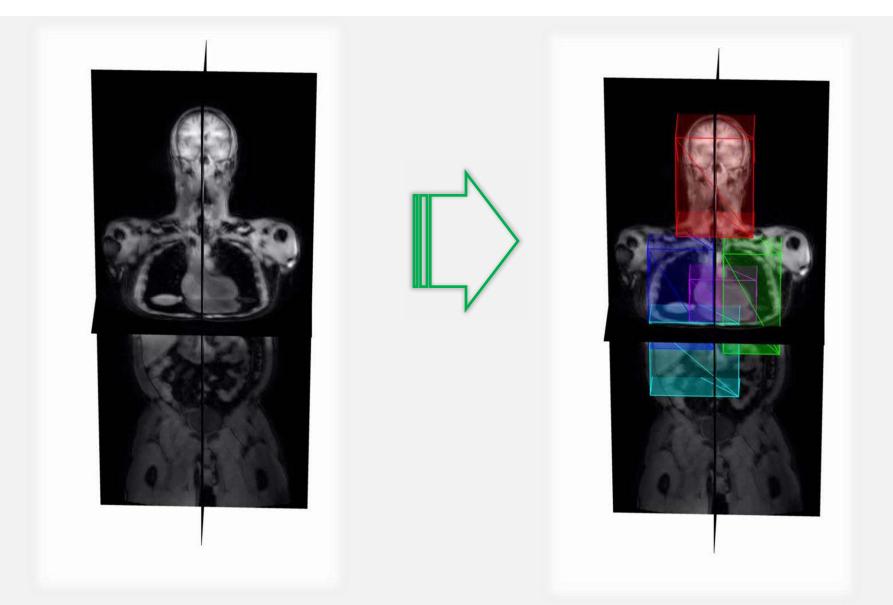


Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences

Olivier Pauly, Ben Glocker, Antonio Criminisi, Diana Mateus, Axel Martinez-Möller, Stephan Nekolla, and Nassir Navab

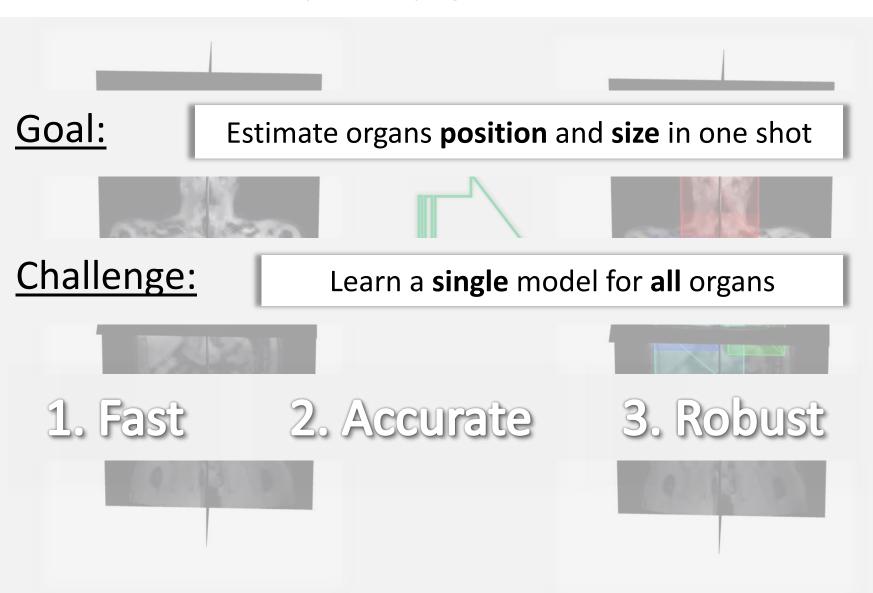
What it's all about...

Pauly et al., Fast Multiple Organ Detection and Localization



What it's all about...

