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Fast Multiresolution Surface Meshing*

M. H. Gross, R. Gatti, O. Staadt

Computer Science Department
ETH-Ziirich, CH-8092 Ziirich, Switzerland

Abstract

We present a new method for adaptive surface meshing and
triangulation which controls the local level-of-detail of the surface
approximation by local spectral estimates. These estimates are de-
termined by a wavelet representation of the surface data. The basic
idea is to decompose the initial data set by means of an orthogonal
or semi—orthogonal tensor product wavelet transform (WT) and to
analyze the resulting coefficients. In surface regions, where the par-
tial energy of the resulting coefficients is low, the polygonal approx-
imation of the surface can be performed with larger triangles with-
out loosing too much fine grain details. However, since the
localization of the WT is bound by the Heisenberg principle the mes-
hing method has to be controlled by the detail signals rather than
directly by the coefficients. The dyadic scaling of the WT stimulated
usto build an hierarchical meshing algorithm which transforms the
initially regular data grid into a quadtree representation by rejec-
tion of unimportant meshvertices. The optimum triangulation of the
resulting quadtree cells is carried out by selection from a look—up
table. The tree grows recursively as controlled by detail signals
which are computed from a modified inverse WT.

In order to control the local level-of-detail, we introduce a
new class of wavelet spacefilters acting as "magnifying glasses” on
the data.

1. Introduction

Polygonal surface approximations are an essential preproces-
sing step in scientific visualization, since most modern graphics
hardware supports the display of shaded and textured triangles.
Nevertheless, inordertotreatcomplex datasets efficiently, methods
have to be found to reduce the number of triangles representing the
data. This problem is not only striking in the field of digital terrain
modeling and flight simulation, but also in many other applications,
such as finite element, radiosity [1] or parametric surface meshing
[6]. Hence, adaptive triangle reduction techniques were established
in the past. Most of them try to find mathematical criteria for the im-
portance of a particular mesh vertex, remove itif applicable and per-
form alocal retriangulation of the mesh. [18] for instance analyzes
single vertices in the mesh and defines a planarity criterion to decide
on the removal of the vertex. In order to avoid cracks in the surface,
alocal Delaunay triangulation has tobe performed. Quadtree—based
methods [17] were proposed mostly for radiosity meshing, where
the mesh is controlled by the illumination gradient. Other imple-
mentations are used for representing rectangular B—spline patches

[6].

Although most of the existing methods work well within the
above limitations and can be found in a broad range of applications,
the basic issues arising from these approaches are as follows:

I.  The criteria employed to thin the triangle mesh are usually
based on simple local geometric surface features, such as
planarity or Gaussian curvature. It is difficult to quantify
global error bounds of the overall approximation.

II.  The reduction of the triangle mesh is computationally ex-
pensive and once local retriangulations are performed, ex-
tensive work on data structures and list management is re-
quired.

III.  Thereis no elegant way to focus the level-of—detail locally
onto interesting data features — a property of increasing im-
portance in complex data sets.

On the other hand, the wavelet transform, as presented in [5],
[13] or[3] has been discovered for computer graphics: [11] and [15]

proposed volume rendering techniques, whereas [12] published a
volume morphing method. Even approximate solutions of the ra-
diosity equation can be achieved using WTs [8], as well as visualiza-
tion of multidimensional features, such as in [9]. All of these ap-
proaches employ the WT to expand the data and to control the
parameters of the approximation within the mathematical bounds of
the L?—energy norm.

The goal of the following paperis to point out an alternative ap-
proach to the adaptive triangulation problem: the usage of the wave-
let transform as an overall mathematical framework which controls
the data approximation.

The concept of our method is illustrated in Fig. 1. The initially
regular surface data grid has to be transformed into a quadtree struc-
ture and each quadtree cell has to be triangulated using a look—up
table. In order to decide, whether a particular mesh vertex can be re-
moved, we firstapply a WT onto the data and then iteratively recon-
struct the detail signals. The amplitude of the detail signal is taken
as a measure for the local frequency characteristics and decides on
the removal of points. The dyadic scale of the standard WT recon-
structs the detail signals from the different frequency channels in a
single step mode. After the first step each second data vertex of the
gridisanalyzed. Then, as theiteration proceeds the nextdetail signal
isreconstructed and each fourth vertex is analyzed and so forth. This
scheme enforces aloop consisting of asingle—stepinverse WT tore-
coveraparticular detail signal and an analysis step to label unimpor-
tant coefficients. Applying wavelet space filtering allows an elegant
control of the local level-of—detail of the triangulation and acts as
a local “magnifier”.

