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Abstract—In this paper, we present the design, implementation,
and application of several families of fast multiplierless approx-
imations of the discrete cosine transform (DCT) with the lifting
scheme called the binDCT. These binDCT families are derived
from Chen’s and Loeffler’s plane rotation-based factorizations of
the DCT matrix, respectively, and the design approach can also
be applied to a DCT of arbitrary size. Two design approaches are
presented. In the first method, an optimization program is defined,
and the multiplierless transform is obtained by approximating
its solution with dyadic values. In the second method, a general
lifting-based scaled DCT structure is obtained, and the analytical
values of all lifting parameters are derived, enabling dyadic
approximations with different accuracies. Therefore, the binDCT
can be tuned to cover the gap between the Walsh–Hadamard
transform and the DCT. The corresponding two-dimensional
(2-D) binDCT allows a 16-bit implementation, enables lossless
compression, and maintains satisfactory compatibility with the
floating-point DCT. The performance of the binDCT in JPEG,
H.263+, and lossless compression is also demonstrated.

Index Terms—binDCT, DCT, integer DCT, lifting scheme, loss-
less compression, multiplierless, scaled DCT.

I. INTRODUCTION

T HE discrete cosine transform (DCT) [1], [2] is a robust
approximation of the optimal Karhunen-Loève transform

(KLT) for a first-order Markov source with large correlation
coefficient. It has satisfactory performance in terms of energy
compaction capability, and many fast DCT algorithms with ef-
ficient hardware and software implementations have been pro-
posed. The DCT has found wide applications in image/video
processing and other fields. It has become the heart of many
international standards such as JPEG, H.26x, and the MPEG
family [3]–[5].

There are mainly four types of the DCT, and they are labeled
I–IV [2]. Among them, the DCT-II is the most useful. Many
different fast algorithms for the DCT computation have been
developed for image and video applications. Some of them take
advantage of the relationships between the DCT and various
existing fast transforms, including the FFT [1], [6]–[8], the
Walsh-Hadamard transform (WHT) [9], [10], and the discrete
Hartley transform (DHT) [11]. Some algorithms are based on
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the sparse factorizations of the DCT matrix [12]–[17], and
many of them are recursive [12], [14], [16], [17]. Besides
one-dimensional (1-D) algorithms, two-dimensional (2-D)
DCT algorithms have also been investigated extensively [6],
[18]–[21], generally leading to less computational complexity
than the row-column application of the 1-D methods. However,
the implementation of the direct 2-D DCT requires much more
effort than that of the separable 2-D DCT.

The theoretical lower bound on the number of multiplications
required for the 1-D eight-point DCT has been proven to be 11
[22], [23]. In this sense, the method proposed by Loeffleret al.
[15], with 11 multiplications and 29 additions, is the most effi-
cient solution. However, in image and video processing, quan-
tization is often required to compress the data. In these circum-
stances, significant algorithmic savings can be achieved if some
operations of the DCT are incorporated into the quantization
step. This leads to a class of fast 1-D and 2-D DCTs that are
generally referred to as thescaledDCT [5], [8], [21], [23]–[25].
For example, the Arai’s method needs only five multiplications
[3], [8].

All of the aforementioned fast algorithms still need floating-
point multiplications, which are slow in both hardware and soft-
ware implementations. To achieve faster implementation, coef-
ficients in many algorithms such as [7], [8], [16], and [17] can
be scaled and approximated by integers such that floating-point
multiplications can be replaced by integer multiplications [3],
[26]–[28]. The resulting algorithms are much faster than the
original versions and, therefore, have wide practical applica-
tions.

Another approach for integer DCT is presented in [29] by
searching integer orthogonal transforms with the same sym-
metry and similar energy compaction capability to the DCT. The
new transform can be implemented with integer multiplications
and additions. However, the overall complexity of this integer
DCT is not satisfactory, compared with other fast integer algo-
rithms, such as [8].

The fixed-point multiplications required by these fast algo-
rithms generally need 32-bit data bus, which is costly in VLSI
implementation and hand-held devices where the CPU capa-
bility, bus width, and battery power are limited. Therefore, de-
signing good approximations of the DCT that can be imple-
mented with narrower bus width and simpler arithmetic oper-
ations, such as shift and addition, is a challenging topic.

Another disadvantage associated with most algorithms that
employ floating or fixed-point multiplications is the difficulty in
applying them to lossless compression, due to the finite-length
representations and the corresponding roundoff errors. Several
efficient structures have been proposed that have the property
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of perfect reconstruction with minimum bit expansion. For ex-
ample, aladder networkwas introduced in [30]. More system-
atic results were summarized in [31] and [32] with the name
lifting scheme. The lifting structure enables flexible and fast
biorthogonal transform, and it also allows lossless transform,
making it a powerful building tool for wavelet transforms.

