k� = {(r�
i , g�

i , b�
i )}i=1,...,n as the reference

color model and k(xt) as the candidate color model, the
similarity between k� and k(xt) can be measured by the
Euclidean distance between them

ρ(k�,k(xt))=

[
n∑

i=1

(r�
i −ri)2+(g�

i −gi)2+(b�
i −bi)2

] 1
2

. (5)

The likelihood distribution is given by

p(zt|xt) ∝ e−ρ2(k�,k(xt))/σ2
, (6)

where σ = 10 in our experiments.
The number of the rectangles within the object can be as

small as two in the first stage which we will discuss later in
this paper. There are two reasons for such a setup: one is
efficiency, the other is that we want to keep more candidates
in the first stage for robustness and prune those majority
negative samples as soon as possible. This strategy has been
proven successful in object detection [34], and we observe
the same for tracking.

3.2 Edge Orientation Histogram
The color features are reliable for most tracking tasks,

even when there is occlusion or overlap. However, it may
perform poorly if the background presents confusing col-
ors. Many other feature types have been proposed for com-
bination with color. Isard and Blake [18] have shown that
the combination of color with a contour model gives faster
and more robust tracking. The color histogram and an el-
lipse shape model are combined for object tracking [3, 37].
In this paper, we use the edge orientation histogram for
the purpose of simplicity, efficiency and generalization.
It has been widely used in a variety of vision applica-
tions [15, 31, 23, 21, 9].

To detect edges, we first convert color images to
grayscale intensity images. Edges are detected using the
horizontal and vertical Sobel operators: Kx and Ky [14]:

Gx(x, y) = Kx∗I(x, y), Gy(x, y) = Ky ∗I(x, y). (7)

The strength and the orientation of the edges are

S(x, y) =
√

G2
x(x, y) + G2

y(x, y), (8)

θ = arctan (Gy(x, y)/Gx(x, y)) . (9)
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Figure 1: Edge orientation histogram. (Left) Example image.
(Center) Edge strength image. (Right) Polar plot of edge orien-
tation histogram.

We also apply a threshold T to S(x, y) to remove noise (T
is set to 100 in our experiments). The edges are counted
into K bins with their strengths S(x, y). Figure 1 shows
an example of the global edge orientation histogram of the
walker in the image.

The edge orientation histogram can be built without ex-
plicitly computing the angles of the edges. Instead we
use the normalized horizontal and vertical strengths gx =
Gx/S and gy = Gy/S to index the edges into K bins. The
algorithm gives satisfactory results even when K is as small
as 4.

The edge orientation histogram within a rectangle region
can be efficiently computed by treating it as K separated
channels and accumulating K integral images. The i-th bin
value within a rectangle is the sum computed by four table
lookup operations on i-th integral image.

The similarity between the template and the current im-
age is computed with the Euclidean distance between the
two global edge orientation histograms as in [23]. The ob-
servation likelihood is calculated similarly using an expres-
sion such as (6).

3.3 Cascade of Features

The combination of the color information and edge ori-
entation histogram achieves excellent performance in term
of speed and accuracy. Typically the scores of about 90%
of samples are almost zero (see the example in figure 2).
The remained samples are subjected to a more careful ex-
amination. This cascade-like method has been widely used
in many applications such as [39, 13, 22, 34, 30]. In partic-
ular, Viola and Jones [34] construct a cascade of classifiers
which yields a very fast face detector. The use of cascade is
effective because a majority of the sub-regions are negative.
The cascade tries to reject as many as possible at the ear-
lier stage, to concentrate the algorithm effort on the positive
sub-regions.

Since the probability of most samples is almost zero, we
can cut them off from the second stage evaluation. More
sophisticated and more discriminative features and observa-
tion models are used in the second stage. In our implemen-

0 0.01 0.02 0.03 0.04 0.05 0.06
0

200

400

600

800

1000

Score

N
um

be
r 

of
 s

am
pl

es

Figure 2: The histogram of scores of 1000 samples from an ex-
ample sequence. Most samples have a vanishingly small score.

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

Figure 3: Rectangle features used in the paper, which are the
remainders of the sums of the white rectangles from the gray
ones. (Left) two-rectangle feature. (Center) three-rectangle fea-
ture. (Right) four-rectangle feature.

tation, we use the two-rectangle, three-rectangle and four-
rectangle features in [34] as shown in Figure 3. Those fea-
tures were used by the classifiers in the face detector [34].
We use them in the second stage because they are more dis-
criminative at the same time more sensitive to the presence
of edges, change in illumination or noise. The likelihood
distribution of the subset of samples can be calculated sim-
ilarly as in the first stage, then multiplied by the likelihood
of the first stage. The probability of the remaining samples
is scaled down by the smallest likelihood from the second
stage. The samples with significant low probability will be
neglected in the following stages.

