Fast Multiple-Precision Evaluation of Elementary Functions

RICHARD P. BRENT

Australian National University, Canberra, Ausiralia

ABsTRACT. Let f(z) be one of the usual elementary functions (exp, log, artan, sin, cosh, etc.), and
let M (n) be the number of single-precision operations required to multiply n-bit integers. It is shown
that f(z) can be evaluated, with relative error 0(27"), mn O(M (n)log (n)) operations as n — =, for
any floating-point number z (with an n-bit fraction) in a suitable finite interval. From the Schonhage-
Strassen bound on M(n), it follows that an n-bit approximation to f(z) may be evaluated
in O(n log*(n) log log(n)) operations. Special cases include the evaluation of constants such as
=, ¢, and e*. The algorithms depend on the theory of elhiptic integrals, using the arithmetic-geometric
mean iteration and ascending Landen transformations.

KEY WORDS AND PHRASES: multiple-precision arithmetic, analytic complexity, arithmetic-geometric
mean, computational complexity, elementary function, elliptic integral, evaluation of =, exponential,
Landen transformation, logarithm, trigonometric function

CR CATEGORIES: 5.12, 5.15, 5.25

1. Introduction

We consider the number of operations required to evaluate the elementary functions
exp(z), log(x),! artan(z), sin{z), ete., with relative error O(27"), for = in some
interval {a, b], and large n. Here, [a, b} is a fixed, nontrivial interval on which the relevant
elementary function is defined. The results hold for computations performed on a multi-
tape Turing machine, but to simplify the exposition we assume that a standard serial
computer with a random-access memory is used.

Let M(x) be the number of operations required to multiply two integers in the range
[0, 2'""). We assume the number representation is such that addition can be performed in
O(M(n)) operations, and that M (n) satisfies the weak regularity condition

M(an) < BM(n), (1.1)

for some « and 8 in (0, 1), and all sufficiently large n. Similar, but stronger, conditions
are usually assumed, either explicitly {11] or implicitly [15]. Our assumptions are cer-
tainly valid if the Schonhage-Strassen method [15, 19] is used to multiply n-bit integers
(in the usual binary representation) in O(n log(n) log log(n)) operations.

The elementary function evaluations may be performed entirely in fixed point, using
integer arithmetic and some implicit scaling scheme. However, it is more convenient to
assume that floating-point computation is used. For example, a sign and magnitude
representation could be used, with a fixed length binary exponent and an n-bit binary
fraction. Our results are independent of the particular floating-point number system
used, so long as the following conditions are satisfied.

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM’s copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Author’s address: Computer Centre, Australian National University, Box 4, Canberra, ACT 2600,
Australia.

1 Log(z) denotes the natural logarithm,

Journal of the Association for Computing Machinery, Vol. 23, No. 2, Apnil 1976, pp. 242-251.

Fast Multiple-Precision Evaluation of Elementary Functions 243

1. Real numbers which are not too large or small can be approximated by floating-
poimt numbers, with a relative error 0(27").

2. Floating-point addition and multiplication can be performed in O(M(n)) opera-
tions, with a relative error O(2™ ") in the result.

3. The precision 7 is variable, and a floating-point number with precision » may be
approximated, with relative error O(2™™) and in O(M(n)) operations, by a floating-
point number with precision m, for any positive m < n.

Throughout this paper, a floating-point number means a number in some representation
satisfying conditions 1 to 3 above, not a single-precision number. We say that an opera-
tion is performed with precision n if the result is obtained with a relative error O(27").
It is assumed that the operands and result are approximated by floating-point numbers.

The main result of this paper, established in Sections 6 and 7, is that all the usual
elementary functions may be evaluated, with precision n, in O(M(n) log(n)) operations.
Note that O(M(n)n) operations are required if the Taylor series for log(l + z) is
summed in the obvious way. Our result improves the bound O(M(n) log’(n)) given in
[4], although the algorithms described there may be faster for small n.