Although the scope of our paper is to present a method for 2D
surface meshing, it can also be extended to 3D to handle isosurfaces
orvolumes with tedrahedrizations [2]. Moreover, some of the differ-
entideasencompassed by this method, such as the detail signal crite-
rion and the wavelet space filters can also be used to govern existing
meshing methods.

The organization of the paper is as follows: First of all, we de-
scribe the mathematical framework of the 2D wavelet transform for
surface approximation and particular emphasis is given to the re-
quired extensions, such as modifications of the QM-Filter pyra-
mids to figure out the inverse WT. Furthermore, mathematical for-
mulations of filters in wavelet space are explained and their
importance for level-of—detail control is stressed. The next section
sheds light on the quadtree—based mesh representation we propose
and shows how to derive local optimal cell triangulations from a
look—up table. The algorithmic complexity of the method as well as
an error analysis is elaborated in chapter 4. Finally, some examples
from adigital terrain model of the Swiss Alps illustrate the superior-
ity of the proposed method.

2. Surface Approximation using Wavelets
2.1. The 2D Wavelet Transform

The 2D version of the wavelet—transform (WT) expands any
finite energy function f{x,y) € L*([t2) using a set of similar basis
functions ), 5 (x,y). Its generic continuous form description is pro-
vided as the following inner product:

WTﬁw(a,\'s ay’ bx’ by) = <f51/}a,b> = j I wa,b(xay) f(x,Y)dXdy (1)

with ay,a,,b,,b, € R
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Fig. 1: Illustration of the basic concepts of the method: es-
timation of the surface parameters using thelocal de-
tail signal of the WT, point removal and quadtree
based meshing of the remaining surface points.

The basis functions are derived from each other by scaling and
shifting one prototype functiony(x,y) controlled by the parameters
ay, ay and b, b respectively [5].

X — b y - by
wa,h(x’y) ‘/|a a\ ’P( > ay )

@

W, sy) = O - k), O : Kronecker—delta—function 3)

Most discrete formulations of the 2D-WT comprise a tensor
product extension along with a dyadic scaling of the bases with a,
= ay =2 and a unit shift b, = by = 1, by which the respective bases
are derived:

¢mpq(~x9 y) = 2—m¢(2—mx - p)¢(2—my - q)
m]7q(x Y) =27 w(z—mx - p)¢(2—my - q)
wmpq(x Y) - 2—m¢(2—mx - PW(z_my - q)

Yiing@6y) 1= 27pQ27"x = pypR7"y - q)
m:1,....,M iteration step

Consequently, any finite energy function f{x,y) € L%R2) can
be approximated by the bases elucidated above.

“

fy) = (6))

ZZ( N By + Z( YL, + YR+ Sy ))

m=1

Note, that the previous equation provides a multiresolution
hierarchy enabling the control of the bounds of any approximation.
For convenience, we will denote the coefficients simply with ;.

2.2. Biorthogonal Wavelets

The final design of the wavelet bases is usually figured out by
further constraining the function’s shape and mathematical proper-
ties. In most computer graphics applications [10] and [7] we require
strictlocal support along with an appropriately smooth shape, sym-
metry and fast decay in frequency domain. Unfortunately, these
competing properties cannot be satisfied with orthonormal wave-
lets. Chui [3] and Unser [19], however, independently developed a
class of B—spline wavelets which meet the upper requirements. The
bases are not orthogonal to each other, but it is possible to set up a
so—called dual frame to perfectly reconstruct the signal from the
transform.

Specifically, besides of scaling function ¢ and wavelet i the

entire transform is defined by a dual scaling function qg and a dual

wavelet 1.
The biorthogonal B—spline bases of order j can be defined re-
cursively and it’s scaling function follows
1

D) = @1 * PP = j ¢ (x =D dt j=2. ©)
0

Thatis, the bases are derived from each other by self—convolu-
tion of an initial basis of order 1, and:

J :
P = Gy > (= (fc)u — k7!
k=0

x4 1= max(0,x)
= (x+)jils j = 2

)

Note, that the support of a B—spline basis is always bound by
[0, j]. Furthermore, the scaling functions are symmetric with respect
to the center of support.