It has been proven that any orthogonal filterbank can be de-
composed into delay elements and plane rotations by lattice fac-
torizations [33]. It is easy to show that any plane rotation can
be represented by lifting steps. Therefore, it follows that the
DCT—a simple orthogonal filterbank—can be constructed from
the lifting scheme if we start from any plane rotation-based fac-
torization of the DCT matrix, such as those in [12]–[15], and
represent each plane rotation by its lifting implementation. The
new transform will enjoy the properties of both the DCT and the
lifting scheme.

The earliest application of this idea appeared in [30], where
a four-point DCT was implemented in terms of the ladder
network. In this method, floating-point multiplications were
used in the ladder (lifting) steps, and floor operations were
applied subsequently to obtain integer transform coefficients.
The inputs can be perfectly reconstructed in this way. The
idea was extended in [34] to obtain an eight-point lossless
DCT by examining the relationship between the DCT matrix
and the general reversible (lossless) transform. Integer results
were still obtained through the combination of floating-point
multiplications and floor operations. Recently, a lossless lapped
orthogonal transform (LOT) was obtained with the same idea
[35]. However, since fast implementation was not the main
concern in [30], [34], and [35], the resulting structures were not
optimal in terms of simplicity.

In this paper, we propose and describe the design of fast in-
vertible block transforms that can replace the DCT in future
wireless and portable computing applications. The new trans-
form, which is called the binDCT, has the following properties.

1) Both the forward and the inverse transforms can be imple-
mented using only binary shift and addition operations.

2) The idea of the scaled DCT is employed to reduce the
complexity of the binDCT.

3) The binDCT inherits all desirable DCT characteristics
such as high coding gain, no DC leakage, symmetric basis
functions, and recursive construction.

4) The binDCT also inherits all lifting properties such as
fast implementations, invertible integer-to-integer map-
ping, in-place computation, and low dynamic range.

This lifting scheme-based fast multiplierless approximation
of the DCT was first proposed in [36] and was generalized in
[37]. Several preliminary results were also reported in [38] and
[39]. A similar method was later obtained in [40] in which the
WHT-based DCT factorization [2], [9], [10] is used, which is
not as elegant as that of [12], [15]. Besides, the result in [40]
is not a scaled DCT. Hence, the performance of this method
is not as good as that of the binDCT, given the same level of
complexity.

The paper is organized as follows. Section II will briefly intro-
duce the plane rotation-based DCT factorizations and their rela-
tionships with the lifting scheme. In Section III, we define some
criteria for measuring the transform performance. Section IV

presents the general solution and the design of the binDCT via
the optimization approach. The systematic, analytical design
of the binDCT and design examples will be presented in Sec-
tions V and VI. Important design and implementation issues
are discussed in Section VII, whereas the applications of the
binDCT in JPEG, H.263+, and lossless compression are demon-
strated in Section VIII. Finally, Section IX contains the conclu-
sion.

II. PLANE ROTATION-BASED DCT FACTORIZATIONS AND THE

LIFTING SCHEME

A. Plane Rotation-Based DCT Factorizations

Chen et al. proposed a recursive algorithm to factor any
-point DCT-II with into plane rotations

and butterflies [12], [13]. The factorization has a very regular
structure and is six times as fast as the DFT-based fast DCT
algorithm [1]. The method was generalized by Wang to all
versions of DCT, DST, the discrete transform, as well as the
DFT with the size of power of 2 [14]. Similar results were also
reported in [41].

In this paper, we will concentrate on the four-point, eight-
point and 16-point transforms since they are the most useful
ones in practical applications. Block transforms of other sizes
can be designed in a similar fashion. The factorization of the
eight-point DCT in [12]–[14] is given in Fig. 1(a), where the
result in the dashed box is the scaled four-point DCT. It con-
tains series of butterflies and five plane rotations, which can be
implemented with a total of 13 multiplications and 29 additions
[14], [15]. Note that a scaling factor of should be applied at
the end to obtain the true DCT coefficients.

A more elegant factorization for eight-point and 16-point
DCT was proposed by Loeffleret al.[15], as shown in Fig. 1(b).
It also contains the scaled four-point DCT. This method only
needs 11 multiplications and 29 additions, achieving the
multiplication lower bound as proven in [22] and [23]. One of
its variations is adopted by the Independent JPEG Group in its
popular JPEG implementation [42]. Note that this factorization
requires a uniform scaling factor of at the end of the
flow graph to obtain the true DCT coefficients. In the 2-D
transform, this scaling factor becomes 1/8, which can be easily
implemented by a shift operation.