Preliminary results are given in Sections 2 to 5. In Section 2 we give, for completeness,
the known result that division and extraction of square roots to precision n require
O(M(n)) operations. Section 3 deals briefly with methods for approximating simple
zeros of nonlinear equations to precision n, and some results from the theory of elliptic
integrals are summarized in Section 4. Since our algorithms for elementary functions
require a knowledge of 7 to precision n, we show, in Section 5, how this may be obtained
in O(M(n) log(n)) operations. An amusing consequence of the results of Section 6 is
that ¢* may also be evaluated, to precision n, in O(M (n) log(n)) operations.

From [4, Th. 5.1], at least O(M(n)) operations are required to evaluate exp(x) or
sin(z) to precision n. It is plausible to conjecture that O(M (n) log(n)) operations are
necessary.

Most of this paper is concerned with order of magnitude results, and multiplicative
constants are ignored. In Section 8, though, we give upper bounds on the constants.
From these bounds it is possible to estimate how large » needs to be before our algorithms
are faster than the conventional ones.

After this paper was submitted for publication, Bill Gosper drew my attention to
Salamin’s paper [18], where an algorithm very similar to our algorithm for evaluating =
is described. A fast algorithm for evaluating log(x) was also found independently by
Salamin (see [2 or 5]).

Apparently similar algorithms for evaluating elementary functions are given by
Borchardt (3], Carlson (8, 9], and Thacher {23]. However, these algorithms require
O(M(n)n) or O(M(n)n') operations, so our algorithms are asymptotically faster.

We know how to evaluate certain other constants and functions almost as fast as
elementary functions. For example, Euler’s constant 4 = 0.5772 ... can be evaluated
with O(M(n) log® n) operations, using Sweeney’s method [22) combined with binary
splitting [4]. Similarly for T'(a), where a is rational (or even algebraic): see Brent [7].
Related results are given by Gosper [13] and Schroeppel [20]. It is not known whether
any of these upper bounds are asymptotically the best possible.

2. Reciprocals and Square Roots

In this section we show that reciprocals and square roots of floating-point numbers may
be evaluated, to precision n, in O(M(n)) operations. To simplify the statement of the
following lemma, we assume that M(z) = Oforallz < 1.

Lemma 2.1, Ify € (0,1), then Y yoo M(y'n) = O(M(n)) asn — .

Proor. If aand B areasin (1.1), there exists k such that v* < . Thus, ;= M(y’n)
< kX s M(e’n) < kM(n)/(1 — B) + O(1), by repeated application of (1.1). Since
M(n) — « asn — o, the result follows.

244 RICHARD P. BRENT

In the following lemma, we assume that 1/¢ is in the allowable range for floating-point
numbers. Similar assumptions are implicit below.

Lumma 2.2. If ¢ is a nonzero floating-pornt number, then 1/c can be evaluated, to pre-
ciston n, in O(M(n)) operations.

Proor. The Newton iteration

T = 1.(2 ~ cxy) (2.1)

converges to 1/¢ with order 2. In fact, if 2, = (1 — e)/c, substitution in (2.1) gives
€1 = €. Thus, assuming |e] < %, we have || < 27 for all 4 > 0, and = is a suffi-
ciently good approximation to 1/c if £ > log. n. This assumes that (2.1) is satisfied
exactly, but it is easy to show that it is sufficient to use precision n at the last iteration
(2 = k — 1), precision slightly greater than n/2 for ¢ = k — 2, ete. (Details, and more
efficient methods, are given in {4, 6].) Thus the result follows from Lemma 2.1. Since
z/y = x(1/y), it is clear that floating-point division may also be done in O(M(n))
operations,

Lemma 2.3. If ¢ > 01s a floating-point number, then ¢ can be evaluated, to precision n,
wn O(M(n)) operations.

Proor. If¢ = Othenc = 0.1f ¢ 5 0, the proof is similar to that of Lemma 2.2,
using the Newton iteration z.,1 = (z. + ¢/x.)/2.