Pauly et al., Fast Multiple Organ Detection and Localization

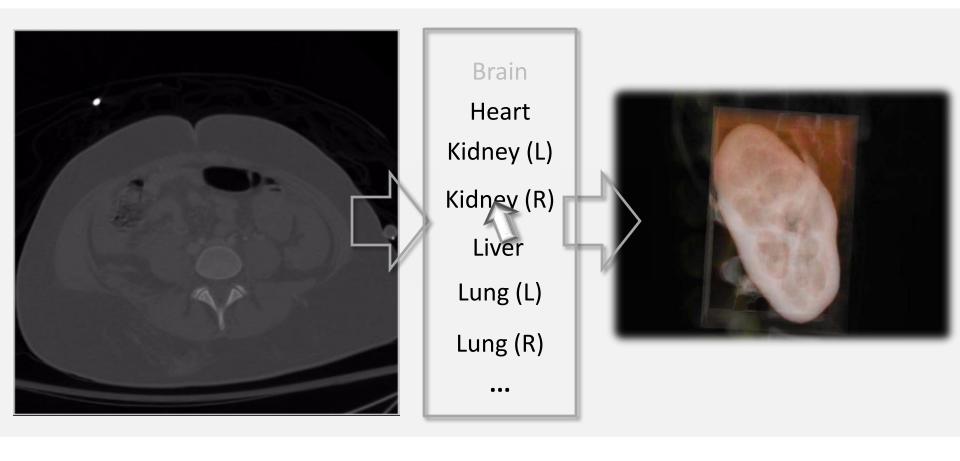


Potential application...

Pauly et al., Fast Multiple Organ Detection and Localization

Semantic navigation:

Direct navigation to **organs**

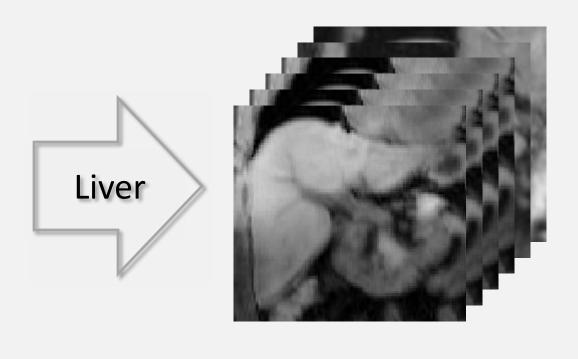


Potential application...

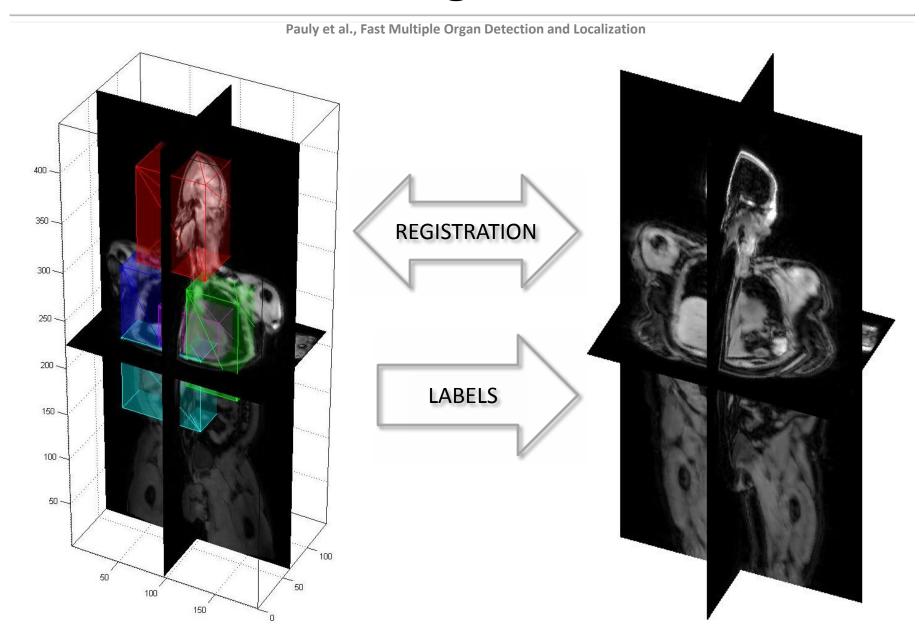
Pauly et al., Fast Multiple Organ Detection and Localization