B. Lifting Scheme and the Plane Rotation

Fig. 2(a) illustrates the decomposition of a plane rotation into
three lifting steps [30], [32]. This can be written in matrix form
as

(1)

where , and .
It can be shown that any orthogonal matrix can be

expressed as the product of plane rotations [43].
Similarly, any real invertible matrix can be completely charac-
terized by plane rotations and scaling factors,
according to the singular value decomposition (SVD) of the ma-
trix. From these, it can be proven that any invertible FIR filter-
bank can be decomposed into lifting steps [32].
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Fig. 1. Signal flow graphs of the eight-point DCT. (a) Chen’s factorization. (b) Loeffler’s factorization.

Fig. 2. Representation of a plane rotation by three lifting steps. (a) Forward
rotation. (b) Inverse rotation.

Each lifting step is a biorthogonal transform, and its inverse
also has a simple lifting structure, i.e.,

(2)

As a result, the inverse of the plane rotation can be represented
by lifting steps as

(3)
as shown in Fig. 2(b). This means that to invert a lifting step,
we simply need to subtract out what was added in at the for-
ward transform. Hence, the original signal can still be perfectly
reconstructed even if the floating-point multiplication results in
the lifting steps are rounded to integers, as long as the same pro-
cedure is applied to both the forward and inverse transforms.
This is the basis for many lifting-based lossless transforms [34].
Another advantage of the lifting step over the butterfly is that it
enables in-place computation, i.e., no buffer is required, which
is a desired property in the VLSI implementations.

However, floating-point multiplications are still needed in the
above approach. To obtain fast implementation, we can approxi-
mate the floating-point lifting coefficients by hardware-friendly
dyadic values (i.e., rationals in the format of are in-
tegers), which can be implemented by only shift and addition
operations. In doing so, we can achieve various fast approxima-
tions of the original transform, which we name the binDCT. The
multiplication elimination also enables the binDCT to be imple-
mented with a narrower data bus than other algorithms. Since
perfect reconstruction is guaranteed by the lifting structure it-
self, the remaining problem is to select the dyadic lifting pa-
rameters such that the binDCT can achieve similar coding per-
formance as the DCT.

TABLE I
CODING GAINS OF SOME COMMONLY

USED TRANSFORMS(IN DECIBELS)

III. PERFORMANCEMEASURES

This section defines some criteria used in measuring and eval-
uating the performance of our proposed fast transforms.

A. Coding Gain

Coding gain is one of the most important factors to be con-
sidered for a transform used in compression applications. A
transform with higher coding gain compacts more energy into a
fewer number of coefficients. As a result, higher objective per-
formances such as PSNR would be achieved after quantization.
Since the coding gain of the DCT approximates the optimal KLT
closely, it is desired that the binDCT has similar coding gain to
that of the original DCT. The biorthogonal coding gain is
defined as [44], [45]

(4)

where
number of subbands;
variance of the input;
variance of theth subband;
norm of the th synthesis basis function.

The coding gains of some commonly used transforms are tab-
ulated in Table I, with the assumption that the input signal is a
first-order Gaussian–Markov process with zero-mean, unit vari-
ance, and correlation coefficient (a good approxima-
tion for natural images). Note that the coding gain of the DCT
is very close to that of the optimal KLT.

B. Mean Square Error (MSE)

To maintain the compatibility between the binDCT and the
true DCT outputs, the MSE between the DCT and the binDCT
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(a) (b)

Fig. 3. (a) General structure of the recursive DCT. (b) A binDCT Example: 30 additions, 12 shifts, 8.77 dB coding gain.

coefficients should be minimized. With reasonable assumptions
of the input signal, the MSE can be explicitly calculated as fol-
lows [46].

Assume that is the true DCT matrix, and
is its approximation. Then, for a given input column vector,
the error between the 1-D -point DCT coefficients and the
approximated transform coefficients is

(5)

From the above equation, the MSE between the approximated
DCT and the original DCT can be given by

Trace Trace (6)

where is the autocorrelation matrix of the
input signal. Hence, if we model the input signal as a first-order
Gaussian–Markov process, the matrix can be easily calcu-
lated, and the MSE can be derived deterministically.

C. DC Leakage

Another desired property of an image transform is that the
bandpass and highpass subbands should have no DC leakage,
i.e., the constant input should be completely captured by the
DC subband. In wavelet theory, this means that these high-fre-
quency subbands should have at least one vanishing moment
[45]. The zero dc leakage not only improves the coding effi-
ciency but also prevents the annoying checkerboard artifact that
can occur if high-frequency bands are severely quantized [45].
The DCT is a good example of image transforms with zero DC
leakage.

IV. GENERAL SOLUTION AND THE OPTIMIZATION APPROACH

The hardware-unfriendly components of the DCT factoriza-
tion are the plane rotations. A trivial way to obtain a multipli-
erless approximation of the DCT is to replace each rotation by
three lifting steps as shown in Fig. 2(a) and then approximate the
lifting coefficients by hardware-friendly dyadic rationals. How-
ever, in image and video processing, simplicity is always desired

to make the transform as fast as possible. This section presents
the general solution of approximating the DCT with more effi-
cient lifting scheme.