Lemma 2.4. Forany fizedk > 0, M{(kn) = O(M(n))asn— =,

Proor. Since we can add integers less than 2" in O(M(n)) operations, we can add
integers less than 2*" in O(kM(n)) = O(M(n)) operations. The multiplication of
integers less than 2*" can be split into O(k®) multiplications of integers less than 2",
and O(k®) additions, so it can be done in O(K*M(n)) = O(M(n)) operations.

3. Solution of Nonlinear Equations

In Section 6 we need to solve nonlinear equations to precision n. The following lemma is
sufficient for this application. Stronger results are given in [4, 6)].

LemMA 3.1. If the equation f(x) = c has a stmple root ¢ 5 0, f 1s Lipschitz continuous
near ¢, and we can evaluate f(x) to precision n in O(M(n)p(n)) operations, where ¢{n)
18 @ positive, monotonic increasing function, for x near §, then ¢ can be evaluated to precision
n in O(M(n)p(n)) operations.

Proor. Consider the discrete Newton iteration

T = 2. — h(f(2) — o)/(f(z. + k) — f(z)). (3.1)

Ifh, = 2772 2, — ¢ = 0(27?), and the right side of (3.1) is evaluated with predision
n, then a standard analysis shows that .., — { = 0(27"). Since a sufficiently good
starting approximation z; may be found in O(1) operations, the result follows in the
same way as in the proof of Lemma 2.2, using the fact that Lemma 2.1 holds with 3/ (n)
replaced by M(n)¢d(n). The assumption ¢ 0 is only necessary because we want to
obtain { with a relative (not absolute) error 0(27").

Other methods, e.g. the secant method, may also be used if the precision is increased
appropriately at each iteration. In our applications there is no difficulty in finding a
suitable initial approximation z, (see Section 6).

4. Results on Elliptic Integrals

In this section we summarize some classical results from elliptic integral theory. Most of
the results may be found in [1), so proofs are omitted. Elliptic integrals of the first and
second kind are defined by

F(¥,a) = f (1 — sin’e sin’0)~d0 (41)

"

Fast Multiple-Precision Evaluation of Elementary Functions ' 245

and
¥
By, @) = fo (1 — sin'er sin’8)idh, (4.2)

respectively. For our purposes we may assume that o and ¢ are in [0, 7/2]. The complete
elliptic integrals, F(w/2,) and E(w/2, a), are simply written as F(a) and E(a),
respectively.
Legendre’s Relation. We need the identity of Legendre [17]:
E(a)F(7/2 — a) + E(7/2 — a)F(a) — F(a)F(w/2 —) = 7/2, (4.3)

and, in particular, the special case

2E(w/4)F(w/4) — (F(w/4))’ = w/2. (4.4)
Small Angle Approximation. From (4.1) it is clear that
F(¥, @) = ¢ + 0(c") (4.5)
as o — 0.
Large Angle Approzimation. From (4.1),
F(y, @) = F(y, 7/2) + O(w/2 — a)), (4.6)
uniformly for 0 < ¢ < ¢ < /2, as @ — m/2. Also, we note that
F(y, w/2) = log tan(w/4 + ¢/2). (4.7)
Ascending Landen Transformation. 1f 0 < o, < a1 < 7/2, 0 < ¢on < ¢ < ©/2,
sin o, = tan’(o.4/2), (4.8)
and
sin(2¢,41 — ¥.) = sin o, sin ¢, , 4.9)
then
F(¥r1, o) = [(1 4+ sin .)/2IF (¢, o). (4.10)
If s, = sin «, and v, = tan(y./2), then (4.8) gives
sy = 28/(1 + s,), (4.11)
and (4.9) gives
vt = /(1 + (1 + whh, (412)
where
wy = tan Y,y = (v, + we)/(1 — var), (4.13)
wp = tan(¥u ~ ¥/2) = w/(1 + (1 — w’)?), (4.14)
and
wy = sin(2Y, 0 — ¥,) = 2s0./(1 + v.7). (4.15)

Arithmetic-Geometric Mean Iteration. From the ascending Landen transformation
it is possible to derive the arithmetic-geometric mean iteration of Gauss (12] and La-
grange [16]:if ao = 1, by = cos o > 0,

a1 = (ao + bs)/2, (4.16)
and
b = (@b} (4.17)

