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Preface

Since Isaac Newton introduced a new descriptive method for the
study of physics by using mathematical models for various physical
phenomena, the solution of differential equations and interpretation of
mathematical results have become one of the most important methods
for scientific discovery in many branches of science and engineering.
A century ago only mechanics and physics, and to a much smaller
extent chemistry, enjoyed the use of the predictive and explanatory
power of differential equations. At the end of the 20th century,
mathematical models have become a commonplace in biology,
economics, and many new interdisciplinary areas of science. The
necessity for more accurate modeling and prediction, and the
exponential growth and availability of computational capabilities has
given rise to such disciplines as “computational physics”, “computa-
tional chemistry”, “computational biology”, and more generally to
“scientific computation.” Contemporary engineering, physics, chemis-
try and biology actively use software for the solution of multi-
dimensional problems. Material science, aerospace, chemical
engineering, nuclear and environmental engineering, medical instru-
mentation—indeed, this list can be continued to include all sciences.
Today, to a large extent modern technology depends on mathematical
modeling and capabilities for the numerical solution of equations
constituting these models.

The history of science knows many revolutions: the computational
revolution at the end of the 20th century is closely related to the
availability of cheap processing power through advances in electronics
and materials science and improved algorithms and operating systems
due to computer science and related disciplines. These have brought
powerful desktop/laptop personal computers to researchers and engi-
neers. These computers have sufficient speed and memory for the
solution of such mathematical tasks as the three-dimensional boundary
value problems for various partial differential equations. The availability
of sophisticated front-end packages such as Matlab and Mathematica
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allows relatively naive users to access highly sophisticated algorithms,
and makes simulation, and the analysis of simulation results a
fundamental component of scientific discovery.

The computational capabilities of a modern computer, which children
play with, is larger by several orders than the capabilities of huge
mainframe computers and systems, exploited in the 1960s, 1970s, and
even the 1980s. We should not forget that with such ancient computers
humanity went to space, designed nuclear power stations, and
experienced revolutions in science and technology of the 1960s.
Mainframes and clusters of computers (supercomputers) of the end of
the 20th century and the beginning of the 21st century have capabilities
exceeding of those used just 10 years ago by orders of magnitude. Some
limits for this growth are close enough today due to the limits of
semiconductors and high-frequency electrical communications. However,
new technologies based on new optical materials, optical switches, and
optical analogs of semiconductor devices are under active research and
development, which promise further growth of computational capabil-
ities in the following decades. The exponential growth of computational
power is captured in various “Moore’s laws” named after the scientist
Gordon Moore, a cofounder of Intel. In its original form [GM65], the law
states that the number of components on a circuit doubles every 18
months. Today, this law is taken to mean that the capability of technology
X doubles in Y months [K99].

Nevertheless, the evolution of computers (hardware) itself does not
guarantee adequate growth of scientific knowledge or capabilities to
solve applied problems unless appropriate algorithms (software) are
also developed for the solution of the underlying mathematical
problems. For example, for the solution of the most large-scale
problems one needs to solve large systems of linear equations, which
may consist of millions or billions of equations. Direct solution of a
dense linear system for an N £ N matrix requires OðN3Þ operations.
Using this as a guideline we can say that the inversion of a million by
million matrix would require about 1018 operations. The top computer
in early 2004, the “Earth Simulator” in Yokohama, Japan, has a speed of
about 36 £ 1012 operations per second and would require about 8 h to
solve this problem. If we were to consider a problem 10 times larger,
this time would rise to about 1 year. It is impossible to conceive of
using simulation as a means of discovery with direct algorithms even
using such advanced computers.

Nevertheless, in many practical cases inversions of this type are
routinely performed, since many matrices that arise in modeling have
special structure. Using specially designed efficient methods for the
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solution of systems with such matrices, these systems can be solved in
OðN2Þ or OðN log NÞ operations. This highlights the importance of
research related to the development of fast and efficient methods for the
solution of basic mathematical problems, particularly, multidimensional
partial differential equations, since these solvers may be called many
times during the solution of particular scientific or engineering design
problems. In fact, improving the complexity of algorithms by an order of
magnitude (decreasing the exponent by 1) can have a much more
significant impact than even hardware advances. For a million variables,
the improvement of the exponent can have the effect of skipping 16
generations of Moore’s law!