The features in the third stage is the edge orientation his-
togram which is similar to the one in the Scale Invariant
Feature Transform (SIFT) descriptor [23]. The SIFT de-
scriptor has achieved great success as a method for reliable
image matching. The region is divided into m × n subre-
gions and local histograms with 4 orientation bins are con-
structed in each by using the orientation integral images.
The local edge orientation histograms are stacked into a
multidimensional feature vector. The similarity between the
template and the current image is computed using the Eu-
clidean distance between the two multidimensional feature
vectors. The observation likelihood is calculated using the
expression (6). Each likelihood is multiplied by the previ-
ous one and the others are multiplied by the smallest like-
lihood in the third stage. In principle, more complicated
features or representations can be used to construct the fur-
ther levels of the cascade, but we restrict ourselves to these
here.
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Figure 4: 2048 points of two-dimensional Gaussian random se-
quences generated by (Left) quasi-random sequence generator and
(Right) pseudo-random sequence generator. The quasi-random se-
quence is more symmetric and has less discrepancy.

4 Particle Filter Tracking
The proposed particle filter tracker consists of an initial-

ization of the template model and a sequential Monte Carlo
implementation of a Bayesian filtering for the stochastic
tracking system. In each iteration, the particle filter tracking
algorithm consists of two steps: prediction and update.

The state of the particle filter is defined as x =
(x, y, sx, sy), where x, y indicate the location of the target,
sx, sy the scales in the x and y directions. In the predic-
tion stage, the samples in the state space are propagated
through a dynamic model. The dynamics usually is an auto-
regressive process (AR). We use a first-order AR model for
fair comparison and simplicity:

xt = xt−1 + vt−1, (10)

where vt−1 is a multivariate Gaussian random variable.
To draw samples from the normal distribution, we use
the quasi-random sequence generator which converges in
rate of (ln N)d/N in d-dimensional state space instead of
N−1/2 using the pseudo-random sequence generator [28].
Figure 4 shows the random dots generated by the two ran-
dom sequence generators. Clearly, the quasi-random se-
quence is more symmetric and samples space with less dis-
crepancy.

The update stage applies the observation models to esti-
mate the observation likelihood for each samples, i.e., the
weights of samples in the case of the bootstrap filter. Since
the probability of most samples is negligible, a bootstrap
resampling is necessary to avoid the degeneracy. We apply
the bootstrap scheme in [29] which uses order statistics and
has the computational complexity O(N).

5 Experiments
The proposed particle filter based tracker has been im-

plemented in C and tested on a 1.4GHz Pentium4 PC with
512MB memory. It has been applied to a variety of track-

ing scenarios and tasks, including single and multiple object
tracking.

5.1 Single Object Tracking

In the first experiment, a single person in a video se-
quence is walking in an office environment under severe
illumination condition. The image size of the sequence
is 352 × 240. The top row in Figure 5 shows that the
tracker follows the target consistently and robustly despite
the large illumination variations. The average tracking time
per frame is about 0.015s with 1000 samples. The bottom
row in Figure 5 shows the tracking results of the color his-
togram based tracker in [27] with the same system dynam-
ics, same initial template and 100 samples. The tracking
rate is about 50fps. The tracker totally loses the target after
several frames. With 1000 samples, the tracking speed for
the original algorithm will be very low (about 5fps).

In the second experiment, the sequence is captured from
outdoor environment with cluttered background and large
changes in body size and shape. The results are shown in
Figure 6. The image size is 720 × 480 and the number of
particles is 1000. The average tracking rate is about 30fps.
The great benefit of the proposed algorithm over other par-
ticle filter based tracking methods is shown in the multiple
object tracking.

5.2 Multiple Object Tracking

In the third experiment, we use the proposed algorithm to
simultaneously track multiple objects. Each object is asso-
ciated with a individual template and 1000 particles. Each
object moves independently. The proposed algorithm suc-
cessfully tracked all objects through all frames. The im-
age size is 352 × 288. Examples of the tracking results are
shown in Figure 7. The tracking time with respect to the
frame index is shown in the left panel of Figure 8. We also
measured the average tracking time for single object with
respect to the number of particles which is shown in the
right panel of Figure 8. The same procedures and configu-
rations are applied to the color histogram based tracker and
the corresponding tracking time is shown in Figure 8. It
indicates that the increase of the time for the proposed algo-
rithm with respect to the number of particles is much slower
than for the color histogram based method. Most of the time
in our method is spent on building the integral images. Once
the integral images are built, the evaluation of the observa-
tion likelihood by the proposed method is independent of
the size of regions and is very efficient. In contrast, for the
color histogram based method or other methods, the bottle-
neck is the building of the histograms whose complexity is
proportional to the number of particles and the size of the
regions.