The symmetry of the corresponding wavelet is restricted to an
even order. Fig. 2 shows the functional course of B—spline wavelets
of increasing order. The first order type is orthogonal and known as
the Haar wavelet.
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Fig. 2: Cardinal B—spline wavelets of increasing order:
a)order 1. b) order 2.
c)order 3. d) order 4.

The implementation of biorthogonal wavelet transforms em-
ploys the well known QM-Filter pyramids [19].

2.3. How to Recover Detail Signals

One problem arising with the fast QMF implementations of the
wavelet transform is, that we need access to the difference signal in
eachiteration stepm ofthereconstruction. Thisis necessary because
the detail signal at a particular mesh vertex finally decides whether
or not it can be removed. For this purpose, the reconstruction pyra-
mid has to be modified, as indicated in Fig. 3. The procedure recov-
ers the full size detail signals 4,,f represented by all wavelets at

)
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m=1,..,M and by the scaling functions. This can be accomplished by
reversing the trace of each detail signal from the original down the
decomposition pyramid. In other words, any detail signal 4 ,,fat it-
eration depth m can be obtained from the respective wavelet coeffi-
cients by subsequent filtering and upsampling. The final output re-
sults from superimposing all detail signals:

M
f@y) = > Auf(xy) ®)
m=1

The required extensions of the QM—filterbank are straightfor-
ward.
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Fig. 3: Modified 1D-version of a QM-Filterbank to re-
cover the detail signals

Note, that this procedure requires additional computation, but
although the wavelet coefficients are arranged on a dyadic grid, the
Heisenberg principle prevents taking them as a direct criterion for
vertex removal. We will address this problem again in chapter 3.

2.4. Significance of Wavelet Coefficients

Once the data set is transformed into wavelet space, itis neces-
sary to find appropriate criteria to control the accuracy of the surface
approximation provided by the wavelet bases. Furthermore, anorm
has to be found as a framework for the definition of error bounds.
This can be accomplished using the signal energy E,; which is de-

fined by the L?—norm. Hence, we filter the coefficients according to:

—2
0, <t )
C; .=
I = =N

Increasing 7 will result in increasing the error bounds of the
approximation and decreasing t will also decrease the approxima-
tion error. A canonic quantification of the error is given by the ratio
of the remaining energy E, and Eg;.

2.5. Level-of—detail Filtering in Wavelet Space

The introduction of an energy threshold provides a tool for
globally influencing the approximation of the wavelets. However,
one of the major strengths of the WT has not been harvested so far:
the localization properties. The local support of the basis functions
allows us to localize them both in spatial and in frequency domain
and rejecting a particular basis will only affect its area of support.
This important property enables an elegant control of the local lev-
el-of—detail of the approximation. For this purpose, the coefficients
have to be weighted according to the definition of the ROI which
corresponds to a filter operation in wavelet space. It can be defined
in analogy with the well known filters in spatial or frequency do-
main. Sincethefilteraffects thelocal frequency characteristics of the
signal, we propose to call it wavelet space filter.

Let g(x,y) be a Gaussian weighting function, centered at (xp,
o), scaled by (0y, gy) and rotated by @ which quantifies the level—
of—detail around some location in space (xp, yp) and whose elliptical
shape is depicted in Fig. 4a.
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Fig. 4: Filtering in wavelet—space:
a) Rotated, translated and scaled 2D-Gaussian
weighting function in spatial domain.
b) Transform of the filter into wavelet space results in
multiple Gaussians located in each channel.

In order to compute its transformation into wavelet space, we
have to note that any point (xg, yg) in spatial domain can only be lo-
cated within the Heisenberg bound in wavelet domain. Further-
more, the spatial localization decreases with increasing iteration
depth m.

With the dyadic scale of our 2D-WT, however, the Gaussian
splits into all frequency channels and their centers are carried outin
wavelet space according to:

m._ Xo m._ o
xo.—z—m, yo.—ﬁ (10)
where x™ and y™ denote the local coordinates of the frequency
channels of depthm, as presented in Fig. 4. Their variances scale ac-
cording to:

i O gnn O (1)

om? O)' -z ﬁ
and the rotation angle @ is invariant to the transform.