From a filterbank standpoint, the -point DCT is the
most basic -channel linear-phase paraunitary filter bank
(LPPUFB). All linear-phase filters have the same length.
If is even, and if the symmetric filters are permuted to the
top, the DCT matrix can be written as

(7)

where is the identity matrix, and is
the counter-identity matrix or reversal matrix. If is a power
of 2, the matrix in (7) can be factorized recursively, i.e.,

(8)

Barring an input reversal, the matrices s in (7) and (8) are
-point DCT-IV, and their closed-form factorization is available

in [12], [14], leading to a recursive factorization of the DCT-II.
The result in (7) actually covers all -channel -tap linear

phase filterbanks if and are chosen to be any in-
vertible matrices. In this paper, we consider the general struc-
ture for the eight-point binDCT, as given in Fig. 3(a), where
is fixed to be the unnormalized Haar to guarantee the zero DC
leakage property.

An optimization program is constructed in which we repre-
sent the matrices and by suitable number of lifting steps
and butterflies and search for the optimal lifting coefficients that
maximize the coding gain. We start from the factorizations given
in Fig. 1 and replace each rotation by three lifting steps and then
reduce the number of lifting steps gradually to obtain more ef-
ficient binDCTs.

The searched optimal results are approximated by dyadic
values since they can be implemented by only shifts and
additions. For example, can be implemented by two shifts
and one addition, as it can be written as , where the
divisions by 4 and 8 can be performed by right shifts. Similarly,

should be implemented as . One such result
is shown in Fig. 3(b), whose coding gain is quite close to that
of the DCT.
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Fig. 4. (a) General butterfly. (b) Scaled lifting structure. (c) Plane rotation. (d)
Scaled lifting structure for (c). (e) Permuted plane rotation. (f) Scaled lifting
structure for (e).

It should be noted that the binDCT is also a kind of scaled
DCT. This is not a major problem in direct application of
these transforms. However, when the compatibility between
the binDCT transform and the true DCT transform is desired,
it is necessary to consider the scaling relationship between
the binDCT and the DCT. In this case, the systematic design
method given in the next section becomes necessary since it
can provide the analytical values of the scaling factors. Besides,
different tradeoff between the complexity and the performance
of the binDCT can be easily achieved.

V. SYSTEMATIC DESIGN OF THE BINDCT

A. Scaled Lifting Structure

A plane rotation can be represented by three lifting steps, as
shown in Fig. 2, if pure lifting structure is desired. However, the
example in the last section reveals that we can also construct a
scaled DCT with only two lifting steps for the rotation angles at
the end of the signal flow.

This simplified lifting structure can be generalized as in
Fig. 4(a) and (b), where a general butterfly (not necessarily
an orthogonal plane rotation) is represented by two lifting
steps and two scaling factors. The two scaling factors can be
absorbed in the quantization stage; thus only two lifting steps
are left in the transform, making it more efficient than the
conventional representation. Due to the analogy between this
idea and that of the scaled DCT [3], [5], [8], we refer to this as
thescaled lifting structure.

The solutions for the lifting parameters in the scaled lifting
structure can be derived as follows. From the flow graphs in
Fig. 4(a), we can obtain the following relationship:

(9)

Similarly, the outputs of the scaled lifting structure as given in
Fig. 4(b) can be rewritten as

(10)

By equalizing the coefficients of and in (9) and (10), the
four unknowns can be uniquely determined as

(11)

where we need and .
This analytical solution is the starting point for obtaining

binDCTs with different complexities and performances.

B. Sensitivity Analysis and the Permuted Scaled Lifting
Structure

This section analyzes the effect of finite-length approxi-
mations of the lifting parameters on the performance of the
binDCT. A permuted version of the scaled lifting structure
will be proposed to improve coding performance in certain
circumstances.

In Fig. 4(c), we redraw the familiar rotation angle depicted in
Fig. 1. The solution of the corresponding scaled lifting structure
can be obtained by (11), as shown in Fig. 4(d).

The signal at the point in Fig. 4(d) can be expressed as

(12)

Equation (12) shows that for plane rotations as shown in
Fig. 4(c), the values of , i.e., , would be very
small if the rotation angle is close to , where is
any integer. For example, . Therefore,
a large relative error for could result when the lifting
parameters and are truncated or rounded, leading to a
drastic change in the frequency response of the result. Another
problem in this case is that the lifting parameter would
be much greater than 1. This increases the dynamic range of
the intermediate result and is not desired in both software and
hardware implementations.