It is interesting to observe how problems and methods of solution,
which were formulated a century or two centuries ago, get a new life
with advances in computational sciences and computational tools. One
of the most famous examples here is related to the Fourier transform
that appeared in the Fourier memoir and was submitted to public
attention in 1807. This transform was first described in relation to a
heat equation, but later it was found that the Fourier method is a
powerful technique for the solution of the wave, Laplace, and other
fundamental equations of mathematical physics. While used as a
method to obtain analytical solutions for some geometries, it was not
widely used as a computational method. A new life began for the
Fourier transform only in 1965 after the publication of the paper by
Cooley and Tukey [CT65], who described the Fast Fourier Transform
(FFT) algorithm that enables multiplication of a vector by the N £ N
Fourier matrix for an expense of only OðN log NÞ operations as
opposed to OðN2Þ operations. In practice, this meant that for the time
spent for the Fourier transform of length, say, N , 103 with a
straightforward OðN2Þ algorithm, one can perform the Fourier trans-
form of a sequence of length N , 105, which is hundred times larger!
Of course, this discovery caused methods based on the Fourier
transform to be preferred over other methods, and revolutionized
areas such as signal processing. This algorithm is described as one of
the best ten algorithms of the 20th century [DS00].

Another example from these top ten algorithms is related to the
subject of this book. This is an algorithm due to Rokhlin and Greengard
[GR87] called the “Fast Multipole Method” (FMM). While it was first
formulated for the solution of the Laplace equation in two and three
dimensions, it was extended later for other equations, and more generally
to the multiplication of N £ N matrices with special structure by vectors of
length N. This algorithm achieves approximate multiplication for expense
of OðaNÞ operations, where a depends on the prescribed accuracy of
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the result, 1, and usually a , log N þ log 121. For computations with
large N, the significance of this algorithm is comparable with that of the
FFT. While the algorithm itself is different from the FFT, we note that as
the FFT did, it brings “new life” to some classical methods developed
in the 19th century, which have not been used widely as general
computational methods.

These are the methods of multipoles or multipole expansions,
which, as the FFT, can be classified as spectral methods. Expansions
over multipoles or some elementary factorized solutions for equations
of mathematical physics were known since Fourier. However, they
were used less frequently, say, for the solution of boundary value
problems for complex-shaped domains. Perhaps, this happened
because other methods such as the Boundary Element, Finite Element,
or Finite Difference methods appeared to be more attractive from the
computational point of view. Availability of a fast algorithm for
solution of classical problems brought research related to multipole
and local expansions to a new level. From an algorithmic point of
view, the issues of fast and accurate translations, or conversions of
expansions over different bases from one to the other have become of
primary importance. For example, the issue of development of fast,
computationally stable, translation methods and their relation to the
structured matrices, for which fast matrix–vector multiplication is
available, were not in the scope of 19th or 20th century researchers
living in the era before the FMM. A more focused attention to some
basic principles of multipole expansion theory is now needed with the
birth of the FMM.

The latter sentence formulates the motivation behind the present
book. When several years ago we started to work on the problems of
fast solution of the Helmholtz equation in three dimensions we found
a substantial lack in our knowledge on multipole expansions and
translation theory for this equation. Some facts were well known,
some scattered over many books and papers, and several things we
had to rediscover by ourselves, since we did not find, at that time, the
solution to our problems. A further motivation was from our desire to
get a solution to some practically important problems such as
scattering from multiple bodies and scattering from complex bound-
aries. Here again, despite many good papers from other researchers in
the field, we could not find a direct answer to some of our problems,
or find appropriate solutions (e.g. we were eager to have FFT-type
algorithms for the translation and filtering of spherical harmonics,
which are practically faster than our first Oðp3Þ method based on a
rotation–coaxial translation decomposition). We also found that
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despite a number of publications, some details and issues related
to the error bounds and the complexity of the FMM were not worked
out. In the present book we attempt to pay significant attention
to these important issues. While future developments may make some
of the results presented in this book less important, at the time
of its writing, these issues are essential to the development of
practical solvers for the Helmholtz equation using these fast
algorithms.
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Outline of the Book

The book is organized as follows.

Chapter 1: This is an introductory chapter whose main purpose is to
present the scalar Helmholtz equation as a universal equation appearing
in different areas of physics. Even though many problems are formulated
in terms of systems of equations or are described by other well-known
basic models, they can be reduced to the solution of the scalar Helmholtz
equation using the scalar potentials and the Fourier or Laplace trans-
forms. Here we also consider major types of boundary and transmission
conditions and integral representation of solutions. Computation of
the surface and volume integrals can be performed by discretization
and reduction of the problem to summation of a large number of
monopoles and dipoles. The rest of the book is dedicated to the solution of
problems that arise from the scalar Helmholtz equation, whose solution
can also be generalized to the summation of a large number of arbitrary
multipoles.