The set of Gaussian weighting functions {g”(x™, y™)}in wave-
let space can be elegantly described by using homogeneous coordi-
nates:
gm(m, Yy = e—(Rm »pmJT(Rm»pmJ+1 (12)

The matrix R" stands for the affine transform of the Gaussian:
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and p™ = (x™y™ 1)T denotes a position in homogeneous coor-
dinates.

To summarize this section: the control of the local level-of—de-
tail of the wavelet approximation can be accomplished by using one
single Gaussian weighting function which surrounds the region of
interest in the initial data set. This Gaussian can be interpreted as a
filter which is transformed into multiple Gaussians, one in each fre-
quency channel in wavelet space. Premultiplying the coefficients
with these Gaussian maps forces any subsequent thresholding to
pass only coefficients located within the selected ROI. All others
will be removed and hence the reconstructed signal will be most ac-
curate within the ROI along with a Gaussian smoothing of the
boundaries. Figure 5 stresses the effect of level-of—detail filtering.
The digital terrain model is decomposed with Haar wavelets and fil-
tered with Gaussians of different locations and parameters. The
model is perfectly reconstructed within the focus of the Gaussian,
whereas only the scaling functions represent the data outside. In the
boundary region, less and less high frequency information is pro-
vided and the data becomes more and more “’boxlike”. Obviously,
the proposed wavelet space filter acts as a "magnifying glass” onto
the data.

We recommend applying the Gaussian filter and the thresholds
only to the wavelets and keeping all coefficients of the scaling func-
tion, because they carry the DC fraction of the signal.

Fig. 5: Example for filtering in wavelet space: Decomposi-
tion of Mount Matterhorn with Haar wavelets and
filtering with different Gaussian space—frequency fil-
ters.

a) 0x=25, 0y=25, ©@=0. b) 05=45.5, 0y=14.75, ©=0.
c)ox=12.5,0y=50, ©=0.217.

3. Quadtree Meshing
3.1. Point Removal in Regular Triangle Meshes

So far, we elaborated some mathematical criteria for approxi-
mating a surface data set, sampled on aregular grid, using amultire-
solution hierarchy. In order to build an adaptive surface triangula-
tion, however, it is necessary to remove unimportant mesh vertices
andto find atriangulation of the remaining ones. The basic criterion,
by which a mesh vertex is labeled as unimportant is given by the

mathematical framework of the wavelettransform. Keepinginmind
that any triangulation of the surface provides a planar approxima-
tion, we only have to bound the error between the original surface
function f{x,y) and the bilinear interpolant provided by a triangle.
Supposing furthermore that the initial data is expanded by wavelet
bases, the detail signal in iteration m helps us to decide whether or
not each 2+ 1th mesh vertex is necessary for the triangle approxi-
mation. First, we visit each second vertex and analyze the value of
the detail signal of iterationm=1. If, let’s say, the detail signal A Ifin
some neighborhood of vertex n is sufficiently low, then the vertex
is not important and the approximation can be accomplished by a
linear interpolation between vertex n—1 and n+1. This scheme can
now be applied recursively by subsequent computation of the detail
signalsA4™f,m=1,..,M and by visiting all dyadic vertices at positions
n=2"k+1. Once the detail signal is sufficiently small and the adja-
cent vertices in step m—1 are already removed, we are allowed to la-
bel the current vertex as well.

As a consequence, our procedure results in recursively build-

regular mesh quadtree at m=1 quadtree at m=2

) l 1 PO
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@ vertices to be analyzed at m=1

O vertices to be analyzed at m=2
O vertices to be analyzed at m=3

Fig. 6: Recursive growth of a quadtree from the regular mesh by
analyzing the detail signals of the WT at each dyadic ver-
tex.

ing aquadtree representation of the initial mesh by removing dyadic
vertices. Fig. 6 again illustrates the thinning method which finally
figures out the symbolic quadtree representation of the mesh ver-
tices depicted as an example in Fig. 7. The nodes of the quadtree
contain either pointers to some child—nodes, or in case of leaves,
point to the entries of a vertex list.
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[1[ 2] 3] 4] 5] 11121314

Fig. 7: Symbolic representation of the mesh using a quad-
tree data structure.

Note again here that the growth of our quadtree is entirely con-
trolled by a single energy threshold T embedded in the function



space of the wavelets. The final maximum depth of the tree depends
on the upper decomposition bound M of the WT.

