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Fast Multiplierless Approximations of the DCT With
the Lifting Scheme
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Abstract—In this paper, we present the design, implementation, the sparse factorizations of the DCT matrix [12]-[17], and
and application of several families of fast multiplierless approx- many of them are recursive [12], [14], [16], [17]. Besides

imations of the discrete cosine transform (DCT) with the lifting i ; . ; _di i -
scheme called the binDCT. These binDCT families are derived one-dimensional (1-D) algorithms, two-dimensional (2-D)

from Chen’s and Loeffler's plane rotation-based factorizations of DCT algorithms have al_so been investigateq extensively [6]'
the DCT matrix, respectively, and the design approach can also [18]-[21], generally leading to less computational complexity
be applied to a DCT of arbitrary size. Two design approaches are than the row-column application of the 1-D methods. However,

presented. In the first method, an optimization program is defined,  the implementation of the direct 2-D DCT requires much more
and the multiplierless transform is obtained by approximating effort than that of the separable 2-D DCT.

its solution with dyadic values. In the second method, a general The th tical | b d th b f ltiolicati
lifting-based scaled DCT structure is obtained, and the analytical € HeoleLCal IOWer bouna onine NUMber ofMUPICAtonS

values of all liting parameters are derived, enabling dyadic required for the 1-D eight-point DCT has been proven to be 11
approximations with different accuracies. Therefore, the binDCT [22], [23]. In this sense, the method proposed by Loeffteal.

can lf)e tunedd toh CO\IseCETth?I'hgap betweendthe Wals(;j—Hadgmalrd [15], with 11 multiplications and 29 additions, is the most effi-
transform and the . The corresponding two-dimensional _; ; Lo ; ; }
(2-D) binDCT allows a 16-bit implementation, enables lossless ;:.Ier]; SO.IUU?,[n' Howeye:j, ;n 'mage andt;]ndgotprcl)C?ﬁsmg, .quan
compression, and maintains satisfactory compatibility with the Ization 1S often required to compress the data. In these circum-

floating-point DCT. The performance of the binDCT in JPEG, Stances, significant algorithmic savings can be achieved if some

H.263+, and lossless compression is also demonstrated. operations of the DCT are incorporated into the quantization
Index Terms—binDCT, DCT, integer DCT, lifting scheme, loss- step. This leads to a class of fast 1-D and 2-D DCTs that are
less compression, multiplierless, scaled DCT. generally referred to as tisealedDCT [5], [8], [21], [23]-[25].

For example, the Arai's method needs only five multiplications
31, [8].

All of the aforementioned fast algorithms still need floating-
HE discrete cosine transform (DCT) [1], [2] is a robuspoint multiplications, which are slow in both hardware and soft-
approximation of the optimal Karhunen-Loéve transforrware implementations. To achieve faster implementation, coef-

(KLT) for a first-order Markov source with large correlationficients in many algorithms such as [7], [8], [16], and [17] can
coefficient. It has satisfactory performance in terms of enerdpg scaled and approximated by integers such that floating-point
compaction capability, and many fast DCT algorithms with efultiplications can be replaced by integer multiplications [3],
ficient hardware and software implementations have been pf86]-[28]. The resulting algorithms are much faster than the
posed. The DCT has found wide applications in image/videsiginal versions and, therefore, have wide practical applica-
processing and other fields. It has become the heart of mdigns.

international standards such as JPEG, H.26x, and the MPE@\nother approach for integer DCT is presented in [29] by
family [3]-[5]. searching integer orthogonal transforms with the same sym-

There are mainly four types of the DCT, and they are labelé¢detry and similar energy compaction capability to the DCT. The

[-IV [2]. Among them, the DCT-Il is the most useful. Manynew transform can be implemented with integer multiplications
different fast algorithms for the DCT computation have beeind additions. However, the overall complexity of this integer
developed for image and video applications. Some of them taR€T is not satisfactory, compared with other fast integer algo-
advantage of the relationships between the DCT and variditems, such as [8].
existing fast transforms, including the FFT [1], [6]-[8], the The fixed-point multiplications required by these fast algo-
Walsh-Hadamard transform (WHT) [9], [10], and the discretéthms generally need 32-bit data bus, which is costly in VLSI
Hartley transform (DHT) [11]. Some algorithms are based dmplementation and hand-held devices where the CPU capa-
bility, bus width, and battery power are limited. Therefore, de-
signing good approximations of the DCT that can be imple-
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of perfect reconstruction with minimum bit expansion. For expresents the general solution and the design of the binDCT via
ample, dadder networkwas introduced in [30]. More system-the optimization approach. The systematic, analytical design
atic results were summarized in [31] and [32] with the nama the binDCT and design examples will be presented in Sec-
lifting scheme The lifting structure enables flexible and fastions V and VI. Important design and implementation issues

biorthogonal transform, and it also allows lossless transforiwe discussed in Section VII, whereas the applications of the
making it a powerful building tool for wavelet transforms. binDCT in JPEG, H.263+, and lossless compression are demon-

It has been proven that any orthogonal filterbank can be darated in Section VIII. Finally, Section IX contains the conclu-
composed into delay elements and plane rotations by lattice famn.
torizations [33]. It is easy to show that any plane rotation can
be represented by lifting steps. Therefore, it follows that thd. PLANE ROTATION-BASED DCT FACTORIZATIONS AND THE
DCT—a simple orthogonal filterbank—can be constructed from LIFTING SCHEME
the lifting scheme if we start from any plane rotation-based fag- . o
torization of the DCT matrix, such as those in [12]-[15], ang\' Plane Rotation-Based DCT Factorizations
represent each plane rotation by its lifting implementation. The Chen et al. proposed a recursive algorithm to factor any
new transform will enjoy the properties of both the DCT and th&' -point DCT-Il with N = 2™,m > 2 into plane rotations
lifting scheme. and butterflies [12], [13]. The factorization has a very regular

The earliest app"cation of this idea appeared in [30], Whe%ructure and is six times as fast as the DFT-based fast DCT
a four-point DCT was implemented in terms of the ladded!gorithm [1]. The method was generalized by Wang to all
network. In this method, floating-point multiplications wereversions of DCT, DST, the discret& transform, as well as the
used in the ladder (lifting) steps, and floor operations wefFT with the size of power of 2 [14]. Similar results were also
applied subsequently to obtain integer transform coefficientgported in [41].