Analyzing the example given in the last section reveals that
the output sequence of some rotation angles are permuted. This
implies that a permutation of the output, as shown in Fig. 4(e),
might lead to a much more robust scaled lifting structure. Since
the coefficients are permuted accordingly, the new transform is
equivalent to the previous one. The general expression in (11)
is still valid for this case, and the corresponding scaled lifting
parameters are given in Fig. 4(f). The signal atin Fig. 4(f) is
now given by

(13)
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Fig. 5. General structure of the binDCT family based on Chen’s factorization. (a) Forward transform. (b) Inverse transform.

TABLE II
SEVERAL CONFIGURATIONS OF BINDCT BASED ON CHEN’S FACTORIZATION

Note that the coefficient of at changes from to
, which is more robust to truncation errors than (12) for

rotation angles close to . This explains the optimization
results given in the last section. Besides, the augment of the
dynamic range in Fig. 4(d) is also avoided now, as the first lifting
parameter becomes , instead of .

In general, when the scaled lifting structure is used to
obtain finite-length approximation of the transform with
high coding gain and minimal dynamic range, the original
structure in Fig. 4(d) should be used if ,
and the permuted version in Fig. 4(f) should be adopted if

. When , both formats
reduce to the unnormalized Haar transform.

VI. EIGHT-POINT BINDCT FAMILIES

A. Eight-Point binDCT Type C

The above analysis leads to the general structure of the
binDCT based on Chen’s factorization, which is denoted as
the binDCT type C and shown in Fig. 5. Note that some sign
manipulations are involved here to make all the scaling factors
positive. The intermediate rotation with angle of in is
implemented by three lifting steps, and the permuted version
of the scaled lifting structure is used for the angles of and

.

The rotation of between and is also imple-
mented by the scaled lifting structure, instead of a butterfly.
The purpose is to achieve one vanishing moment and to make
all subbands experience the same number of butterflies during
the forward and inverse transforms. Since the multiplication of
two butterflies introduces a scaling factor of 2, the combination
of the forward and inverse transforms thus generates a uniform
scaling factor of 4 for all subbands, which becomes 16 for the
2-D transform. This can be compensated by a simple shift oper-
ation. The scaling factors in the dashed boxes will be absorbed
in the quantization stage. They are bypassed in lossless com-
pression or when the compatibility with the true DCT is not re-
quired.

The property of the lifting structure allows us to adjust the
lifting parameters without losing perfect reconstruction of the
signals. Therefore, from the analytical expressions given in (1)
and (11), we can obtain their proper dyadic approximations.
This is more flexible than the previous optimization-based de-
sign method.

Table II lists the analytical values of all the lifting parame-
ters and some configurations of this binDCT family, where the
dyadic values are obtained by truncating or rounding the corre-
sponding analytical values with different accuracies. and

are the coding gains of these eight-point binDCTs and
the four-point DCTs embedded in them. Fig. 6 compares the
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Fig. 6. Frequency responses of (a) True DCT. (b) binDCT-C7: nine shifts and 28 adds. (c) binDCT-C5: 17 shifts and 36 adds.

TABLE III
BINDCT-C7 COEFFICIENTS

frequency responses of the true DCT and several binDCT con-
figurations.

The configurations in Table II have different tradeoffs be-
tween the complexity and the performance. The configuration
with 23 shifts has a coding gain of 8.8251 dB, which almost
equals to the 8.8259 dB of the original DCT. Even the nine-
shift version has a satisfactory coding gain of 8.7686 dB. In
binDCT-C9, where all lifting parameters are set to 0, the coding
gain is still 7.9204 dB, which is very close to that of the WHT.
Note that in measuring the MSE according to (6), we use the
floating-point values of the scaling factors, which are always
combined with the quantization steps and rounded to integers in
practical implementations. Therefore, the actual MSE might be
slightly different from the ones in Table II.

As an example, Table III tabulates the forward and inverse
transform matrices of the binDCT-C7, without including the
final scaling factors. The embedded four-point DCTs are given
in Table IV.

B. Eight-Point binDCT Type L

The aforementioned design method can also be applied to the
Loeffler’s factorization of the eight-point DCT [15]. We denote
this type of binDCT as the binDCT type L. The general structure
is given in Fig. 7(a). The top four subbands are exactly the same
as the binDCT type C. Since the other two rotations are not at
the end of the flow graph, we represent them with the standard
three lifting steps. The final butterfly to obtain and is
also implemented as two liftings to maintain the same number of
butterflies for each subband, leading to a uniform scaling factor
after the inverse binDCT transform.

The analytical values of the lifting parameters in Fig. 7(a) can
be easily calculated, and the results are summarized in Table V,
together with some binDCT configurations. The coding gain

TABLE IV
FOUR-POINT BINDCT EMBEDDED IN THE BINDCT-C7

of the embedded four-point DCTs are also listed. The
frequency response of the binDCT-L3 is presented in Fig. 7(b).
The relationship between the performance and the complexity
of this type of the binDCT is very similar to that of the binDCT
type C. However, its scaling matrix is more integer friendly than
the binDCT type C.