246 RICHARD P. BRENT

then
lim a, = ©/[2F(a)]. (4.18)
Also, if ¢p = sin « and
Cipp = @, — Giq1, (4.19)
then
E(a)/Fla) =1 — 3 27% (4.20)

1=0

An Infinite Product. Let s., a,, and b, be as above, with @ = 7/2 — a4, 50 & =
bo/@o . From (4.11), (4.16), and (4.17), it follows that s, = b,/a. for all : > 0. Thus,
(1 + Sl)/2 = al—H/al 3 a’nd

T (1 + 572 = I 0, = w/2F(n/2 ~)] (4.21)

follows from (4.18). (Another connection between (4.11) and the arithmetic-geometric
mean iteration is evident if s, = (1 — by'/as’)!. Assuming (4.11) holds for 7 < 0, it
follows that s_, = (1 — b.2/a.)! for all 5 > 0. This may be used to deduce (4.18) from
(4.10).)

5. Evaluation of =

Letas =1, by = ¢ = 2_5, A4 = lm,ea.,and T = lim,, ¢, , where @, , b, , and ¢, are
defined by (4.16), (4.17), and (4.19) fori > 1, and t. = ¥ — > ;-0 2" '¢,>. From (4.4),
(4.18), and (4.20), we have

r = AYT. (5.1)

Since a, > by > Oforalle > 0, and ¢,a = @, — @1 = @1 — b, , (4.17) gives b.y
= (@1 + q,+1)(a,+1 —)l = @ — 0(ci 1), 50 €2 = O(&l11). Thus, the process
converges with order at least 2, and log » + O(1) iterations suffice to give an error
0(27™) in the estimate of (5.1). A more detailed analysis shows that @’ .1/t < 7 < a.*/t.
for all + > 0, and also a’/t, — 7 ~ Swexp(—2'7) and 7® — &'/t ~
72" exp(—2'"'1r) as ¢ — o . The speed of convergence is illustrated in Table I.

From the discussion above, it is clear that the following algorithm, given in pseudo-
Algol, evaluates = to precision n.

Algorithm for =
A1, B2t T, X1,
while 4 — B > 2" do
begin Y — A; A « (A + B)/2; B — (BY)};
T—T~-XA-Y) X «2X
end;
return A%/ T [or, better, (A + B)?/(4T)].

TABLE 1. CONVERGENCE OF
APPROXIMATIONS TO =

1 * — a2,/ at/t, — =
0 2.3'-1 8.6'~1
1 1.0'-3 4.6'~2
2 7.4'-9 8 85
3 1.8'—-19 3.1'~10
4 5.5'—41 3.7-21

Fast Multiple-Precision Evaluation of Elementary Functions 247

Since logsn 4+ O(1) iterations are needed, it is necessary to work with preeision n -+
O(log log(n)), even though the algorithm is numerically stable in the conventional
sense. From Lemmas 2.2-2.4, each iteration requires O(M(n)) operations, so 7 may be
evaluated to precision n in O(M(n) log(rn)) operations. This is asymptotically faster
than the usual O(n*) methods (14, 21] if a fast multiplication algorithm is used. A high-
precision computation of 7 by a similar algorithm is described in [10]. Note that, because
the arithmetic-geometric mean iteration is not self-correcting, we cannot obtain a bound
O(M(n)) in the same way as for the evaluation of reciprocals and square roots by New-
ton’s method.