The inputs can be perfectly reconstructed in this way. Theln this paper, we will concentrate on the four-point, eight-
idea was extended in [34] to obtain an eight-point lossleB8int and 16-point transforms since they are the most useful
DCT by examining the relationship between the DCT matriQnes in practical applications. Block transforms of other sizes
and the general reversible (lossless) transform. Integer resG§ be designed in a similar fashion. The factorization of the
were still obtained through the combination of floating-poirgight-point DCT in [12]-[14] is given in Fig. 1(a), where the
multiplications and floor operations. Recently, a lossless lappeggult in the dashed box is the scaled four-point DCT. It con-
orthogonal transform (LOT) was obtained with the same igdains series of butterflies and five plane rotations, which can be
[35]. However, since fast implementation was not the maifplemented with a total of 13 multiplications and 29 additions
concern in [30], [34], and [35], the resulting structures were nb4], [15]. Note that a scaling factor af/2 should be applied at
optimal in terms of simplicity. the end to obtain the true DCT coefficients.

In this paper, we propose and describe the design of fast inA more elegant factorization for eight-point and 16-point
vertible block transforms that can replace the DCT in futuf@CT was proposed by Loefflet al.[15], as shown in Fig. 1(b).
wireless and portable computing applications. The new trarkalso contains the scaled four-point DCT. This method only
form, which is called the binDCT, has the following propertied’€€ds 11 multiplications and 29 additions, achieving the

1) Both the forward and the inverse transforms can be implgultiplication lower bound as proven in [22] and [23]. One of
mented using only binary shift and addition operations.'ts variations is adopted by the Independent JPEG Group in its

2) The idea of the scaled DCT is employed to reduce ﬂpé)pu_lar JPEG_impIemeqtation [42]. Note that this factorization
complexity of the binDCT. requires a unlform_scallng factor df//8 a_1t_the end of the
3) The binDCT inherits all desirable DCT characteristichOW 9raph to obtain the true DCT coefficients. In the 2-D
such as high coding gain, no DC leakage, symmetric bagignsform, this scalmg factor b_ecomes 1/8, which can be easily
functions, and recursive construction. implemented by a shift operation.
4) The _binDCT alsq inhe.rits a_II Iifti.ng properf[ies such ag Lifting Scheme and the Plane Rotation
fast implementations, invertible integer-to-integer map-
ping, in-place computation, and low dynamic range. Fig. 2(a) illustrates the decomposition of a plane rotation into
This lifting scheme-based fast multiplierless approximatiofiree lifting steps [30], [32]. This can be written in matrix form
of the DCT was first proposed in [36] and was generalized &F
[37]. Seyer_al preliminary results were also.report.ed in [38] and cos(a) — sin(a) 1 pl[1 o][1 p
[39]. A similar method was later obtained in [40] in which the } = [0 1} [ } [0 1} 1)
WHT-based DCT factorization [2], [9], [10] is used, which is
not as elegant as that of [12], [15]. Besides, the result in [40herep = (cos(e) — 1)/ sin(«r), andu = sin(c).
is not a scaled DCT. Hence, the performance of this methodlt can be shown that any/ x M orthogonal matrix can be
is not as good as that of the binDCT, given the same level etpressed as the productfx (M —1)/2 plane rotations [43].
complexity. Similarly, any real invertible matrix can be completely charac-
The paper is organized as follows. Section Il will briefly introterized byM x (M — 1) plane rotations and/ scaling factors,
duce the plane rotation-based DCT factorizations and their reéazcording to the singular value decomposition (SVD) of the ma-
tionships with the lifting scheme. In Section Ill, we define somgix. From these, it can be proven that any invertible FIR filter-
criteria for measuring the transform performance. Section Ivank can be decomposed into lifting steps [32].

sin(e)  cos(w) w 1
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Fig. 1. Signal flow graphs of the eight-point DCT. (a) Chen'’s factorization. (b) Loeffler’s factorization.
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Fig. 2. Representation of a plane rotation by three lifting steps. (a) Forwarc™ Gy 7.5701 | 7.9461 | 8.8259 | 8.8462 | 9.4555 | 9.4781
rotation. (b) Inverse rotation.

Each lifting step is a biorthogonal transform, and its inverse lll. PERFORMANCEMEASURES

also has a simple lifting structure, i.e., This section defines some criteria used in measuring and eval-
uating the performance of our proposed fast transforms.

1 2] 1 == 1 0] [1 o
0 1 o 1’|z 1 T -z 1l @) A. Coding Gain

. : oding gain is one of the most important factors to be con-
As a result, the inverse of the plane rotation can be represente ; : o
e Sidered for a transform used in compression applications. A
by lifting steps as - : . .
transform with higher coding gain compacts more energy into a
cos(a) —sin(a) -1 1 —p 1 0l[1 —p fewer number of coefficients. As a result, higher objective per-
{ } = {0 1 } { } {0 1 formances such as PSNR would be achieved after quantization.