VII. D ISCUSSIONS

A. Performance Comparison of the Two Types of Scaled
Lifting Structures

In this section, we use the highpass subband of the
binDCT-C5 in Table II to demonstrate the necessity of the
permuted scaled lifting structure discussed earlier. In Fig. 8(a),
the frequency response of the binDCT is obtained when the
rotation with angle is implemented with the normal
scaled lifting structure. The analytical values of the lifting
parameters are and ,
and they can be approximated as
and . The result in Fig. 8(b) is obtained
when the output and are permuted and both
and are chosen as , which require fewer number of
arithmetic operations. As shown in Fig. 8, for this type of
rotation angle, the frequency response of the output is distorted
dramatically if the outputs are not permuted, even though each
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(a) (b)

Fig. 7. (a) binDCT family based on Loeffler’s factorization. (b) Frequency responses of binDCT-L3: 16 shifts and 34 adds.

TABLE V
FAMILY OF EIGHT-POINT BINDCTS BASED ON LOEFFLER’S FACTORIZATION

(a) (b)

Fig. 8. Frequency response of the seventh subband in the binDCT-C5. (a)X[1] andX[7] are not permuted. (b)X[1] andX[7] are permuted.

lifting parameter approximates its analytical value with very
high accuracy. On the contrary, the frequency response of the
permuted version agrees very well with the true DCT and,
therefore, leads to higher coding gain and smaller MSE.

B. Relationship With the WHT

It is interesting to note that in the Chen’s factorization of the
eight-point DCT, if we remove the intermediate rotation of ,
replace all the other rotations by butterflies, and insert a permu-
tation as shown by the dashed box in Fig. 9(a), the factoriza-
tion would reduce to the Walsh–Hadamard transform, which can

be turned into a special binDCT. Hence, the proposed binDCT
family can bridge the gap between the WHT and the DCT by in-
creasing the resolution of the approximation. The Loeffler’s fac-
torization can also be reduced to the WHT by deleting two of its
rotations and adding one more butterfly, as shown in Fig. 9(b).

For comparison, the lifting-based approximation of the DCT
in [40] requires 45 additions and 18 shifts. Its coding gain is
only 8.692 dB, which is even lower than that of the binDCT-C7
and binDCT-L6, which need only 28 additions and nine shifts
as well as 25 additions and seven shifts, respectively. The reason
is that in the WHT-based DCT factorization, the WHT is totally
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Fig. 9. WHT derived from (a) Chen’s factorization of the DCT and (b) Loeffler’s factorization of the DCT.

separated from the rotation angles, whereas it is embedded in
Chen’s and in Loeffler’s methods. Besides, the idea of the scaled
DCT is not employed in [40].

C. Dynamic Range Analysis

The elimination of the floating-point and fixed-point multipli-
cations enables the binDCT to be implemented with narrower
data bus than other fast algorithms. The dynamic range of the
binDCT is analyzed in this section using the method as shown
in [47].

Assume the original input data are eight-bit signed integers,
ranging from to 127, as processed in the JPEG standard
[3]. To check the dynamic range of the binDCT, we examine
the signs of the binDCT coefficients and find out the set of
input data that would generate the maximum or minimum out-
puts in different binDCT subbands. For example, the signs of
the second subband in Table III are

and therefore, the input

would give the maximum output of this subband, and

would lead to its minimum output. The maximum or minimum
output of each subband can then be calculated by feeding in
those worst-case inputs.

As all lifting parameters in the binDCT are less than unity,
they can be implemented with addition and right-shift opera-
tions, which can minimize the intermediate dynamic range. In
this case, it can be verified that the absolute value of the worst
intermediate result in each subband is less than that of its final
output. Besides, since the absolute sum of the first row of the
binDCT matrix is much greater than that of other rows, the
dynamic range of the binDCT is thus determined by the DC
subband. With the input range of , the binDCT DC
outputs would be within . Feeding this into the
second pass of the binDCT, the DC outputs of the 2-D binDCT
would be within and 8128, which only need 14 bits to
represent. Thus, the binDCT can be well fitted into a 16-bit ar-

Fig. 10. Sixteen-point binDCT based on Loeffler’s factorization: 51 shifts, 106
additions. The coding gain is 9.4499 dB.

chitecture. This also allows 16-bit implementations of the DCT
in video coding applications such as MPEG and H.26x, where
the inputs are between256 and 255 after motion estimation,
which only requires one more bit than the JPEG case. Note that
we can further reduce the dynamic range to 13 bits if we dis-
tribute half of the final down-scaling factors of the inverse trans-
form to the forward side.

It can be verified that the binDCT type L has the same dy-
namic range as the binDCT type C. That is, it only needs at
most 14 bits to perform the 2-D binDCT if the inputs are within

128 and 127. The capability of high-performance implemen-
tation of the binDCT with 16-bit simple arithmetic operations
makes it very promising for low-cost handheld devices.