In order to finally decide whether or not a mesh vertex can be
removed, we have to consider the following criteria which help to
preserve the topology of the tree. Only in cases, where all criteriaare
TRUE, can the vertex be removed:

J Wavelet—criterion: a vertex at iteration m can be removed,
if the sum of the squares of its difference signal and those
within a 4—neighborhood at resolution m is less than an up-
per bound ¢. (Fig. 8a)

. Resolution—criterion: a vertex at iteration m can be re-
moved, if the four surrounding vertices at resolution m—1
were previously removed (Fig. 8b).

. m to m—2—criterion: a vertex can be removed, if the result-
ing cell is not adjacent to any cell with higher resolution
than m—2. Thus, we restrict the growth to cell transitions
from m to m—2 which simplifies the triangulation algorithm

(Fig. 8c).
B 2000
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Fig. 8: Illustration of the different criteria to decide on the
vertex removal.

Another aspect of the method is illustrated in Fig. 9a, where
vertex P is analyzed. Suppose P survives all of the above criteria. If
we remove P, however and if Py and Py are already removed, i.e.
if two adjacent cells have the same resolution, then we must reject
the vertices A and B on the cell boundaries, too. Hence, when tra-
versing the vertex array from upper left to lower right, one has to
keep track of upper and left vertices of the same iteration step m as
well.

a) cell boundary b)

array
Py L uc  UA|
LC| ccC RC 4y
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distance

Fig. 9: a) Criteria to remove vertices on the edges of adjacent
cells of the same resolution.
b) Resulting partitioning of the initial array.

This additional criterion ends up with a partitioning of the ini-
tial array into different regions (see Fig. 9b). Within these different
regions, we have to check only left, upper or both adjacent vertices.

3.2. Look—up Tables for Local Triangulations

Once the tree is built from the above procedure, the quadtree
cells have to be triangulated. A generic problem arising from mes-

hing hierarchies of rectangular surface patches is the occurrence of
cracks [1]. A crack occurs if we do not take care of adjacency of
quadtree cells of different depth and, hence different resolution. The
surface may break up, holes may appear and any consistency re-
quired for normal interpolation gets lost. Fig.10 shows a crack and
also shows how to modify the triangulation to get rid of it.

adjacent cells consistent triangulation
(my  (m-1) (m)  (m-=1)
| — crack

>

Fig. 10: The occurrence of cracks at the boundaries of adja-
cent quadtree cells of different resolution.

The scheme we introduce here for fastand consistent cell trian-
gulation is based on the following observation: consider Fig. 11,
where two adjacent cells are depicted along with topological ar-
rangements that may occur for transitions from resolution m to m—1
andm-2. Thereare only 5 cases atthe respective cellboundary. Let’s
presume that we restrict the growth of the quadtree so that only tran-
sitions up to m—2 are possible (resolution criterion). Consequently,
the set of possible arrangements of vertices at the four cell bound-
aries can now be derived from Fig. 11. Moreover, some look—up ta-
bles may be built containing the triangulations as explained below.

m m-1 m m-=2
Fig. 11: Topology of mesh nodes of adjacent cells for differ-
ent resolutions m, m—1 and m-2.

For cell transitions from m to m—1 a look—up table with 16 en-
triesis builtas presented in Fig. 12. The central idea of the algorithm
is to first solve the triangulation within each cell for m to m—1. This
is accomplished by analyzing the mesh vertices along each cell
edge.

The fast computation of the look up table entry can be accom-
plished by a binary outcode, generated from bitwise addition of the
flags of the respective edge vertices, as indicated in Fig. 12.

Once the corresponding look—up table entry is identified, we
then consider mesh vertices which account for the m—2 transitions.
This may cause some triangles to be split up into two pieces, as
shown in Fig. 13. Consequently, the algorithm first computes the
case for mto m—1 and then it decides on the corresponding subcase,
by simply analyzing the flags of all intermediate vertices responsi-
ble for transitions from m to m—2. Although we get 625 possible
cases, the total number of triangles required does not exceed 96.
They are stored in a look—up table.

All subcases are hardcoded and contain references to these
look—up table entries. Note, that although there are 625 cases only
one computation of the outcode and at most 8 additional tests are
necessary to compute the triangulation. It is clear that we end up
with a very efficient algorithm by doing the meshing without any
geometric computation but by just checking vertices along the cell
edges.