3) Since the coding gain of the DCT approximates the optimal KLT
as shown in Fig. 2(b). This means that to invert a lifting ste/0SelY; itis desired that the binDCT has similar coding gain to
we simply need to subtract out what was added in at the fépat of the original DCT. The biorthogonal coding gaily is
ward transform. Hence, the original signal can still be perfectfigfined as [44], [45]

sin(a)  cos(a) —u 1

reconstructed even if the floating-point multiplication results in A o2

the lifting steps are rounded to integers, as long as the same pro- Cy =10log, = T (4)
cedure is applied to both the forward and inverse transforms. Mot 5 5 "

This is the basis for many lifting-based lossless transforms [34]. ZHJ oz | fil

Another advantage of the lifting step over the butterfly is that it
enables in-place computation, i.e., no buffer is required, whig¥here
is a desired property in the VLS| implementations. M number of subbands;

However, floating-point multiplications are still needed in the o variance of the input;
above approach. To obtain fastimplementation, we can approxio2, ~ Variance of theth subband;
mate the floating-point lifting coefficients by hardware-friendly || /i [|> norm of theith synthesis basis function.
dyadic values (i.e., rationals in the formatigf2™; k, m are in- The coding gains of some commonly used transforms are tab-
tegers), which can be implemented by only shift and additiafated in Table I, with the assumption that the input signal is a
operations. In doing so, we can achieve various fast approxinfist-order Gaussian—Markov process with zero-mean, unit vari-
tions of the original transform, which we name the binDCT. Thance, and correlation coefficiept= 0.95 (a good approxima-
multiplication elimination also enables the binDCT to be impldion for natural images). Note that the coding gain of the DCT
mented with a narrower data bus than other algorithms. Sirigevery close to that of the optimal KLT.
perfect reconstruction is guaranteed by the lifting structure it-
self, the remaining problem is to select the dyadic lifting p&3: M&an Square Error (MSE)
rameters such that the binDCT can achieve similar coding per-To maintain the compatibility between the binDCT and the
formance as the DCT. true DCT outputs, the MSE between the DCT and the binDCT
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Fig. 3. (a) General structure of the recursive DCT. (b) A binDCT Example: 30 additions, 12 shifts, 8.77 dB coding gain.
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coefficients should be minimized. With reasonable assumptiotismake the transform as fast as possible. This section presents
of the input signal, the MSE can be explicitly calculated as fothe general solution of approximating the DCT with more effi-
lows [46]. cient lifting scheme.

Assume thalJ,, is the trueM x M DCT matrix, andU?, From a filterbank standpoint, thé/-point DCT is the
is its approximation. Then, for a given input column vectgr most basicM-channel linear-phase paraunitary filter bank
the error between the 1-Bf-point DCT coefficients and the (LPPUFB). All A/ linear-phase filters have the same length
approximated transform coefficients is If M is even, and if the symmetric filters are permuted to the

/ / N top, the DCT matrix can be written as
e—U]wX U]wX—(ij UJ\l)X—DX. (5) _— i |:UA2_1 0 :| |:I% I

From the above equation, the MSE between the approximated MZV21 0 Vyu||[Jx L
DCT and the original DCT can be given by

t\:|N

} @)

s
wl,\“

wherely;/, is the(M/2) x (M /2) identity matrix, andJ 5, is
the counter-identity matrix or reversal matrix.Af is a power
of 2, the matrixU ,,/, in (7) can be factorized recursively, i.e.,

A 1

M
1 1

= 7 E[Tracd Dxx"D™ )] = - Trace DRxxD™} ()

1
€ E[eTe] = ME[XTDTDX]

1 {Uum 0 T J
ve=g | Vit ] e

where Ry 2 E[xxT] is the autocorrelation matrix of the ) ) ) _
input signal. Hence, if we model the input signal as a first-ord&@ring an input reversal, the matricd%,s in (7) and (8) are
Gaussian—Markov process, the maiRx, can be easily calcu- #-POINtDCT-1V, and their closed-form factorization is available

lated, and the MSE can be derived deterministically. in [12], [14], leading to a recursive factorization of the DCT-II.
The result in (7) actually covers alf -channeld -tap linear
C. DC Leakage phase filterbanks ilJ /> andV ;/, are chosen to be any in-

. . : vertible matrices. In this paper, we consider the general struc-
Another desired property of an image transform is that the . o : .
. ure for the eight-point binDCT, as given in Fig. 3(a), whErg
bandpass and highpass subbands should have no DC leaka :
. ) STiXed to be the unnormalized Haar to guarantee the zero DC
i.e., the constant input should be completely captured by the
. . eakage property.

DC subband. In wavelet theory, this means that these high-fré- R . . .
An optimization program is constructed in which we repre-

uency subbands should have at least one vanishing moment . ; e
?45]_ T);\e zero dc leakage not only improves the Codgi]ng o Ient the matrice¥, andV by suitable number of lifting steps

. ; . ﬁn{j butterflies and search for the optimal lifting coefficients that
ciency but also prevents the annoying checkerboard artifact that . . ) ; o .
o . aximize the coding gain. We start from the factorizations given
can occur if high-frequency bands are severely quantized [45].. . e
. . : N Fig. 1 and replace each rotation by three lifting steps and then
The DCT is a good example of image transforms with zero D o !
reduce the number of lifting steps gradually to obtain more ef-
leakage. . .
ficient binDCTs.

The searched optimal results are approximated by dyadic
values since they can be implemented by only shifts and
The hardware-unfriendly components of the DCT factorizadditions. For exampl&/8z can be implemented by two shifts

tion are the plane rotations. A trivial way to obtain a multipliand one addition, as it can be writtenigsl + x/8, where the
erless approximation of the DCT is to replace each rotation bjvisions by 4 and 8 can be performed by right shifts. Similarly,
three lifting steps as shown in Fig. 2(a) and then approximate the/16 should be implemented ag2 — x/16. One such result
lifting coefficients by hardware-friendly dyadic rationals. Howis shown in Fig. 3(b), whose coding gain is quite close to that
ever, inimage and video processing, simplicity is always desiretithe DCT.

IV. GENERAL SOLUTION AND THE OPTIMIZATION APPROACH
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f1 o~ — Similarly, the outputs of the scaled lifting structure as given in
Xy Y1 X1 1 K1 Y1 . .
. I_;jl(:l [ Fig. 4(b) can be rewritten as
12
r21 7 7 7 7
X2 . X &—— v, Y1 = k(X1 +pXs) = Xy + r1p X
r L}
(”) . Yo = rp(u(X1 4+ pXa) + Xo) = kouXy + r2(1 + pu) Xo.
a
(b) (10)
cos{o)
X o - - .
1 R [oosof— 1 By equalizing the coefficients of; andX5 in (9) and (10), the
:::((Z)) four unknowns can be uniquely determined as
1 1 -
Xa cos(0) v X2 ~ \"% —@_‘ Yz p= 2
11
(c) (d) T11721
Y=———
-sin(a) e
X1 Y, X — @ @— Ys )y — 7{1111722 721712
cos{) -1 . 117 — To17
cos(@) sin(ot)cos(cr) oy = 22T (11)
11
X Y X } 1
* sin(o) ! 2 ~ v @—_' e

where we needll 7’é 0 and7‘117’22 — 721712 7’é 0.
(e) () : : on i : : .
This analytical solution is the starting point for obtaining
Fig. 4. (a) General butterfly. (b) Scaled lifting structure. (c) Plane rotation. (B'nDCTS with different complexities and performances.