Database retrieval:

Retrieve organs of interest



Atlas registration



Atlas registration

Pauly et al., Fast Multiple Organ Detection and Localization

Very difficult for large FOV scans

High inter-patient variability

Affine: lack of accuracy and flexibility

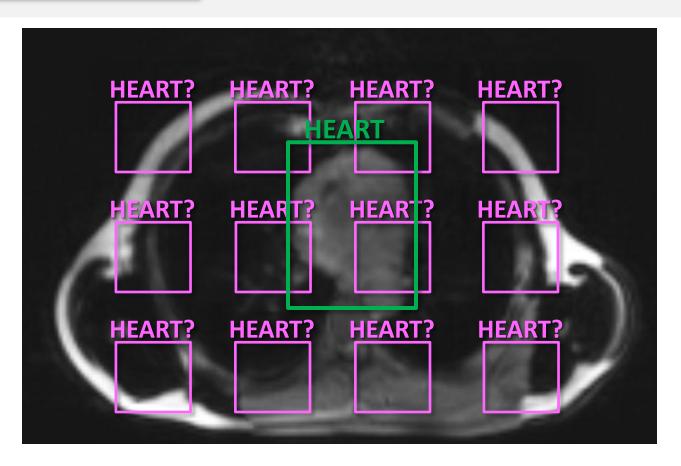
Non-linear: computationally expensive Large deformations

Detection approach...

Pauly et al., Fast Multiple Organ Detection and Localization

Sliding Window

- **Exhaustive search** in position-size parameters
- A classifier evaluates each position-size candidate



P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, CVPR 2001.

Detection approach...

Pauly et al., Fast Multiple Organ Detection and Localization

Sliding Window

- **Exhaustive search** in position-size parameters
- A classifier evaluates each position-size candidate

Requires a specialized classifier for each organ

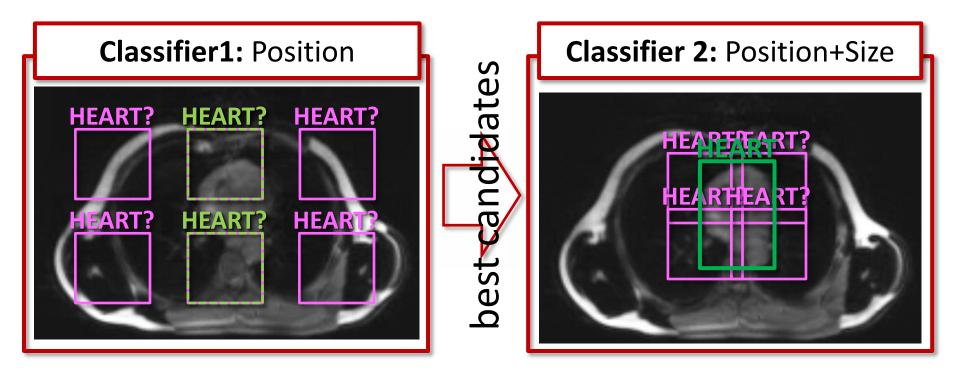
Exhaustive search in 6D for each organ of interest

Marginal Space Learning

Pauly et al., Fast Multiple Organ Detection and Localization

Learn sequentially in marginal spaces

- **Exhaustive search** in **position** parameters **only**
- Refinement search in position-size parameters



Zheng, Barbu, Georgescu et al.: Four-Chamber Heart Modeling and Automatic Segmentation for 3D Cardiac CT Volumes using Marginal Space Learning and Steerable Features, IEEE TMI (2008)