6. Evaluation of exp(z) and log(x)

Suppose § > 0 fixed, and m € [§, 1 — §]. If sin oy = m!, we may evaluate F(op) to pre-
cision n in O(M(n) log(n)) operations, using (4.18) and the arithmetie-geometrie
mean iteration, as for the special case F(m/4) described in Section 5. (When using (4.18)
we need , which may be evaluated as described above.) Applying the ascending Landen

transformation (4.8)-(4.10) withz = 0,1, --- ,k — 1 and o = /2 gives
k-1
P, @) = {10 + sina)/21} Flaw) (6:1)

Since s = sin ap = m' > &' > 0, it follows from (4.11) that s, — 1 as ¢ — . In fact,
ifs,=1—e,theney=1—s3=1-2(1—-e)/(2—¢e)=e/8 4+ 0(), so
8. — 1 with order 2. Thus, after k£ ~ log,n iterations we have ¢, = 0(27"), so #/2 — o
= 0(27""*) and, from (4.6) and (4.7),

F(d, ox) = log tan(w/4 + ¢4/2) + 0(27"). (6.2)

Assuming k& > 0, the error is uniformly 0(27") forallm € [§,1 — 8], since s < ¢4 < 7/2.
Define the functions

Ulm) = {g [+ sina.)/Z]} Flap) (6.3)

and
T(m) = tan(w/4 + ¥»/2), (6.4)

where ¥, = lim,... ¥, . Since s, — 1 with order 2, the infinite product in (6.3) is con-
vergent, and U(m) is analytic for all m € (0, 1). Taking the limit in (6.1) and (6.2)
as n (and hence k) tends to «, we have the fundamental identity

U(mn) = log T(m). (6.5)

Using (4.11)-(4.15), we can evaluate U(m) = {JI*20 [(1 + 8.)/2}F () + O(27")
and T(m) = (1 + v.)/(1 — ») + O(2™"), to precision n, in O(M(n) log(n)) opera-
tions. The algorithms are given below in pseudo-Algol.

Algorithm for U(m)
A —1; B (1 - m)y
while A - B > 2/t do

begin C — (4 + B)/2; B — (AB)}; A « C end;
A —=x/(A + B); S —m;
whilel — S > 22 do

begin 4 «— A(1 + 8)/2; S «— 28%/(1 + 8) end;
return A(1 4 8S)/2.

Algorithm for T (m)

Vel; 8 e—ml;
whilel — S > 2™ do

248 RICHARD P. BRENT

begin W « 28V /(1 + V*);
We—W/ {1+ 1A~ W),
We—¥V4+W)/Q-VW),;
VeW/(1+ A+ WhHi);
S <28/ + 8)

end;

return (1 4+ V)/(1 - V).

Properties of U(m) and T(m). From (4.21) and (6.3),
U(m) = (7/2)F(e0)/F(7/2 —), (6.6)

where sin o, = m' as before. Both F(a,) and F(7/2 — a) may be evaluated by the
arithmetic-geometric mean iteration, which leads to a slightly more efficient algorithm
for U(m) than the one above, because the division by (1 +) in the final “while”
loop is avoided. From (6.5) and (6.6), we have the special cases U(}) = 7/2 and T'(})
= ¢™% Also, (6.6) gives

Um)UQ —m) = 7°/4, (6.7)

forall m € (0, 1).

Although we shall avoid using values of m near 0 or 1, it is interesting to obtain asymp-
totic expressions for U(m) and T(m) as m — 0 or 1. From the algorithm for T'(m),
T(1 — ¢) = 4t — & + O(&) as € = 0. Thus, from (6.5), U(1 ~ ¢) = L(e) — ¢/4
+ O(é), where L(€) = log (4/€'). Using (6.7), this gives U(e) = n°/[4L(¢€)] + O(¢/L?),
and hence T(e) = exp(#*/[4L(e)]) + O(e/L?). Some values of U(m) and T(m) are
given in Table II.

Evaluation of exp(z). To evaluate exp(z) to precision n, we first use identities such
as exp(2x) = (exp(x))® and exp(—z) = 1/exp(x) to reduce the argument to a
suitable domain, say 1 < z < 2 (see below). We then solve the nonlinear equation

U(m) = z, (6.8)

obtaining m to precision n, by a method such as the one described in Section 3. From
Lemma 3.1, with ¢(n) = log(n), this may be done in O(M(n)log(n)) operations.
Finally, we evaluate T(m) to precision n, again using O(M(n)log(n)) operations.
From (6.5) and (6.8), T(m) = exp(x), so we have computed exp(z) to precision n.
Any preliminary transformations may now be undone.