Scaled lifting structure for (c). (e) Permuted plane rotation. (f) Scaled lifting
structure for (e). B. Sensitivity Analysis and the Permuted Scaled Lifting

Structure

It should be noted that the binDCT is also a kind of scaled This section analyzes the effect of finite-length approxi-
DCT. This is not a major problem in direct application omations of the lifting parameters on the performance of the
these transforms. However, when the compatibility betwe®nDCT. A permuted version of the scaled lifting structure
the binDCT transform and the true DCT transform is desiredill be proposed to improve coding performance in certain
it is necessary to consider the scaling relationship betweeincumstances.
the binDCT and the DCT. In this case, the systematic designin Fig. 4(c), we redraw the familiar rotation angle depicted in
method given in the next section becomes necessary sincEig. 1. The solution of the corresponding scaled lifting structure
can provide the analytical values of the scaling factors. Besidean be obtained by (11), as shown in Fig. 4(d).
different tradeoff between the complexity and the performanceThe signal at the point” in Fig. 4(d) can be expressed as

of the binDCT can be easily achieved.
V =uzy + (1 + pu)as

V. SYSTEMATIC DESIGN OF THE BINDCT = —sin(a) cos(a) X + cos” () Xa. (12)

A. Scaled Lifting Structure Equation (12) shows that for plane rotations as shown in

A plane rotation can be represented by three lifting steps, - 4(C), the values of + pu, i.e., cos’(e), would be very
shown in Fig. 2, if pure lifting structure is desired. However, themall if the rotation angle Is close tor + /2, wherek is
example in the last section reveals that we can also constru@ integer. For exampleos®(77r/16) = 0.03806. Therefore,

scaled DCT with only two lifting steps for the rotation angles & arge relative error foi + pu could result when the lifting
the end of the signal flow. parameters and « are truncated or rounded, leading to a

This simplified lifting structure can be generalized as jdrastic change in the frequency response of the result. Another
Fig. 4(a) and (b), where a general butterfly (not necessarfijoblem in this case is that the lifting parameteii («r) would
an orthogonal plane rotation) is represented by two Iiftin%‘;mu‘:h greater than 1. This increases the dynamic range of
steps and two scaling factors. The two scaling factors can intermediate result and is not desired in both software and
absorbed in the quantization stage; thus only two lifting stepgrdware implementations.
are left in the transform, making it more efficient than the Analyzing the example given in the last section reveals that
conventional representation. Due to the analogy between tHi§ output sequence of some rotation angles are permuted. This

idea and that of the scaled DCT [3], [5], [8], we refer to this sgnplies that a permutation of the output, as shown in Fig. 4(e),
the scaled lifting structure might lead to a much more robust scaled lifting structure. Since

The solutions for the lifting parameters in the scaled liftin§'e coefficients are permuted accordingly, the new transform is

structure can be derived as follows. From the flow graphs ffiuivalent to the previous one. The general expression in (11)
Fig. 4(a), we can obtain the following relationship: is still valid for this case, and the corresponding scaled lifting
parameters are given in Fig. 4(f). The signalain Fig. 4(f) is

. . now given by
Yi=ruXi +r2Xs

Yo =191 X1 + 7100 X0, (9) V =sin(a) cos(a) X1 + sin® () X5. (13)
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Fig. 5. General structure of the binDCT family based on Chen’s factorization. (a) Forward transform. (b) Inverse transform.
TABLE I
SEVERAL CONFIGURATIONS OF BINDCT BASED ON CHEN'S FACTORIZATION
[| Floating-point | binDCT-C1 C2 C3 C4 C5 Cé C7 C8 C9
p1 0.4142135623 13/32 7/16 13/32 7/16 3/8 1/2 1/2 1 0
Ul 0.3535533905 11/32 3/8 11/32 3/8 3/8 3/8 1/2 1/2 0
p2 0.6681786379 11/16 5/8 11/16 5/8 7/8 7/8 1 1 0
u2 0.4619397662 15/32 7/16 15732 7/16 1/2 1/2 1/2 1/2 0
p3 0.1989123673 3/16 3/16 3/16 3/16 3/16 3/16 1/4 0 0
u3 0.1913417161 3/16 3/16 3/16 3/16 3/16 1/4 1/4 0 0
P4 0.4142135623 13/32 13/32 7/16 7/16 7/16 7/16 1/2 0 0
U4 0.7071067811 11/16 11/16 11/16 11/16 11/16 3/4 3/4 1/2 0
s 0.4142135623 13/32 13/32 3/8 3/8 3/8 3/8 1/2 1/2 0
Shifts - 23 21 21 19 17 14 9 5 1
Adds - 42 39 40 37 36 33 28 24 18
MSE - l.le—~5 57¢e—5 3.4e—5 85e¢e—-5 42¢e—4 58¢—4 23e—3 40e—2 29e—2
C,y(8) (dB) - 8.8251 8.8240 8.8233 8.8220 8.8159 8.8033 8.7686 8.4083 7.9204
Cy(4) (dB) - 7.5697 7.5697 7.5697 7.5697 7.5566 7.5493 7.5485 7.1744  7.1503