Marginal Space Learning

Pauly et al., Fast Multiple Organ Detection and Localization

Learn sequentially in marginal spaces

- **Exhaustive search** in **position** parameters **only**
- Refinement search in position-size parameters

More Efficient Organ localization

Need to train a cascade of classifiers: one classifier for each marginal step

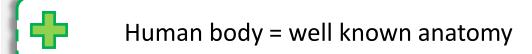
- "Real" multi-organ MSL intractable:
- Search space too high-dimensional
- Increasing complexity of the cascade

Towards multiple organ detection?

Pauly et al., Fast Multiple Organ Detection and Localization

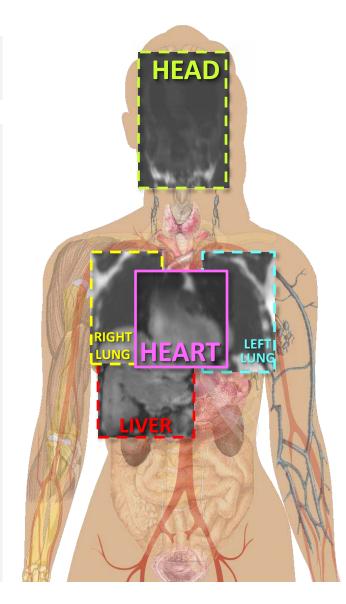
Detection

Organ of interest?



Medical Imaging = standard procedure

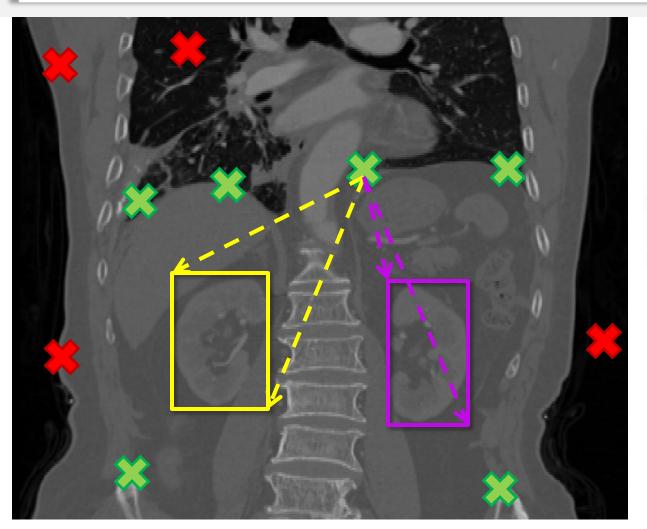
Prior knowledge on the relative positions of all organs!



Our regression approach

Pauly et al., Fast Multiple Organ Detection and Localization

Learn a probabilistic mapping from voxels to all organ bounding boxes



Ex: Kidneys

Left Kidney

📂 Right Kidney

💢 High confidence

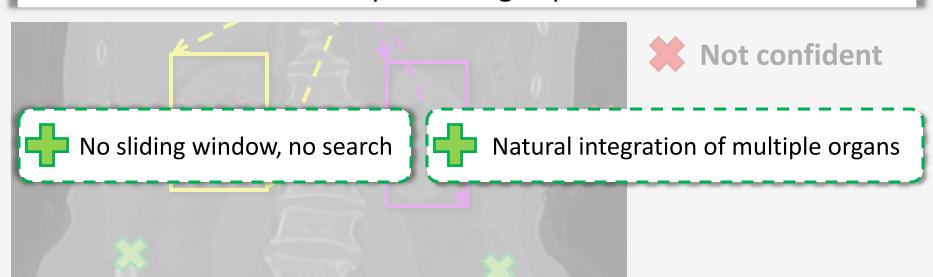
X Low confidence

Our regression approach

Pauly et al., Fast Multiple Organ Detection and Localization

Learn a probabilistic mapping from voxels to all organ bounding boxes

Discover implicitly anatomical **key landmarks** which best predict organ positions