Evaluation of log(x). Since we can evaluate exp(x) to precision n in O(M(n) log(n))
operations, Lemma 3.1 shows that we can also evaluate log(z) in O(M(n) log(n))
operations, by solving the equation exp(y) = x to the desired accuracy. A more direct
method is to solve T(m) = x (after suitable domain reduction), and then evaluate U(m).

Further detasls. 1f x € [1, 2] then the solution m of (6.8) lies in (0.10, 0.75), and it
may be verified that the secant method, applied to (6.8), converges if the starting ap-
proximations are my = 0.2 and m; = 0.7. If desired, the discrete Newton method or
some other locally convergent method may be used after a few iterations of the secant
method have given a good approximation to m.

TABLE II. Tug Funcrions U(m) anxp T(m)

m U(m) T(m) m Um) T(m)
001 0 6693 1.9529 0.60 1.7228 5.6004
0.05 0.8593 2.3615 0.70 1.9021 6 6999
0.10 0.9824 2.6710 0.80 2.1364 8.4688
0.20 1.1549 3.1738 0.90 2.5115 12.3235
0.30 1.2972 3.6591 0.95 2.8714 17.6617
0.40 1.4322 4.1878 0.99 3.6864 39.8997
0.50 1.5708 4.8105

Fast Multiple-Precision Evaluation of Elementary Functions 249

Similarly, if = € [3, 9], the solution of T'(m) = z lies in (0.16, 0.83), and the secant
method converges if my = 0.2 and m; = 0.8.
If z = 1 4+ € where € is small, and for domain reduction the relation

log(z) = log(Az) — log(}\) (6.9)

is used, for some N € (3, 9), then log(Az) and log(A\) may be evaluated as above, but
cancellation in (6.9) will cause some loss of precision in the computed value of log(z). If
le] > 277, it is sufficient to evaluate log(Az) and log(\) to precision 2», for at most n
bits are lost through cancellation in (6.9). On the other hand, there is no difficuity if
le] £ 277, for then log(l + €) = (1 4+ O0(27")). When evaluating exp(x), a similar
loss of precision never occurs, and it is sufficient to work with precision n 4+ O(log log(n)),
as in the evaluation of 7 (see Section 5). To summarize, we have proved:

THEOREM 6.1. If —0 < a < b < o, then O(M(n) log(n)) operations suffice to evalu-
ate exp(zx) to precision n, uniformly for all floating-point numbers = € {a, b), as n = «;
and similarly for log(x) if a > 0.

7. Evaluation of Trigonometric Functions

Suppose & > 0 fixed, and « € [8, 1]. Let s, = sin ap = 27" and v, = tan(¥/2) =
z/(1 + (1 + 25, so tan ¢ = . Applying the ascending Landen transformation, as
for (6.1), gives

P(¥, as) = {I_IO (1 + s,>/21} Fys, o). (7.1)

Also, from (4.5) and the choice of s,
F(yo, ap) = artan(z) + O(27"). (7.2)

From (4.11), s..1 > sd, so there is some j < logan + O(1) such that s, € [%, $]. Since
s. — 1 with order 2, there is some k < 2 logen + O(1) such that 1 — s, = 0(27"). From
(4.6) and (4.7), F(¢r, ar.) = log tan(x/4 + ¥/2) + 0(27"). Thus, from (7.1) and
(7.2),

k~1

artan(z) = {I‘Io [2/(1 + sl)]} log tan(#/4 + ¥/2) + O0(27"). (73)

If we evaluate tan(m/4 + ¥+/2) as above, and use the algorithm of Section 6 to evaluate
the logarithm in (7.3), we have artan(z) to precision n in O(M(n) log(n)) operations.
The algorithm may be written as follows.

Algorithm for artan(z), z € [5, 1]
S22 Vezg/+ 1+ 2D)h); Qe 1;
whilel —~ 8 > 2 do
begin @ « 2Q/(1 4 8);
W «—28V/(1 + V?);
We—W/Q1+ (11— WHhH;
We—(V+W)/1-—- VW),
VW {1+ Q1+ WH);
S «—28/(Q1 +8)
end;

return é log((1 4+ V)/(1 — V)).