Note that the coefficient ok, at V' changes froneos?(«) to

The rotation ofr /4 betweenX[0] and X [4] is also imple-

sin?(«), which is more robust to truncation errors than (12) fanented by the scaled lifting structure, instead of a butterfly.
rotation angles close tar +7 /2. This explains the optimization The purpose is to achieve one vanishing moment and to make
results given in the last section. Besides, the augment of tiésubbands experience the same number of butterflies during
dynamic range in Fig. 4(d) is also avoided now, as the first liftinthe forward and inverse transforms. Since the multiplication of
parameter becomégtan(«), instead oftan(«). two butterflies introduces a scaling factor of 2, the combination
In general, when the scaled lifting structure is used tf the forward and inverse transforms thus generates a uniform
obtain finite-length approximation of the transform withscaling factor of 4 for all subbands, which becomes 16 for the
high coding gain and minimal dynamic range, the origin&-D transform. This can be compensated by a simple shift oper-
structure in Fig. 4(d) should be useddfs?(«) > sin®(a), ation. The scaling factors in the dashed boxes will be absorbed
and the permuted version in Fig. 4(f) should be adoptediif the quantization stage. They are bypassed in lossless com-
cos?(a) < sin?(a). Whencos?(«) = sin?(«), both formats pression or when the compatibility with the true DCT is not re-
reduce to the unnormalized Haar transform. quired.
The property of the lifting structure allows us to adjust the
VI. EIGHT-POINT BINDCT FAMILIES lifting parameters without losing perfect reconstruction of the
) . signals. Therefore, from the analytical expressions given in (1)
A. Eight-Point binDCT Type C and (11), we can obtain their proper dyadic approximations.
The above analysis leads to the general structure of thkis is more flexible than the previous optimization-based de-
binDCT based on Chen’s factorization, which is denoted agn method.
the binDCT type C and shown in Fig. 5. Note that some sign Table Il lists the analytical values of all the lifting parame-
manipulations are involved here to make all the scaling factarers and some configurations of this binDCT family, where the
positive. The intermediate rotation with anglemgf4 in V4 is dyadic values are obtained by truncating or rounding the corre-
implemented by three lifting steps, and the permuted versisponding analytical values with different accuraci&g(8) and
of the scaled lifting structure is used for the angle8of8 and C(4) are the coding gains of these eight-point binDCTs and
T /16. the four-point DCTs embedded in them. Fig. 6 compares the
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Fig. 6. Frequency responses of (a) True DCT. (b) binDCT-C7: nine shifts and 28 adds. (c) binDCT-C5: 17 shifts and 36 adds.

TABLE Il
BINDCT-C7 CGOEFFICIENTS
binDCT-C7 Forward Transform Matrix binDCT-C7 Inverse Transform Matrix
T 1 1 1 1 1 1 1 12 1 1 1 1 12 1/2 174
15/16 101/128 35/64 1/4 -1/4 -35/64 -101/128 -15/16 || 1/2 13/16 1/2 1/8 -1 -11/16 -3/4 -35/64
3/4 1/2 -1/2 -3/4 -3/4 -1/2 1/2 3/4 1/2 21/32 -1/2 -23/16 -1 -3/32 3/4 101/128
1/2  3/32 -11/16 -1/2 1/2 11/16 -3/32  -1/2 /2 1/4 -1 -1 1 1/2 -1/2 -15/16
1/2 -1/2 -1/2 12 1/2 -1/2 -1/2 1/2 1/2 -1/4 -1 1 1 -1/2 -1/2 15/16
1 -23/16  -1/8 1 -1 1/8 23/16 -1 1/2 -21/32 -1/2 23/16 -1 3/32 3/4 -101/128
1/2 -1 1 -1/2 -1/2 1 -1 1/2 1/2 -13/16 1/2 -1/8 -1 11/16 -3/4 35/64
1/4 -21/32 13/16 -1 1 -13/16 21/32  -1/4 1/2 -1 1 -1 1 -1/2 1/2 -1/4
frequency responses of the true DCT and several binDCT con- TABLE IV
figurations. FOUR-POINT BINDCT EMBEDDED IN THE BINDCT-C7
The configurations in Table Il have different tradeoffs be-  Forward Transform Matrix || Inverse Transform Matrix
tween the complexity and the performance. The configuration "1 1 1 1 1/2 1 il 1/2

with 23 shifts has a coding gain of 8.8251 dB, which almost i’/;‘ 11/22 i/g 13//; 1;3 11//22 % 'g//:
equals to the 8.8259 dB of the original DCT. Even the nine- 142 { ) 1/ /2 || 12 1 /2
shift version has a satisfactory coding gain of 8.7686 dB. In

binDCT-C9, where all lifting parameters are set to 0, the coding

gain is still 7.9204 dB, which is very close to that of the WHTC (4) of the embedded four-point DCTs are also listed. The

Note that in measuring the MSE according to (6), we use th@quency response of the binDCT-L3 is presented in Fig. 7(b).
floating-point values of the scaling factors, which are alwaypne relationship between the performance and the complexity
combined with the quantization steps and rounded to integersifithis type of the binDCT is very similar to that of the binDCT

practical implementations. Therefore, the actual MSE might bghe C. However, its scaling matrix is more integer friendly than
slightly different from the ones in Table II. the binDCT type C.

As an example, Table Il tabulates the forward and inverse
transform matrices of the binDCT-C7, without including the

final scaling factors. The embedded four-point DCTs are given ]
in Table IV. A. Performance Comparison of the Two Types of Scaled

Lifting Structures

VII. DISCUSSIONS

B. Eight-Point binDCT Type L In this section, we use the highpass subband of the
The aforementioned design method can also be applied to tieDCT-C5 in Table Il to demonstrate the necessity of the
Loeffler’s factorization of the eight-point DCT [15]. We denotepermuted scaled lifting structure discussed earlier. In Fig. 8(a),
this type of binDCT as the binDCT type L. The general structutbe frequency response of the binDCT is obtained when the

is given in Fig. 7(a). The top four subbands are exactly the samation with angle7=/16 is implemented with the normal

as the binDCT type C. Since the other two rotations are notsdaled lifting structure. The analytical values of the lifting

the end of the flow graph, we represent them with the standgrdrameters are = 5.027339492 and« = —0.19134172,

three lifting steps. The final butterfly to obtai[7] andX[1]is and they can be approximated &&3/128) = 5.0234375