D. binDCT of Other Sizes

The same analytical design approach can be applied to gen-
erate binDCT of arbitrary size. Any rotation-based fast factor-
ization of the DCT can be employed to reduce the complexity
of the binDCT. In this section, a 16-point binDCT will be pre-
sented.

An elegant factorization of the 16-point DCT was proposed
by Loeffler et al. [15], which needs 31 multiplications and 81
additions. Although the lower bound for the number of multipli-
cations of 16-point DCT is 26 [22], the Loeffler’s 16-point fac-
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Fig. 11. (a) Frequency response of the 16-point DCT. (b) Frequency response of the 16-point binDCT example—Coding gain: 9.4499 dB.

torization is, thus far, one of the most efficient solutions. Unfor-
tunately, this factorization cannot be generalized to larger sizes.

With our proposed design method, a family of 16-point
binDCTs can be easily obtained from this factorization. The
general structure and an example is given in Fig. 10. Except
the scaling factors, the even part of the 16-point binDCT is
identical to the eight-point binDCT type L. The output order
is slightly different from that in [15], as the permuted lifting
structure is used for some rotations in the final stage. In
addition, the negative signs associated with and
in [15] have been absorbed in the lifting steps. This example
requires 51 shifts and 106 additions. Its coding gain is 9.4499
dB, which is very close to the 9.4555 dB coding gain of the true
16-point DCT. The MSE of this approximation is .
Its frequency response is depicted in Fig. 11, together with that
of the true 16-point DCT.

VIII. E XPERIMENTAL RESULTS

In this section, we demonstrate the applications of the
proposed binDCT in JPEG, H.263+, and lossless compression.
Comparison with JPEG2000 is not made since it is based on
wavelet transform.

A. Performance of the binDCT in JPEG

The proposed families of eight-point binDCTs have been im-
plemented according to the framework of the JPEG standard,
based on the source code from the Independent JPEG Group
(IJG) [42]. Three versions of DCT implementation are provided
in the IJG’s code. The floating version is based on the Arai’s
scaled DCT algorithm with five floating multiplications and 29
additions [3], [8]. The slow integer version is a variation of the
Loeffler’s algorithm with 12 fixed-point multiplications and 32
additions, and the fast integer version is the Arai’s algorithm
with five fixed-point multiplications. To apply the binDCT, we
replace the DCT part by the proposed binDCT, and the JPEG
quantization matrix is modified to incorporate the 2-D binDCT
scaling factors.

Fig. 12 compares the PSNR results of the reconstructed Lena
image with IJG’s floating DCT, IJG’s fast integer DCT, and the
binDCT-C4. It is observed that the performance of the binDCT

Fig. 12. Comparison of IJG’s floating DCT, IJG’s fast integer DCT, and
binDCT-C4.

is very close to that of the floating DCT in most cases. In par-
ticular, when the quality factor is below 95, the difference be-
tween the binDCT-C4 and the floating DCT is less than 0.1
dB. Experiments also showed that even the degradation of the
binDCT-C7 is less than 0.5 dB. When the quality factor is above
90, the degradations of both fast DCTs become obvious due to
the roundoff errors introduced by the scaling factors. However,
the result of the binDCT is still reasonable. For example, when
the quality factor is 100, the binDCT result is 10.3 dB better
than that of the IJG’s fastest integer DCT.

In terms of the compression ratio, the compressed file size
with binDCT-C7 is about 1–3% smaller than that with the
floating DCT, whereas the compressed size with binDCT-C4
is slightly larger than the latter, but the difference is less than
0.5% in most cases.

Table VI compares the compatibility of different fast DCT
algorithms with respect to the floating DCT, for which the image
Lena is compressed with the floating DCT and decompressed
with different fast inverses. It can be seen that the differences
among the binDCT-C4, binDCT-L3, and the IJG’s fast integer
DCT are negligible in most cases. However, the binDCT-L3 has
better performance when the quantization step is very small as
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TABLE VI
PSNR(dB)OF THE RECONSTRUCTEDIMAGE WITH DIFFERENT

INVERSEDCT ALGORITHMS

TABLE VII
EXECUTING TIMES OF DIFFERENTDCT’s FOR A 8� 8 IMAGE BLOCK

the scaling factors of the binDCT-L has smaller roundoff errors
than the binDCT-C.

The average executing times of different DCT algorithms
for an 8 8 image block are summarized in Table VII, which
amounts to repeating the 1-D transform 16 times. These results
were measured on a PC with Linux operation system and Pen-
tium-III 550 MHz CPU. It can be seen from the table that the
floating DCT is much slower than the other methods. Among
the fast algorithms, the binDCT-C4 and the binDCT-C7 are
13–14% faster than the integer Arai’s algorithm, which is one
of the fastest DCT implementations. However, the binDCT
would lose its speed advantage gradually as the complexity
increases. For example, the binDCT-C1 is slightly slower than
the integer Arai’s algorithm.