Chapter 2: This chapter is dedicated to the fundamentals of the multipole
and local expansions of the solutions of the Helmholtz equation. Most
relations presented here are well known and one of the major goals of this
chapter is to bring together in one place the necessary definitions and
equations for easy reference. Another important goal is to establish the
notation used in the book (because different authors use different
functions under the same notation, e.g., spherical harmonics or “multi-
poles”). While the normalization factors to use may not seem important,
our experience shows that one can spend substantial time to have a
reliable analytical formula that can be used further. We introduce here the
definition of the special functions used later in the book, and summarize
useful relations for them.

Chapter 3: This is one of the key theoretical chapters. It introduces the
concepts of reexpansion, translation, and rotation of solutions of
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the Helmholtz equation. Some equations and relations can be found in
other sources while others are derived here for the first time. This chapter
includes the basic concepts, structure of the reexpansion coefficients and
special types and properties of these functions of vector argument.
Since our major concern is the development and implementation of fast
computational methods, we derive here some efficient methods for
computations of the translation and rotation coefficients. While the
explicit expressions for them via, say, Clebsch–Gordan coefficients, can
be found elsewhere, these formulae are not practical for use in fast
multipole methods. By designing and applying recursive methods,
which allow one to compute all necessary coefficients spending not
more than just a few operations for each of them, we achieve fast Oðp4Þ

and Oðp3Þ translation methods, where p is the truncation number or
bandwidth of functions used to approximate the solutions of the
Helmholtz equation.

Chapter 4: The results of Chapter 3 can already be used for the
solution of a number of problems of practical interest such as
appearing in room acoustics and in scattering from multiple bodies.
We identify the techniques used in this chapter as the “multipole
reexpansion technique” or “multipole methods”. In many cases this
technique itself can substantially speed up solution of the problem
compared to other methods (e.g. direct summation of sources or
solution with boundary element methods). The purpose here is to
show some problems of interest and provide the reader with some
formulae that can be used for the solution of such complex problems
as multiple scattering problem from arbitrarily shaped objects. This
chapter comes before the chapters dedicated to fast multipole
methods, and the methods presented can be speeded up further
using the methods in subsequent chapters.

Chapter 5: In this chapter we introduce Fast Multipole Methods (FMM)
in a general framework, which can be used for the solution of
different multidimensional equations and problems, and where the
solution of the Helmholtz equation in three dimensions is just a
particular case. We start with some basic ideas related to factorization
of solutions. We describe how rapid summation of functions can be
performed. Next, we proceed to modifications of this basic idea, such
as the “Single Level FMM”, and the “Multilevel FMM”, which is the
FMM in its original form. While there exist a substantial number of
papers in this area that may be familiar to the reader, we found that
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the presentation in these often obscure some important issues, which
are important for the implementation of the method and for its
understanding. This method is universal in a sense that it can be
formalized and applied to problems arising not only in mathematical
physics. One of the issues one faces is the data structures to be used
and efficient implementation of algorithms operating with a large
amount of data used in the FMM. This is one of the “hidden” secrets
of the FMM that usually each developer must learn. We provide here
several techniques based on spatial ordering and bit interleaving that
enable fast “children” and “neighbor” search procedures in data
organized in such structures as octrees. These techniques are known in
areas which are not related to mathematical physics, and we tried to
provide a detailed insight for the reader who may not be familiar with
them.

Chapter 6: While one can consider the FMM for the Helmholtz
equation as a particular case of a generalized FMM procedure, it
has some very important peculiarities. In the form originally
introduced by Rokhlin and Greengard for the solution of the Laplace
equation, the FMM is practical only for the so-called “low-frequency”
problems, where the size of the computational domain, D0, and the
wave number, k, are such that kD0 , A, where A is some constant.
While this class of problems is important, it prevents application of
the FMM for “high-frequency” problems, which are equally important.
The method to efficiently to solve these problems is to vary the
truncation number with the level of hierarchical space subdivision.
To illustrate this we introduce a model of the FMM for the Helmholtz
equation, and derive several important theoretical complexity results.
One of the basic parameters of this model is a parameter we call the
“translation exponent” that characterizes the complexity of translations
for some given truncation number. We also introduce some concepts
such as the “critical translation exponent”, which separates the
complexity of the method for higher frequencies from one type to
the other. The critical value of the exponent depends on the
dimensionality and “effective” dimensionality of the problem, which
is determined by the non-uniformity of the spatial distributions of
the sources and receivers. We also provide some optimization results
and suggest a fully adaptive FMM procedure based on tree-structures,
opposed to the pyramid data structures used in the regular
FMM. This method was found to be useful for the solution of some
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“low-frequency” problems, while additional research is needed for
other problems.