also implemented as two liftings to maintain the same numberarfid —3/16 = —0.1875. The result in Fig. 8(b) is obtained

butterflies for each subband, leading to a uniform scaling factwhen the outputX[7] and X[1] are permuted and boths

after the inverse binDCT transform. and uz are chosen a8/16, which require fewer number of
The analytical values of the lifting parameters in Fig. 7(a) caarithmetic operations. As shown in Fig. 8, for this type of

be easily calculated, and the results are summarized in Tablgdfation angle, the frequency response of the output is distorted

together with some binDCT configurations. The coding gaidramatically if the outputs are not permuted, even though each
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Fig. 7. (a) binDCT family based on Loeffler's factorization. (b) Frequency responses of binDCT-L3: 16 shifts and 34 adds.
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TABLE V
FAMILY OF EIGHT-POINT BINDCTS BASED ON LOEFFLER S FACTORIZATION
[| Floating-point | binDCT-L1 L2 L3 L4 L5 L6 L7 L8 L9.
F 3 0.4142135623 13/32 13/32 7/16 3/8 1/2 1/2 1/2 1 0
U1 0.3535533905 11/32 11/32 3/8 1/4 1/2 1/2 1/2 1/2 0
P2 0.3033466836 19/64 5/16 1/4 1/4 1/4 0 0 0 0
u2 0.5555702330 9/16 9/16 9/16 1/2 1/2 1/2 1/2 1/2 0
P3 0.3033466836 19/64 5/16 5/16 1/4 1/4 1/4 0 0 0
P4 0.0984914033 3/32 3/32 1/8 1/8 1/8 0 0 0 0
u3 0.1950903220 3/16 3/16 3/16 3/16 1/4 1/4 0 0 0
Ps 0.0984914033 3/32 3/32 3/32 3/32 1/8 0 0 0 0
Shifts - 22 20 16 13 - 10 7 5 4 . 2
Adds - 40 38 34 31 28 25 23 23 20
MSE - 8.2¢e -6 1.1e—5 4.0e—5 36e—4 69e—4 2.2¢e—3 63¢—3 1.3e—2 3.2e—2
C,y(8) (dB) - 8.8257 8.8242 8.8225 8.8027 8.7716 8.7132 8.5464 8.3416 7.8219
Cy(4) (dB) - 7.5697 7.5697 7.5697 7.5600 7.5485 7.5485 7.5485 7.1744  7.1503
10 10
— . DCT -—- DCT

g O | — binDCT g of[— binDCT
3 3
S < -10
[=% o
7] (7]
T & 20
38 3
2 2-30
' c
2 2
= s -40
-50 .
3 3
Subband-7: Frequency(rad/sec) Subband-7: Frequency(rad/sec)
(@ (b)

Fig. 8. Frequency response of the seventh subband in the binDCT-C6[{pand X [7] are not permuted. (b)Y [1] and X [7] are permuted.

lifting parameter approximates its analytical value with verge turned into a special binDCT. Hence, the proposed binDCT
high accuracy. On the contrary, the frequency response of faenily can bridge the gap between the WHT and the DCT by in-
permuted version agrees very well with the true DCT andreasing the resolution of the approximation. The Loeffler’s fac-
therefore, leads to higher coding gain and smaller MSE. torization can also be reduced to the WHT by deleting two of its
) S rotations and adding one more butterfly, as shown in Fig. 9(b).
B. Relationship With the WHT For comparison, the lifting-based approximation of the DCT
It is interesting to note that in the Chen’s factorization of thig [40] requires 45 additions and 18 shifts. Its coding gain is
eight-point DCT, if we remove the intermediate rotationrgfl, only 8.692 dB, which is even lower than that of the binDCT-C7
replace all the other rotations by butterflies, and insert a permand binDCT-L6, which need only 28 additions and nine shifts
tation as shown by the dashed box in Fig. 9(a), the factorizas well as 25 additions and seven shifts, respectively. The reason
tion would reduce to the Walsh—Hadamard transform, which cégthat in the WHT-based DCT factorization, the WHT is totally
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Fig. 9. WHT derived from (a) Chen’s factorization of the DCT and (b) Loeffler’s factorization of the DCT.

x{0)

separated from the rotation angles, whereas it is embeddec
Chen’sandin Loeffler's methods. Besides, the idea of the sca"
DCT is not employed in [40]. @

xi3]

C. Dynamic Range Analysis “

x{5]

The elimination of the floating-point and fixed-point multipli-
cations enables the binDCT to be implemented with narrow
data bus than other fast algorithms. The dynamic range of 1

x[6]

|
7z é%
s
i e

7]

binDCT is analyzed in this section using the method as ShO\x; | \W _ L
in [47]. - . o . o /i \\C o K
Assume the original input data are eight-bit signed integel / _\\\\\w. | T. L oo _\
ranging from—128 to 127, as processed in the JPEG standa,, I \\\\J”‘”"’"‘””“ﬂ""”""”“"’““”iz"”?““”?’”"T””i““’f”‘
[3]. To check the dynamic range of the binDCT, we examin,;, i \\\¢ N JA
the signs of the binDCT coefficients and find out the set (., I \\l K
input data that would generate the maximum or minimum OL,,.,ﬁ/ = b l% _\w

puts in different binDCT subbands. For example, the signs of
the second subband in Table Ill are Fig.10. Sixteen-pointbinDCT based on Loeffler’s factorization: 51 shifts, 106

additions. The coding gain is 9.4499 dB.
++++--—}

chitecture. This also allows 16-bit implementations of the DCT
and therefore, the input in video coding applications such as MPEG and H.26x, where
the inputs are between256 and 255 after motion estimation,
which only requires one more bit than the JPEG case. Note that
we can further reduce the dynamic range to 13 bits if we dis-
tribute half of the final down-scaling factors of the inverse trans-
form to the forward side.