A corresponding pseudocode for the recursive quadtree tra-
versal and meshing is given with:
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2=0010 3=0011
4=0100 5=0101 6=0110 7=?111
<] &
8=1000 9=1001 10=1010 11=1011
/]
12=1100 13=1101 14=1110 15=1111

® vertex O removed vertex

Fig. 12: Look—up table representing the optimal triangulation of
all possible cases from m to m—1 and corresponding
outcode.

case 14 mtom-—1 mtom-2

Fig. 13: Cell triangulation for cases from m to m-2 as
derived from a look—up table entry of m to m—1.

// The initial array has a size of (N+1) (N+1).
Let N be a power of 2, N = 21,

Each cell is addressed by its upper left corner
vertex. //

x =y = 0; // root cell

i =1I;

traverse_quadtree (x,y,1);

procedure traverse_gquadtree(x,y,1)

{

mh = 2i-1 // compute center vertex of
son cells

xmh = x+mh;

ymh = y+mh;

if (i>0) and flag(xmh, ymh)

{
i =i-1;
//analyze the son cells
traverse_quadtree(x,y,1);
traverse_quadtree (xmh,y,1i);
traverse_quadtree (x,ymh, 1) ;
traverse_quadtree (xmh, ymh,1i) ;

else
triangulate (x,vy,1i);

4. Errors and Complexity

4.1. Error Analysis of Planar Approximations

One important aspect, when dealing with surface approxima-
tions is to quantify the error of the method. In our approach, error

quantification is figured out by the following mean—square mea-
sure. Let f{x,y) be the original surface and g(x,y) be an approxima-

tion. We define the mean—square error A 2, as:

A% = (A+dy)f Jlf(x,y) — g(x,y)| 2 dxdy a4
AxAy

Note, that the error is normalized to the projected surface area
Ax Ay. In the discrete case, where K samples f;(x;,y;) of the surface
are provided at locations (x;,y;), i=1,...K the mean—square error is
approximated by the following relation:

K
A7~ L3 Ay (15)
i=1

where, A(x,y) = f(x,y) — &, ).

Finally, in our triangle meshes the error integral of eqn. 14 is
evaluated using Monte Carlo methods. For this purpose, we com-
pute asetof K randomized locations within each of our triangles and
calculate the surface value g;(x;,y; ) by bilinear interpolation. The re-
spective reference value for the surface f;(x;,y;) is obtained by bili-
near interpolation of the four mesh vertices in the initial data grid as
depicted in Fig. 14. The constant number of samples taken from

Py initial mesh

P4
O OS ® O
(o} Qo Q
O
o triangular
surface patch
Po o :samples

Fig. 14: Computation of the mean square error using a Monte
Carlo method.

each triangle forces the overall number of samples for the evaluation
to be distributed according to the single triangle surface areas. Due
to the adaptive triangulation, we end up with more samples in sur-
faceregions ofhigh curvature and accomplish areasonable distribu-
tion. Thus, the local mean square errors of each triangle have to be
weighted with their corresponding surface area A%D projected into
2D. The final expression of the overall mean square error of the sur-
face yields

K
ST £ D ey - sy) A

all triangles i=1 (1 6)

4 = A, 4,

4.2. Some remarks on Algorithmic Complexity

One of the very advantages of our method is the low algorith-
mic complexity for both computation of the respective transforms
and for the quadtree meshing. Whereas 2D-FFT based transforms
usually require O(N2log>(N)) computations, the 2D-WT benefits
from the dyadic scaling and requires only O(N?) computations. Al-
though we have to modify the initial QMF—pyramid to compute the
detail signal, the complexit¥ still remains O(N2). The final expres-
sion for the complexity C"7 of a D-dimensional WT, however, de-
pends both on the support S of the wavelet and on the iteration depth
M.
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Thisis another important reason for the usage of strict compact
support wavelets such as the biorthogonal ones we recommend
here.