Chapter 7: This chapter is dedicated to the theory which underlies fast
translation methods, and serves as a guide for further developments in
this field. While providing substantial background theory, we focus here
on two translation methods of complexity Oðp3Þ which are based on
rotation–coaxial decomposition of the translation operator and on sparse
matrix decompositions of the operators. While the first method is known
in the literature and can be applied to the decomposition of any
translation for any space-invariant equation (which follows from the
group theory), the second method is presented here, to the best of our
knowledge, for the first time. This method can be derived from the
commutativity properties of the sparse matrices representing differential
operators and dense matrices representing translation operators. We
implemented and tested both the methods and found them to be reliable
and fast. While the first method seems to have smaller asymptotic
constants and, so is faster, we believe that new research opportunities for
fast translation methods are uncovered by the second method.

Chapter 8: In this chapter we consider both new and existing translation
methods that bring the complexity of translations to Oðp2 loga pÞ with
some a ranging from 0 to 2. They are based on the use of properties of
structured matrices, such as Toeplitz or Cauchy matrices or on the
diagonal forms of the translation and rotation operators. While some
techniques developed over the last decade have been implemented and
studied, this is still an active area for research. We have attempted to
summarize and advance the knowledge in this area, though we are sure
new fast techniques, filters, or transforms, will continue to be developed.
We provide a link between the methods operating in the functional space
of expansion coefficients and the methods operating in the space of
samples of surface functions, where the transform from one space to the
other can be done theoretically with Oðp2 loga pÞ complexity. We also
present here some asymptotic results that can be used for the
development of fast translation methods at low and high frequencies.

Chapter 9: One of the most important issues in any numerical method is
connected with the sources of errors in the method, and bounds for these
errors. This particularly relates to the FMM, where the error control is
performed based on theory. There are several studies in the literature
related to this issue for the Helmholtz equation, which are mostly
concerned with proper selection of the truncation number for expansion
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of monopoles. Here we present some results from our study of the error
bounds, which we extend to the case of arbitrary multipoles, and in
addition establish the error bounds for the truncation of translation
operators represented by infinite matrices. The theoretical formulae
derived were tested numerically on some example problems for the
expansion of single monopoles and while running the FMM for many
sources. The latter results bring interesting findings, which should be
theoretically explained by further studies. This includes, e.g. the error
decay exponent at low frequencies, that shows that evaluations based on
the “worst” case analysis substantially overestimate actual errors.

Chapter 10: In the final chapter we demonstrate the application of the
FMM to the solution of the multiple scattering problem. We discuss this in
details as well as some issues concerned with the iterative techniques
combined with the FMM. Also we show how the FMM can be applied to
imaging of the three-dimensional fields that are described by the
Helmholtz equation. Finally, we present some results of numerical
study of these problems including convergence of the iterative methods
and overall method performance.

The book is written in an almost “self-contained” manner so that a
reader with appropriate background in mathematics and computational
methods, who, for the first time faces the problem of fast solution of the
Helmholtz equation in three dimensions, can learn everything from
scratch and can implement a working FMM algorithm. Chapter 8 is an
exception, since there we refer to algorithms such as Fast Legendre
Transform or Fast Spherical Filters, whose detailed presentation is not
given, since it would require a special book chapter. As we mentioned,
these algorithms are under active research, and so, if a beginning reader
reaches this stage, we hope that he or she will be able to read and
understand the appropriate papers from the literature that in any case
may be substantially updated by that time.

An advanced reader can go directly to chapters or sections of interest
and use the other chapters as reference for necessary formulae,
definitions and explanations. We need to emphasize that while we
have tried to use notations and definitions consistent with those used in
the field, we found that different authors often define similar functions
differently. As in any new work, at times we have had to introduce some
of our own notations for functions and symbols, which are still not in
common use. In any case we recommend that the reader be careful,
especially if the formulae are intended to be used for numerical work,
and follow the derivations and definitions presented carefully to avoid
inconsistency with definitions in other literature.
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