After k iterations, @ < 2%, so at most 2 logyn -+ O(1) bits of precision are lost because V
is small. Thus it is sufficient to work with precision n + O (log (n)), and Lemma 2.4 justi-
fies our claim that O(M(n) log (n)) operations are sufficient to obtain artan (x) to pre-
cision n.

If z is small, we may use the same idea as that described above for evalu-
ating log(1 + €): work with precision 3n/2 + O(log(n)) if > 27" and use artan(z)

250 RICHARD P. BRENT

=2(1 +0(27")if 0 < z < 27 (Actually, it is not necessary to increase the working
precision if log((1 + V)/(1 — V)) is evaluated carefully.)

Using the identity artan(z) = /2 — artan(l/z) (¢ > 0), we can extend the do-
main to [0, »). Also, since artan(—z) = —artan(z), there is no difficulty with negative
z. To summarize, we have proved the following theorem.

TuEOREM 7.1. O(M(n) log(n)) operations suffice to evaluale artan(z) to precision n,
uniformly for all floating-point numbers x, as n — .

Suppose 8 € {8, #/2 — §]. From Lemma 3.1 and Theorem 7.1, we can solve the equa-
tion artan(z) = 6/2 to precision n in O(M(n) log(n)) operations, and thus evaluate
z = tan(8/2). Now sin 8 = 22/(1 + 2°) and cos @ = (1 — °)/(1 + 2°) may easily be
evaluated. For arguments outside {8, /2 — 6], domain reduction techniques like those
above may be used. Diffieulties oceur near certain integer multiples of x/2, but these
may be overcome (at least for the usual floating-point number representations) by in-
creasing the working precision. We state the following theorem for sin(z), but similar
results hold for the other trigonometric functions (and also, of course, for the elliptic
integrals and their inverse functions).

TuroreM 7.2. Ifla, bl © (—m,), then O(M(n) log(n)) operations suffice to evaluate
stn(x) o precision n, uniformly for all floating-point numbers x € (a, b],asn — =,

8. Asymptotic Constants

So far we have been concerned with order of magnitude results. In this section we give
upper bounds on the constants K such that w(n) < (K + o(1))M(n) logen, where w(n)
is the number of operations required to evaluate , exp(z), ete., to precision n. The fol-
lowing two assumptions will be made.

1. For ally > 0 and € > 0, the inequality M(yn) < (y + ¢)M(n) holds for suffi-
ciently large n.

2. The number of operations required for floating-point addition, conversion between
representations of different precision (at most n), and multiplication or division of
floating-point numbers by small integers is o(M(n)) asn — .

These assumptions certainly hold if a standard floating-point representation is used and
M(n) ~ n (Jog(n))™ (log log(n))? for some o > 0, provided 8 > 0if @ = 0.

The following result is proved in [4]. The algorithms used are similar to those of Sec-
tion 2, but slightly more efficient.

TaeoreEM 8.1. Precision-n division of floating-powni numbers may be performed in
(4 4 o(1))M(n) operations as n — =, and square rools may be evaluated in (11/2 +
o(1))M(n) operations.

Using Theorem 8.1 and algorithms related to those of Sections 5-7, the following re-
sult is proved in {5).

TueorEM 8.2. 7 may be evaluated to precision n in (15/2 + o(1))M(n) logen opera-
tions as n — . If 7 and log 2 are precomputed, the elementary functron f(z) can be evalu-
ated to precision n in (K + o(1))M(n) logen operalions, where

K = {13 if f(zx) = log(x) or exp(x),
T 184 i f(x) = artan(x), sin(x), elc.,

and z is a floating-point number wn an interval on which f(x) is defined and bounded away
from 0 and o,

For purposes of comparison, note that evaluation of log(l + z) or log((1 + z)/
(1 — z)) by the usual series expansion requires (¢ + o(1))M(n)n operations, where ¢
is a constant of order unity (depending on the range of x and the precise method used).
Since 13 logen < n for n > 83, the O(M (n) log(n)) method for log(x) should be faster
than the O(M(n)n) method for » greater than a few hundred.