Figure 5: Particle filter based tracking in an office environment under severe illumination condition. (Top) The results of the proposed
tracker. (Bottom) The results of the color histogram based tracker.

Figure 6: The results of the proposed particle filter based tracking for an outdoor sequence.

Figure 7: Results of the proposed particle filter based multiple object tracking for the football game sequence.
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Figure 8: (Left) Tracking time with respect to the frame index.
(Right) Tracking time with respect to the number of samples.

6 Conclusions

In this paper, we proposed an efficient and robust parti-
cle filter based object tracking algorithm. The particle filter
maintains multiple hypotheses about the state of the tracked
objects by representing the state space by a set of weighted
samples. In general, the more samples and richer target rep-
resentation, the better chances the tracking algorithms suc-
ceed in cluttered and noisy environments. However, they
can be very inefficient when the popular color histograms,
shapes, contours or a combination of these are used to eval-
uate the observation likelihood. We use the rectangle fea-
tures and edge orientation histogram to evaluate the obser-
vation likelihood. They can be efficiently computed with in-
tegral images. To increase the discriminative capacity while
speeding up the evaluation, we adopt a cascaded scheme
which results in highly discriminative observation likeli-
hood. The Monte Carlo integration in the particle filter con-
verges at rate O(N−1/2). We use the quasi-random sam-
pling to improve the convergence rate to O((log N)d/N)
as in [28].

The above improvements make the tracking algorithm
very efficient and robust against clutter, illumination
changes and short period time occlusions. From the experi-
ments, we find most of computations are spent on building
the integral images. But once they are built, the evaluation
of the observation likelihood can be done using several table
lookup operations. So we can generate much more samples
to represent the state space more accurately, which make it
very suitable for multiple object tracking as in [26]. The
probabilistic exclusion principle proposed by MacCormick
and Blake [25] is very useful for tracking multiple objects,
which employs the partition sampling to reduce the high
computational cost from fully coupled systems. A combi-
nation of MacCormick and Blake’s technique and ours will
make the multiple object tracking more efficient and more
robust. The object detection algorithm [34] also can be nat-
urally integrated with our method. Currently the orientation
of the targets is fixed during the tracking. The possible so-
lution is to assign an orientation to the tracked objects using
the edge orientation histograms as in [23]. In this paper we
have not taken the updating of the image model into con-
sideration. A good starting point will be work of Jepson et

al [19].
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[27] P. Pérez, C.Hue, J. Vermaak, and M. Gangnet. Color-based
probabilistic tracking. In Proc. European Conf. Computer
Vision, pages 661–675, 2002.

[28] V. Philomin, R. Duraiswami, and L. Davis. Quasi-random
sampling for condensation. In Proc. European Conf. Com-
puter Vision, volume 2, pages 134–149, 2000.

[29] M. K. Pitt and N. Shephard. Filtering via simulation: Aux-
iliary particle filters. Journal of the American Statistical As-
sociation, 94(446):590–599, 1999.

[30] H. Schneiderman. Feature-centric evaluation for efficient
cascaded object detection. In Proc. IEEE Conf. Comp. Vi-
sion Pattern Recognition, volume 2, pages 29–36, Washing-
ton, DC, 2004.

[31] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose esti-
mation with parameter-sensitive hashing. In Proc. Int’l Conf.
Computer Vision, volume 2, pages 750–757, Nice, France,
2003.

[32] C. Sminchisescu and B. Triggs. Kinematic jump processes
for monocular 3D human tracking. In Proc. IEEE Conf.
Comp. Vision Pattern Recognition, volume I, pages 69–76,
Madison, WI, 2003.

[33] H. Tao, H. S. Sawhney, and R. Kumar. Object tracking with
bayesian estimation of dynamic layer representations. IEEE
Trans. Pattern Anal. Mach. Intell., 24(1):75–89, Jan. 2002.

[34] P. Viola and M. J. Jones. Robust real-time face detec-
tion. Int’l Journal of Computer Vision, 52(2):137–154, May
2004.

[35] O. Williams, A. Blake, and R. Cipolla. A sparse probabilis-
tic learning algorithm for real-time tracking. In Proc. Int’l
Conf. Computer Vision, pages 353–360, Nice, France, 2003.

[36] C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. IEEE Trans.
Pattern Anal. Mach. Intell., 19(7):780–785, 1997.

[37] Y. Wu. Robust visual tracking by integrating multiple cues
based on co-inference learning. Int’l Journal of Computer
Vision, 58(1):55–71, June 2004.

[38] J. Yang and A. Waibel. A real-time face tracker. In Proceed-
ings of WACV, pages 142–147, Sarasota, FL, 1996.

[39] M.-H. Yang, D. Roth, and N. Ahuja. A SNoW-based face
detector. In Advances in Neural Information Processing Sys-
tems, pages 862–868, 1999.