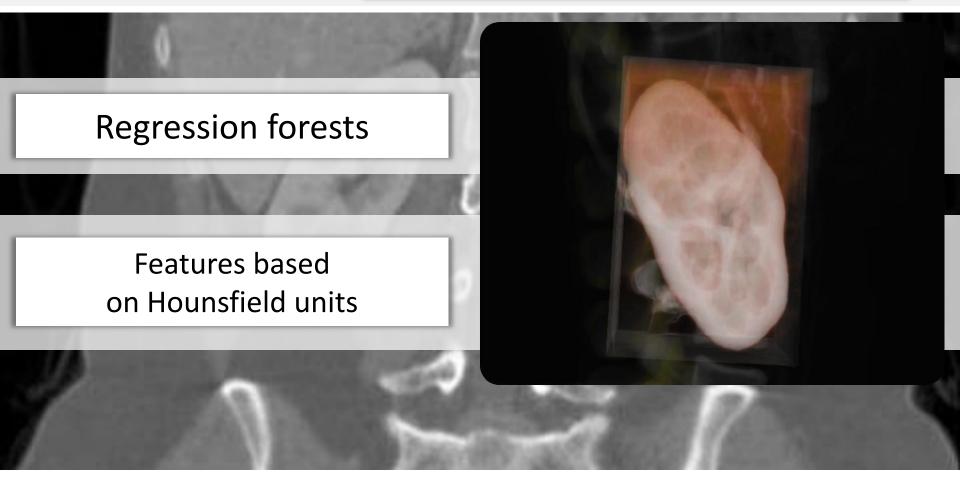


Our contributions in this paper

Pauly et al., Fast Multiple Organ Detection and Localization

Our previous work:

Organ localization in CT studies



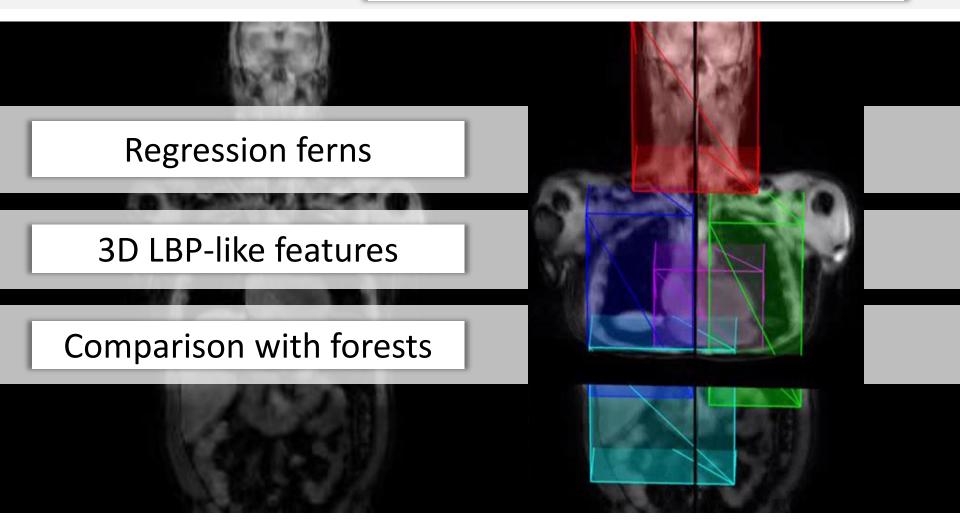
A. Criminisi, J. Shotton, D. Robertson and E. Konukoglu: **Regression Forests for Efficient Anatomy Detection and Localization in CT Studies**, MCV workshop, MICCAI 2010

Our contributions in this paper

Pauly et al., Fast Multiple Organ Detection and Localization

Our current work:

Multi-channel whole-body MR

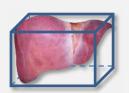


Organ localization as a regression task

Pauly et al., Fast Multiple Organ Detection and Localization

Input feature space

Output prediction space

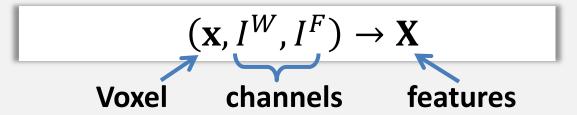


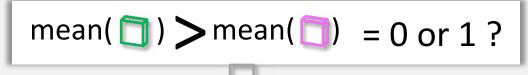
Regression Ferns

1. Input feature space

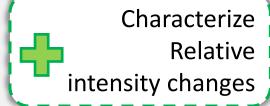
Pauly et al., Fast Multiple Organ Detection and Localization

3D multi-scale LBP-like features

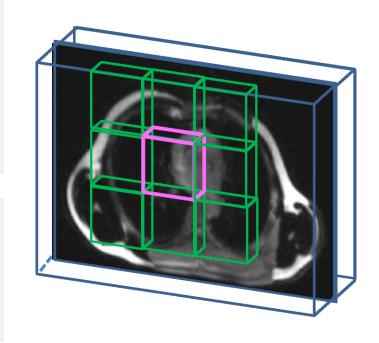




$$X = (1 \ 0 \ 0 \ 1 \ \dots 0 \ 1)$$



Multi-scale for Inter-patient variability



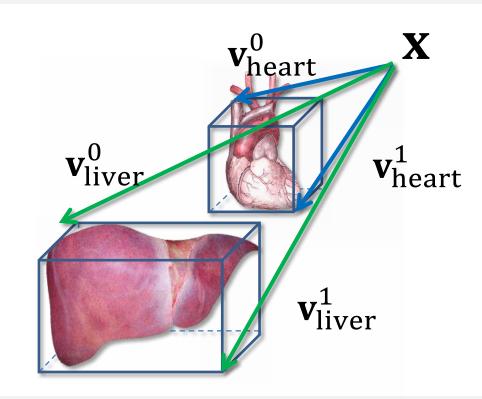
2. Output space

Pauly et al., Fast Multiple Organ Detection and Localization

Relative displacement between voxel and organ bounding box

$$\mathbf{v}_{ ext{heart}} = (\mathbf{v}_{ ext{heart}}^0, \mathbf{v}_{ ext{heart}}^1)$$

$$\mathbf{v}_{\text{liver}} = (\mathbf{v}_{\text{liver}}^0, \mathbf{v}_{\text{liver}}^1)$$



For all **K** organs:

$$V = (v_1, v_2, \dots, v_k, \dots, v_K)$$

 $\mathbb{R}^{6} \times K$

Pauly et al., Fast Multiple Organ Detection and Localization

Goal: Given X, we want to predict V

Features

Displacements

Learn $p(V \mid X)$ over the full feature space

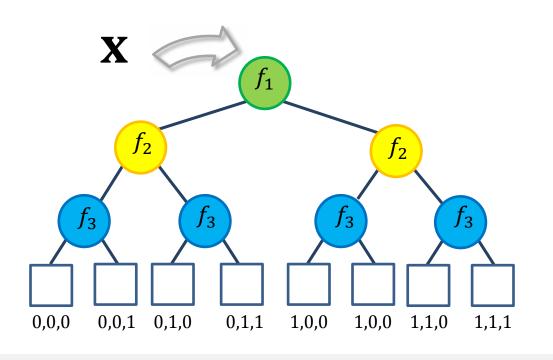
Difficult task

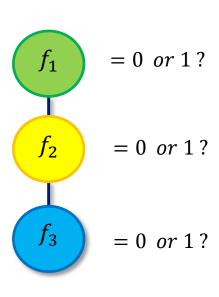
Use regression ferns to divide and conquer:

- 1. **Subdivide** the input feature space in "cells" $\{C_t\}_{t=1}^T$
- 2. Learn $p(\mathbf{V} \mid \mathbf{X})$ in **each cell** using a simple model

Pauly et al., Fast Multiple Organ Detection and Localization

Random fern = constrained random tree





Faster training
No explicit data splitting

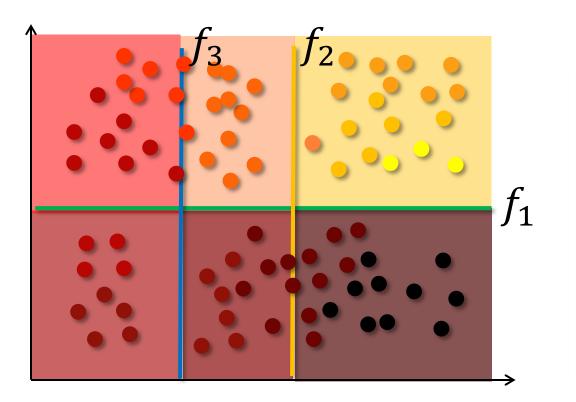
More compact structure

Pauly et al., Fast Multiple Organ Detection and Localization

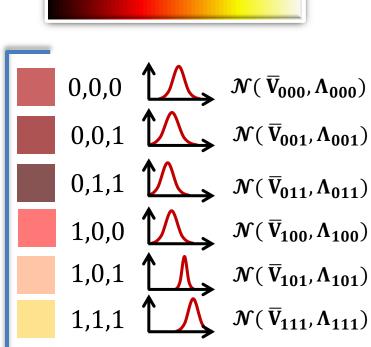
1. Partition input space

2. Learn p(V|X)

Input feature space

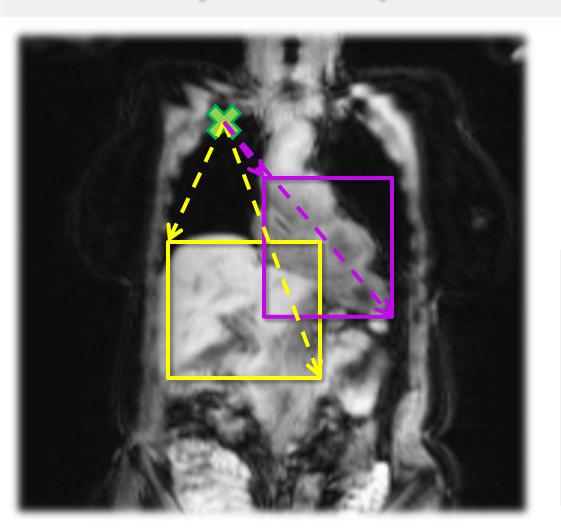


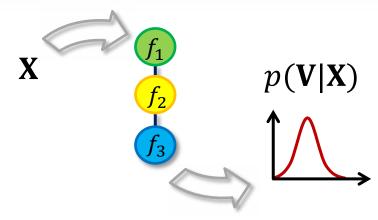
Output values



Pauly et al., Fast Multiple Organ Detection and Localization

Each voxel: probabilistic prediction for all organ bounding boxes





Voxel: x = (x, y, z)