It can be verified that the binDCT type L has the same dy-

would lead to its minimum output. The maximum or minimunfiamic range as the binDCT type C. That is, it only needs at

output of each subband can then be calculated by feeding™@St 14 bits to perform the 2-D binDCT if the inputs are within

those worst-case inputs. —128 and 127. The capability of high-performance implemen-
As all liting parameters in the binDCT are less than unit};,ation o_f the binDC_T_with 16-bit simple arithmetic_operations

they can be implemented with addition and right-shift oper&@kes it very promising for low-cost handheld devices.

tions, which can minimize the intermediate dynamic range. In | )

this case, it can be verified that the absolute value of the wolgt PINDCT of Other Sizes

intermediate result in each subband is less than that of its finalThe same analytical design approach can be applied to gen-

output. Besides, since the absolute sum of the first row of teeate binDCT of arbitrary size. Any rotation-based fast factor-

binDCT matrix is much greater than that of other rows, thization of the DCT can be employed to reduce the complexity

dynamic range of the binDCT is thus determined by the D@f the binDCT. In this section, a 16-point binDCT will be pre-

subband. With the input range pf128,127], the binDCT DC sented.

outputs would be withif—1024, 1016]. Feeding this into the  An elegant factorization of the 16-point DCT was proposed

second pass of the binDCT, the DC outputs of the 2-D binDy Loeffler et al. [15], which needs 31 multiplications and 81

would be within—8192 and 8128, which only need 14 bits toadditions. Although the lower bound for the number of multipli-

represent. Thus, the binDCT can be well fitted into a 16-bit acations of 16-point DCT is 26 [22], the Loeffler's 16-point fac-

{127,127,127,127, —128, — 128, —128, —128}
would give the maximum output of this subband, and

{—128,—128,—128, —128, 127,127,127, 127}
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Fig. 11. (a) Frequency response of the 16-point DCT. (b) Frequency response of the 16-point binDCT example—Coding gain: 9.4499 dB.

torization is, thus far, one of the most efficient solutions. Unfor- %

tunately, this factorization cannot be generalized to larger sizes | [ bS5 Foatig 50T
With our proposed design method, a family of 16-point -G WG's Fast integor DCT
binDCTs can be easily obtained from this factorization. The s}
general structure and an example is given in Fig. 10. Except
the scaling factors, the even part of the 16-point binDCT is %}
identical to the eight-point binDCT type L. The output order
is slightly different from that in [15], as the permuted lifting
structure is used for some rotations in the final stage. In
addition, the negative signs associated wilil] and X[11]
in [15] have been absorbed in the lifting steps. This example s}
requires 51 shifts and 106 additions. Its coding gain is 9.4499
dB, which is very close to the 9.4555 dB coding gain of the true %}
16-point DCT. The MSE of this approximation8si952E — 5. e
Its frequency response is depicted in Fig. 11, together with that o 1 2 » @ & & 7w » o
of the true 16-point DCT.

40

PSNR (dB)

Fig. 12. Comparison of 1JG’s floating DCT, 1JG’s fast integer DCT, and

binDCT-CA4.
VIII. EXPERIMENTAL RESULTS

In this section, we demonstrate the applications of “Tg very close to that of the floating DCT in most cases. In par-
proposed binDCT in JPEG, H.263+, and lossless compresaﬁgular when the quality factor is below 95, the difference be-
Comparison with JPEG2000 is not made since it is based lsen the binDCT-C4 and the floating DCT is less than 0.1
wavelet ransform. dB. Experiments also showed that even the degradation of the

) ) binDCT-C7 is less than 0.5 dB. When the quality factor is above
A. Performance of the binDCT in JPEG 90, the degradations of both fast DCTs become obvious due to

The proposed families of eight-point binDCTs have been inthe roundoff errors introduced by the scaling factors. However,
plemented according to the framework of the JPEG standatide result of the binDCT is still reasonable. For example, when
based on the source code from the Independent JPEG Grthup quality factor is 100, the binDCT result is 10.3 dB better
(13G) [42]. Three versions of DCT implementation are provideithan that of the 1JG’s fastest integer DCT.
in the 1JG’s code. The floating version is based on the Arai’s In terms of the compression ratio, the compressed file size
scaled DCT algorithm with five floating multiplications and 29with binDCT-C7 is about 1-3% smaller than that with the
additions [3], [8]. The slow integer version is a variation of th8oating DCT, whereas the compressed size with binDCT-C4
Loeffler's algorithm with 12 fixed-point multiplications and 32is slightly larger than the latter, but the difference is less than
additions, and the fast integer version is the Arai's algorithMm5% in most cases.
with five fixed-point multiplications. To apply the binDCT, we Table VI compares the compatibility of different fast DCT
replace the DCT part by the proposed binDCT, and the JPE@orithms with respect to the floating DCT, for which the image
quantization matrix is modified to incorporate the 2-D binDCTena is compressed with the floating DCT and decompressed
scaling factors. with different fast inverses. It can be seen that the differences

Fig. 12 compares the PSNR results of the reconstructed Leamaong the binDCT-C4, binDCT-L3, and the IJG’s fast integer
image with IJG’s floating DCT, 1JG’s fast integer DCT, and th®CT are negligible in most cases. However, the binDCT-L3 has
binDCT-C4. It is observed that the performance of the binDCletter performance when the quantization step is very small as
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TABLE VI Four scenarios of the configuration of the encoder and the de-

PSNR(dB)OF THE RECONSTRUCTEDIMAGE WITH DIFFERENT coder are compared in Fig. 13(a) and (b), with the default quan-
INVERSEDCT ALGORITHMS . .