Similar investigations can be carried out for the complexity of
the array traversal for building up the quadtree: If the traversal is
done up to the maximum depth of the WT, M, we have to perform
atworst4 energy tests for the waveletcriterion, 4 resolution tests and
16 tests for the m to m—2 criterion. Due to the dyadic structure of the
vertices to be analyzed, we end up with

M
CA =24 Z 22[72)71
m=1

o o (18)
= 22'(8 - 4—M) = N8 — 3 = OV
which is still linear with respect to the overall number of mesh

vertices N2=221

5. Applications
5.1. Mesh Reduction and Error Analysis

For the following investigation, a digital terrain model of the
Swiss Alps, Matterhorn/Zermatt DHM 1:25000 was selected. The
initial resolution of the mesh is 256 x 256. The altitudes range from
1855.1 m (La Monta) to 4431.9 m (Matterhorn). We used cubic B—
spline wavelets to decompose the data and the corresponding dual
frames to approximate the reconstructions. The iteration depth was
M=4, and K=3 samples were taken at each triangle to compute the
mean square error. Fig. 15 illustrates, how theratio of triangle reduc-
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Fig. 15: Number of triangles, wavelet coefficients and mean—
square error of the digital terrain model as functions
of the threshold 7.

tion behaves as a function of the threshold 7. Furthermore, the ratio
of remaining wavelet coefficients is recorded which can be inter-
preted as some kind of coding gain. Finally, the root of the mean—
square error is plotted as well in meters. Note, that due to the loga-
rithmic scale of the threshold, the functional behavior of both
percentage of coefficients and triangles is approximately linear. The
relation is further stressed in Fig. 16, where the number of triangles
and the mean square error are recorded as a function of the percent-
age of coefficients emplyed for the approximation.

Some results of intermediate steps of the triangle reduction are
depictedinFig. 17a—c. The criteria which we defined torejectunim-
portant mesh vertices thin in particular in those regions of low sur-
face curvature. This is due to the wavelet criterion which provides
an estimate of the local spectral energy of the data in different fre-
quency channels. Thus, local high frequency variations in our data
force the meshing to be more dense.
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Fig. 16: Number of triangle and mean—suqare error as functions
of the coefficients used for the approximation.

The corresponding Gouraud—shaded models are also pres-
ented in Fig. 17d—f where the altitude is encoded using pseudoco-
loring.

5.2. Level-of-Detail Control

The effect of wavelet space filtering using the Gaussian s illus-
trated intheimages of Fig. 17. Changing the parameters of the Gaus-
sian ellipse allows us to concentrate on the triangulation of local re-
gions of interest. Hence, for real time animations, such as flight
simulation, our method enables us to move the Gaussian for each
frame according to the pilots field of vision or line of sight and to
adapt the approximation to these parameters. Finally, Fig. 18d pres-
ents the Gouraud—shaded image. Obviously, the Gaussian enables
the user to interact with a local "magnifying glass”

6. Conclusions

We presented a method for fast and efficient surface meshing
which benefits from two basicideas: First, any control of the surface
mesh is computed by using an initial wavelet decomposition of the
data samples. The mathematical framework of the WT allows us to
bound the errors of the approximation and efficient criteria on
whether or not single mesh vertices can be removed are provided by
analyzing WT outputs. Furthermore, wavelet space filters allow a
control of the quality of the surface approximation within local re-
gionsofinterestand actaslocal "magnifying glasses”. Secondly, the
dyadic structure of the 2D—WT motivated us to build a quadmesh
from the initial regular grid. Any triangulation of each quadtree cell
is obtained by using a look—up table and hence no additional com-
putation is required for the triangulation, as with standard Delau-
nay-based methods.

Due to the low complexity of this algorithm, we can achieve re-
triangulations of the surface at nearly interactive rates on SGI
workstations. Thus, we guess that our method is particularly well
suited forreal-time applications, as virtual reality or flight and driv-
ing simulation. Especially, when considering low altitude flights the
Gaussian filter could help to control the level-of—detail of the pilot’s
field of vision. Moreover, any object instance of a geometric data
base related to the terrain might also be controlled by the wavelet
transform. For this purpose, the actual depth of the quadtree at the
object’s location on the terrain is used to govern the data base and
to select the object instance to be rendered.

Although the method requires an inverse WT with each new
triangulation, we have proven the algorithmic complexity is still
low. It is clear that we can map the WT onto special purpose hard-
ware, such as signal processors. Currently, the method is imple-
mented in terms of different AVS modules.

Future research has to be conducted towards extensions of the
method for 3D isosurfaces in volume data using tedrahedrizations
of an octree built from the WT. Additional tuning of the mesh could
also be carried out by using the directional selectivity of the WT.
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Fig. 17: Adaptive meshing of the digital terrain model.