Feature: $(\mathbf{x}, \mathbf{I}^W, \mathbf{I}^F) \to \mathbf{X}$

<u>Leaf:</u> $p(V \mid X) = \mathcal{N}_t(V \mid \overline{V}_t, \Lambda_t)$

Node: $f(X, \theta, \tau): X \cdot \theta \leq \tau$

Experiments and Results

Pauly et al., Fast Multiple Organ Detection and Localization

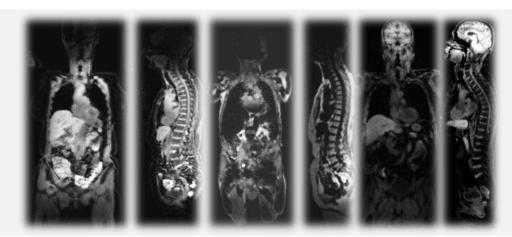
Experiments

Pauly et al., Fast Multiple Organ Detection and Localization

Data

33 cancer patients

Head, heart, lungs, liver



<u>Cross-</u> validation **Random Ferns**

Random Forests

Multi-atlas registration

20 patients for training

13 patients for testing

20 patients as multiple atlas1 patient for testingBest patient from atlas

Results

Pauly et al., Fast Multiple Organ Detection and Localization

MEAN LOCALIZATION ERRORS (mm)						
Organs	Head	Left lung	Right lung	Liver	Heart	Overall
Random ferns	9.82 ± 8.07	14.95 ± 11.35	16.12 ± 11.73	18.69 ± 13.77	15.17 ± 11.70	14.95 ± 11.33
Random forests	10.02 ± 8.15	14.78 ± 11.72	16.20 ± 12.14	18.99 ± 13.88	15.28 ± 11.89	15.06 ± 11.55
Atlas lower bound	18.00 ± 14.45	14.94 ± 11.54	15.02 ± 13.69	18.13 ± 16.26	13.31 ± 11.03	$\boxed{15.88 \pm 13.40}$
Atlas upper bound	70.25 ± 34.23	60.78 ± 20.47	63.05 ± 30.13	70.50 ± 32.88	60.38 ± 28.00	65.19 ± 31.19

Size: 192 x 124 x 443

Atlas Mean

Pixel spacing: 2.6mm x 2.6mm x 2.6mm

Best overall accuracy

 $|35.10 \pm 13.17|30.41 \pm 11.39|29.85 \pm 12.62|31.74 \pm 13.49|29.82 \pm 12.23|$ $|31.38 \pm 12.58|$

Lower standard deviation

Speed

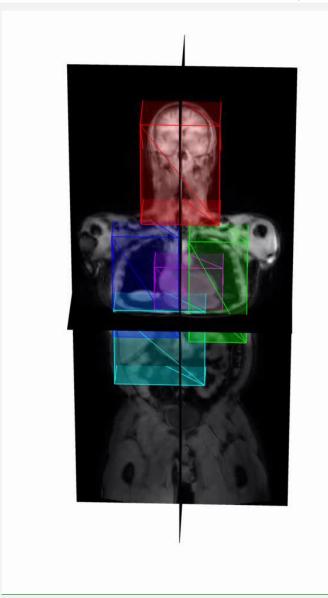
Accuracy

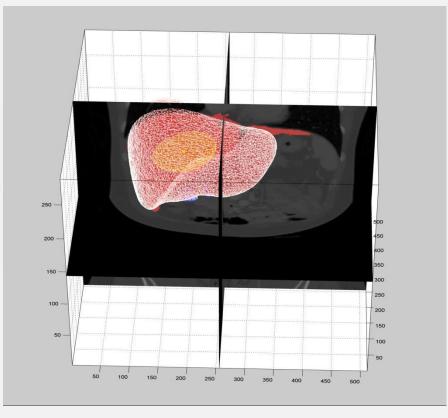
Ferns: training/testing times of a few seconds

Forests: training/testing times of a few minutes

Conclusion

Pauly et al., Fast Multiple Organ Detection and Localization





Thank you for your attention

Pauly et al., Fast Multiple Organ Detection and Localization

Microsoft Research Inner Eye project

http://research.microsoft.com/en-us/projects/medicalimageanalysis/

Computer Aided Medical Procedures

http://campar.in.tum.de

Nuklearmedizin, Klinikum Rechts der Isar

http://www.nuk.med.tu-muenchen.de/

Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences

Olivier Pauly, Ben Glocker, Antonio Criminisi, Diana Mateus, Axel Martinez-Möller, Stephan Nekolla, and Nassir Navab