ACKNOWLEDGMENTS. This paper was written while the author was visiting the Com-

Fast Multiple-Precision Evaluation of Elementary Functions 251

puter Science Department, Stanford University. The comments of R.W. Gosper, D.E.
Knuth, and D. Shanks on various drafts were very useful.

REFERENCES

1

10.
11.

12.
13.

14.
15,

16.

18.

19

21

22
23

ABramowItz, M., anp STEGUN, LLA. Handbook of mathematical functions with formulas,
graphs, and mathematical tables. National Bureau of Standards, Washington, D.C., 1964;
Dover, 1965, Ch. 17.

BeeLER, M , GospEr, R.W , aND ScaroEPPEL, R Hakmem Memo No. 239, M.L.T. Artaficial
Intelligence Lab.,, M I T., Cambridge, Mass., 1972, pp. 70-71

BorcHarDT, C W. (Gesammelte Werke. Berlin, 1888, pp. 455-462

Brent, R P. The complexity of multiple-precision arithmetic. Proc Seminar on Complexity of
Computational Problem Solving (held at Austrahan National U., Dec. 1974), Queensland U.
Press, Brisbane, Australia 1975, pp 126-165

Brent, R P. Multiple-precision zero-finding methods and the complexity of elementary func-
tion evaluation Proc Symp. on Analytic Computational Complexity, J.F. Traub, Ed , Aca-
demic Press, New York, 1976, pp 151-176.

Brent, R.P. Computer Solution of Nonlinear Equalions. Academic Press, New York (to ap-
pear), Ch. 6.

BrenT, R P. A Fortran multiple-precision arithmetic package. Submitted to a technical jour-
nal.

Carwson, B.C Algorithms involving arithmetic and geometric means. Amer. Math. Monthly
78 (May 1971), 496-505.

Carwson, B C. An algonithm for computing logarithms and arctangents. Math. Comput. 26
(April 1972), 543-549.

FINkEL, R ,GuiBas, L , aND SiMony1,C Manuscript in preparation.

Fiscuer, M J , axp StockMEYER, L] Fast on-line integer multiplication. J. Comput. System
Scis. 9 (Dec. 1974), 317-331

Gauss, C.F Carl Friedrich Gauss Werke, Bd. 3 Gottingen, 1876, pp. 362-403.

GosPeR, R.W. Acceleration of series. Memo No 304, M.I.T. Artifical Intelligence Lab.,
M I.T , Cambridge, Mass , 1974.

GuiLroup, J., AND BouvyEr, M 1,000,000 decimals de pi. Unpublished manuscript

Knurh, D.E. The Art of Computer Programming, Vol. 2 Addison-Wesley, Reading, Mass ,
1969. Errata and addenda: Rep. CS 194, Computer Sc1 Dep., Stanford U., Stanford, Calif., 1970.
LaGrANGE, J.L. Oecuvres de Lagrange, Tome 2 Gauthier-Villars, Paris, 1868, pp. 267-272.
LEGENDRE, A M Ezercices de Calcul Integral, Vol. 1. Pans, 1811, p. 61.

SavaMin, E. Computation of = using arithmetic-geometric mean. To appear in Math. Comput.
SCHONHAGE, A., AND StrasseN, V. Schnelle Multiphikation grosser Zahlen. Computing 7
(1971), 281-292.

ScHroEPPEL, R. Unpublished manuscript dated May 1975

Saanks, D., axp WrENcH, J.W. Caleulation of = to 100,000 decimals. Math Comput. 16 (1962),
76-99.

SweeENEY, D W. On the computation of Euler’s constant Math. Comput. 17 (1963), 170-178.
TuacHER, H.C. Iterated square root expansions for the inverse cosine and inverse hyperbolic
cosine. Math. Comput. 15 (1961), 399-403.

RECEIVED MARCH 1975; REVISED SEPTEMBER 1975

Journal of the A iation for Cc Machinery, Vol. 23, No. 2, April 1976