More significant improvement can be expected if the algo-
rithm is run on low-end CPUs, where the fixed-point multipli-
cation may take many more instruction cycles to process than
shift and addition operations. The binDCT can be expected to
have tremendous advantage in low-cost hardware implementa-
tion in terms of size, speed, and power consumption—all are
critical considerations for many hand-held devices.

B. Performance of the binDCT in H.263+

The binDCT has also been implemented in the video coding
standard H.263+, based on a public domain H.263+ software
[48]. The DCT in the encoder of the selected H.263+ imple-
mentation is based on Chen’s factorization with floating-point
multiplications, and the DCT in the decoder is the scaled ver-
sion of this method with fixed-point multiplications. In H.263+,
a uniform quantization step is applied to all the DCT coefficients
of a block. In the binDCT-based version, the quantization step is
modified by the 2-D binDCT scaling matrix to maintain compat-
ibility with the standard. In this part, the binDCT-based H.263+
is compared with the original H.263+ software, and some lumi-
nance PSNR results of the reconstructed sequence are shown in
Fig. 13 for the 400-frame QCIF test video sequence Foreman.

Four scenarios of the configuration of the encoder and the de-
coder are compared in Fig. 13(a) and (b), with the default quan-
tization steps (40 for I frames and 26 for P frames). The average
PSNRs of the reference H.263+ implementation is 30.55 dB.
If the binDCT-C4 is used in both the encoder and the decoder,
the average PSNR drops to 30.46 dB. However, the compres-
sion ratio is improved to 102.67:1 from 101.03:1. If the floating
DCT is used by the encoder and the binDCT-C4 is used in the
decoder, the average PSNR is 30.43 dB. On the contrary, when
the sequence is encoded by the binDCT-C4 and decoded by the
default DCT, the average PSNR is 30.39 dB. These results show
that the compatibility of the binDCT with other DCT implemen-
tations is satisfactory.

In Fig. 13(c), a quantization step of 4 is used for all frames,
where the PSNRs given by the binDCT-C4 and binDCT-C7 are
0.79 dB and 0.61 dB higher than that of the reference H.263+,
with about 2.5% increase in the file size. In summary, the overall
performance of the binDCT-C4-based H.263+ is very similar to
the reference H.263+.

C. Performance of the binDCT in Lossless Compression

As previously mentioned, lossless compression can be easily
achieved with the lifting-based binDCT by bypassing the
scaling factors. To improve the compression ratio, we replace
all butterflies in the binDCT by lifting steps, as shown in
Fig. 14, which can further reduce the dynamic range of the
transform. For instance, the DC coefficient in the modified
structure is the average of all inputs, instead of their summation
as in the original structure.

The lossless binDCT has been implemented with two coding
methods: Huffman and SPIHT [49]. To use Huffman coding,
a new Huffman table is obtained by modifying the one in the
JPEG standard since the statistical distribution of the binDCT
coefficients is different from that of the original DCT coef-
ficients when the scaling factors are bypassed. In the SPIHT
method, we rearrange the binDCT coefficients according to the
pattern of the wavelet transform coefficients before applying ze-
rotree processing [50].

The binDCT-based lossless transforms are compared with
two advanced context model-based prediction methods: the HP
LOCO-I [51] and CALIC [52]. The results are summarized in
Table VIII, showing that the overall compression ratio of the
binDCT-based method is not as good as these methods. How-
ever, the proposed binDCT is much simpler, and it provides a
unified framework for both lossy and lossless compression.

IX. CONCLUSION

We present the design and application of the binDCT, which
is a fast multiplierless approximation of the DCT with the lifting
scheme. All the lifting parameters in our design are chosen
to be dyadic rationals, enabling fast implementations with
only shift and addition operations. Several binDCT families
are derived from Chen’s and Loeffler’s plane rotation-based
factorizations of the DCT matrix, respectively, and the design
method can be applied to DCT of arbitrary size. Different
tradeoffs between the complexity and the performance can
be easily achieved by the binDCT. The new transform has
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Fig. 13. (a) Comparison between the reference H.263+ and the binDCT-based H.263+. (b) PSNR results with different DCTs in the encoder and the decoder.(c)
PSNR results with a quantization step of 4 for all frames.

Fig. 14. Lossless binDCT from Chen’s factorization with minimized dynamic
range.

TABLE VIII
LOSSLESSCODING RESULTS(in BITS PERPIXEL)

been implemented in JPEG, H.263+, and lossless compression
with satisfactory performance. Moreover, the binDCT can be
implemented with 16-bit data bus, making it very suitable for
fast, low-cost, low-power, yet high-performance multimedia
computing and communication applications.
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