tization steps (40 for | frames and 26 for P frames). The average

Quality IJGC G Faést Biné)CT BinDCT PSNRs of the reference H.263+ implementation is 30.55 dB.
Factor | Int. DCT | Int. DCT 4 L3 ; CA ;
100 R =0 1138 013 If the binDCT-C4 is used in both the encoder and the decoder,
90 40.79 40.53 40.52 40.66 the average PSNR drops to 30.46 dB. However, the compres-
80 38.51 38.39 38.39 38.44 sion ratio is improved to 102.67:1 from 101.03:1. If the floating
60 36.43 36.36 36.38 36.38 DCT is used by the encoder and the binDCT-C4 is used in the
40 35.11 35.06 35.06 35.06 decoder. th PSNR is 30.43 dB. On th h
20 32.95 32.09 32.92 33.31 ecoder, the average is 30. . On the contrary, when
10 30.40 30.39 30.38 30.37 the sequence is encoded by the binDCT-C4 and decoded by the
5 27.33 27.32 27.30 27.30 default DCT, the average PSNR is 30.39 dB. These results show
that the compatibility of the binDCT with other DCT implemen-
TABLE VI tations_ is satisfactory. o _
EXECUTING TIMES OF DIFFERENTDCT'’S FOR A 8 x 8 IMAGE BLOCK In Fig. 13(c), a quantization step of 4 is used for all frames,
NPT = T where the PSNRs given by the binDCT-C4 and binDCT-C7 are
gorithms __| Time ( X ec.) 0.79 dB and 0.61 dB higher than that of the reference H.263+,
1JG Floating DCT 119.05 . . . . .
1JG Int. DCT 410 with about 2.5% increase in the file size. In summary, the overall
1JG Fast Int. DCT 2.39 performance of the binDCT-C4-based H.263+ is very similar to
binDCT-C1 2.45 the reference H.263+.
binDCT-C4 2.09
binDCT-C7 2.06

C. Performance of the binDCT in Lossless Compression

. . : As previously mentioned, lossless compression can be easily
fhe scaling factors of the binDCT-L has smallerroundoff €O ieved with the lifting-based binDCT by bypassing the

m%caling factors. To improve the compression ratio, we replace

: : : _.all butterflies in the binDCT by lifting steps, as shown in
for an 8x 8 image block are summarized in Table VII, whic |- 14, which can further reduce the dynamic range of the

amounts to repeating the 1-D transform 16 times. These res ransform. For instance, the DC coefficient in the modified

were measured on a PC with Linux operation system and P ﬁrl_ucture is the average of all inputs, instead of their summation
tium-1l11 550 MHz CPU. It can be seen from the table that thg . L 9 puts,
s in the original structure.

floating DCT is much slower than the other methods. Amon% . . . .
. . i . i The lossless binDCT has been implemented with two coding
the fast algorithms, the binDCT-C4 and the binDCT-C7 areethods: Huffman and SPIHT [49]. To use Huffman coding,

A0 . . : L
13-149% faster than the integer Arai’s algorithm, which is Onrgnew Huffman table is obtained by modifying the one in the

\?JO;TS I?sséei; de éma{)(f/?niggaet%?zara(l)l\l; e;/Serihtehi Obr:qnp?;( ItPEG standard since the statistical distribution of the binDCT

increases. For example, the binDCT-CL1 is slightly slower th gfﬂments IS d|ﬁerenF from that of the original DCT coef-

the integer Arai’s algorithm iIcients when the scaling factors are bypassed. In the SPIHT
) method, we rearrange the binDCT coefficients according to the

More significant improvement can be expected if the algo-

rithm is run on low-end CPUs, where the fixed-point multipli_pattern of the wavelet transform coefficients before applying ze-

: . : rotree processing [50].
cation may take many more instruction cycles to process tha . .
y Y y P he binDCT-based lossless transforms are compared with

shift and addition operations. The binDCT can be expected to

: . 0 advanced context model-based prediction methods: the HP
have tremendous advantage in low-cost hardware |mplemeri 3CO-1 [51] and CALIC [52]. The repsults are summarized in
tion in terms of size, speed, and power consumption—all a.ll'_a )

" ) . i . ble VIII, showing that the overall compression ratio of the
critical considerations for many hand-held devices. binDCT-based method is not as good as these methods. How-

B. Performance of the binDCT in H.263+ ever, the proposed binDCT is much simpler, and it provides a

i _ ) ) _unified framework for both lossy and lossless compression.
The binDCT has also been implemented in the video coding

standard H.263+, based on a public domain H.263+ software
[48]. The DCT in the encoder of the selected H.263+ imple-
mentation is based on Chen’s factorization with floating-point We present the design and application of the binDCT, which
multiplications, and the DCT in the decoder is the scaled vés-a fast multiplierless approximation of the DCT with the lifting

sion of this method with fixed-point multiplications. In H.263+scheme. All the lifting parameters in our design are chosen
a uniform quantization step is applied to all the DCT coefficients be dyadic rationals, enabling fast implementations with
of a block. In the binDCT-based version, the quantization stepdaly shift and addition operations. Several binDCT families

modified by the 2-D binDCT scaling matrix to maintain compatare derived from Chen’s and Loeffler's plane rotation-based
ibility with the standard. In this part, the binDCT-based H.263factorizations of the DCT matrix, respectively, and the design
is compared with the original H.263+ software, and some lumirethod can be applied to DCT of arbitrary size. Different

nance PSNR results of the reconstructed sequence are showreideoffs between the complexity and the performance can
Fig. 13 for the 400-frame QCIF test video sequence Foremabe easily achieved by the binDCT. The new transform has

The average executing times of different DCT algorith

IX. CONCLUSION
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Fig. 13.
PSNR results with a quantization step of 4 for all frames.
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Fig. 14. Lossless binDCT from Chen’s factorization with minimized dynamic o]
range.
[10]
TABLE VIII
LOSSLESSCODING RESULTS(in BITS PERPIXEL)
[11]
Image binDCT-C4 | binDCT-C4 HP CALIC
+ Huffman + SPIHT LOCO-I
Balloon 3.78 3.58 2.90 2.78 (12]
Zelda 4.44 4.33 3.89 3.69
Hotel 5.20 5.07 4.38 4.18
Barbara 5.22 5.11 4.69 4.31 (13]
Board 4.34 4.24 3.68 3.51
Girl 4.60 4.50 3.93 3.72
Gold 5.20 5.04 4.48 4.35 (14]
Boats 4.67 4.56 3.93 3.78
Average 4.68 4.55 3.99 3.79
[15]
been implemented in JPEG, H.263+, and lossless compressi 1%]

with satisfactory performance. Moreover, the binDCT can b

implemented with 16-bit data bus, making it very suitable for
fast, low-cost, low-power, yet high-performance multimediall7]
computing and communication applications.
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