(z: threshold, C: remaining coefficients, T: no.
of triangles, A: mean—square error)._

a)+d) 7=0.0, C=100%, T=131072, 4=2.81.
b)+e) 7=0.5, C=6,88%, T=45106, 4=7.02.
c)+f) 1=5.0, C=2.18%, T=19444, A=18.02.
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Fig. 18: Level-of—detail meshing using wavelet space filtering:
(C: remaining coefficients, T: no. of triangles)

a) 0x=20, 0y=20, ©=0, C=1.31%, T=9943.

b) 0x=40, 0y=10, ©=0, C=1.22%, T=9236.

¢) 0x=40, 0y=10, ©=1.5, C=1.11%, T=9499.

d) 6x=20, 0y=20, ©=0, C=1.31%, T=9943.

7. Acknowledgement

The authors like to thank the Bundesamt fiir Landestopogra-

phie, Bern, Switzerland for providing the digital terrain model.

(1]

(2]

(3]
(4]

(5]

(6]

(7]
(8]

(9]

(10]
(11]

(12]

[13]

[14]

(15]

[16]

(17]

(18]

[19]

8. References

D.R. Baum, S. Mann and J. M. Winget, "Making Radiosity
Usable: Automatic Preprocessing and Meshing Techniques
for the Generation of Accurate Radiosity Solutions”. ACM
Computer Graphics, Proc. SIGGRAPH °91, pp. 51-60,
1991.

J. Bloomenthal, ” An Implicit Surface Polygonizer”, Graph-
ics Gems IV: A. Glassner, ed. Boston: Academic Press, pp.
325-349, 1994.

C. Chui, An Introduction to Wavelets. Boston: Academic
Press, 1992.

A. Cohen, "Wavelets and their Applications”, Wavelets and
Digital Signal Processing. Hones and Bartlett Publishers, pp.
105-121, 1992.

I. Daubechies, “The Wavelet Transform, Time-Frequency
localization and signal analysis,” IEEE Trans. on Inform.
Theory, vol. 36, pp. 961 — 1005, 1990.

G. Farin, Curves and Surfaces for Computer Aided Geomet-
ric Design - A Practical Guide. 2nd Edition, Boston, New
York: Academic Press, 1990.

Wavelets and their Applications in Computer Graphics, A.
Fournier, ed. Course Notes SIGGRAPH 94, 1994.

S. J. Gortler, P. Schroeder, M. E. Cohen and P. Hanrahan,
”Wavelet Radiosity”, ACM Computer Graphics, Proc. SIG-
GRAPH ’93, pp. 221-230, 1993.

M. Gross and R. Koch, ”Visualization of Multidimensional
Shape and Texture Features in Laser Range Data Using Com-
plex—Valued Gabor Wavelets”, IEEE Transactions on Visua-
lization and Computer Graphics. vol. 1, No. 1, pp.44-49,
1995.

M. Gross, Visual Computing. Berlin: Springer Publishing
Company, 1994.

M. Gross, R. Koch, L. Lippert and A. Dreger, A New Me-
thod to Approximate the Volume Rendering Equation using
Wavelets and Piecewise Polynomials,” Computers & Graph-
ics, vol. 19, no. 1, pp. 47-62, 1995.

T. He, S. Wang and A. Kaufman, "Wavelet-based volume
morphing,” Proc. IEEE Visualization *94, pp. 85-92, 1994.
S. Mallat, ” A Theory for Multiresolution Signal Decomposi-
tion: The Wavelet Representation,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 11, no. 7, pp. 674-693, 1989.
S. R. Marschner and R. J. Lobb, ”An Evaluation of Recon-
struction Filters for Volume Rendering”, Proc. IEEE Visuali-
zation "94, pp. 100-107, 1994.

S.Muraki, ”Volumetric shape description of range data using
’blobby model’,” Computer Graphics, vol. 25, no. 4, pp.
227-235, 1991.

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flan-
nery, “Wavelet Transforms”, Numerical Recipes, Second
Edition, pp. 591-606, 1992.

H. Samet "The Quadtree and Related Hierarchical Data
Structures”. Computing Surveys, vol. 16,no. 2, pp. 187-260,
1984.

W.J.Schroeder,J. A.Zarge and W.E. Lorensen, "Decimation
of Trangle Meshes”. ACM Computer Graphics, Proc. of SIG-
GRAPH ’92, pp. 65-70, 1992.

M. Unser, A. Aldroubi and M. Eden, A Family of Polyno-
mial Spline Wavelet Transforms,” Signal Processing, vol.
30, pp. 141-162, 1993.



