
 424

Fast Near-GRID Gaussian Process Regression

Yuancheng Luo Ramani Duraiswami

Department of Computer Science,
University of Maryland, College Park,

yluo1@umd.edu, ramani@umiacs.umd.edu

Abstract

Gaussian process regression (GPR) is a pow-
erful non-linear technique for Bayesian infer-
ence and prediction. One drawback is its
O(N3) computational complexity for both
prediction and hyperparameter estimation
for N input points which has led to much
work in sparse GPR methods. In case that
the covariance function is expressible as a
tensor product kernel (TPK) and the inputs
form a multidimensional grid, it was shown
that the costs for exact GPR can be reduced
to a sub-quadratic function of N . We extend
these exact fast algorithms to sparse GPR
and remark on a connection to Gaussian pro-

cess latent variable models (GPLVMs). In
practice, the inputs may also violate the mul-
tidimensional grid constraints so we pose and
efficiently solve missing and extra data prob-
lems for both exact and sparse grid GPR. We
demonstrate our method on synthetic, text
scan, and magnetic resonance imaging (MRI)
data reconstructions.

1 Introduction

Bayesian non-parametric methods such as Gaussian
processes (GPs) have successfully been used for re-
gression and classification. However prediction and
hyperparameter training for GPR present a computa-
tional bottleneck when applied to large data sets. For
N data points, the O(N3) cost stems from the solu-
tion of a linear system and the inversion of a general
covariance matrix. This is problematic for even iter-
ative methods as Magnus et al. (1952) that store the
O(N2) entries of the covariance matrix.

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

Recently, Saatci (2011) and Xu et al. (2012) showed
that large computational savings were possible for ex-
act GPR with a TPK covariance function K(xj , xk) =∏D

i=1
Ki(xj , xk) evaluated on multidimensional grid-

ded inputs x ∈ X and X = X1 × X2 × . . . × XD

where × is the Cartesian outer product between sets
Xi ∈ R

mi×∗. The direct result from these conditions is
the efficient Kronecker tensor product (KTP) decom-
position described in Van Loan (2000) of the covari-
ance matrix C = ⊗

D
i=1

Ci where Ci ∈ R
mi×mi where

the total number of points is N =
∏D

i=1
mi.

Several other works have handled lower dimensional
KTP decompositions with different treatments of the
noise term. In the noiseless case, Rougier (2008)
showed that inference via this decomposition is fast.
The noise term in Liutkus et al. (2011) was treated
as an independent GP and removed from the formula-
tion. In the constant noise case, Bonilla et al. (2008)
computed low-rank approximations of the KTP covari-
ance matrix for D = 2. The GPR GRID algorithm
from Saatci (2011) efficiently handles the general case
of isotropic noise. The general SVD trick after KTP
decomposition was also derived in Stegle et al. (2011)
and Baldassarre et al. (2011). We note that sparse
GPR methods such as GPML by Williams and Seeger
(2000) and SPGP/GPSTUFF by Snelson and Ghahra-
mani (2006) have O(M2N) complexity for latent input
size M << N but do not take advantage of this KTP
decomposition and grid structure.

Contributions: We present a novel derivation of grid
GPR under isotropic noise in section 2.1 and pro-
vide computational complexity costs for mean predic-
tion and gradient descent, showing them to be sub-
quadratic in section 2.2. Second, we remark on a
connection between TPK covariance and multidimen-
sional grid to GPLVM in Lawrence (2005) and extend
the efficient computations to sparse GPR methods in
sections 2.3 and 2.4 respectively. Third, we observe
that the grid conditions are often violated in practice
as a result of corrupted and off-grid inputs; we derive
two methods for handling missing and extra data en-

 425

Fast Near-GRID Gaussian Process Regression

tries from a multidimensional grid in sections 2.5 and
2.6. The additional costs of processing each entry are
shown to be linear and quadratic w.r.t. the sizes of
input and sparse input sets respectively. Furthermore,
this relaxation generalizes standard and sparse GPR
with TPK covariance functions as any input set can be
contained or appended from a multidimensional grid.
We compare the standard and sparse GPR to our grid
and sparse grid methods on synthetic high-dimensional
tensor products and real text scan and MRI data. Em-
pirical runtime results for full, missing, and extra data
cases are shown in section 3.

2 GPR Background

Formally, a GP is a set of random variables
X = [x1, x2, . . . , xN] such that any finite subset
is jointly Gaussian. Let the random field f =
[f(x1), f(x2), . . . , f(xN)] be a vector of random func-
tion values drawn from a N−variate Gaussian distri-
bution specified by the GP prior mean m(x) and co-
variance K(xi, xj) functions given by

f(x) ∼ GP (m(x),K(xi, xj)), m(x) = 0,

K(xi, xj) = cov (f(xi), f(xj)) .
(1)

For the general regression problem, let the model for
a target observation y be given by

y = f(x) + ǫ, ǫ ∼ N (0, σ2), (2)

where the noise term ǫ is zero centered with constant
variance σ2. The joint distribution between training y
and test outputs f∗ under the prior is given by

[

y
f∗

]

∼ N

(

0,

[

K(X,X) + σ2I K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

,

Kff = K(X,X), K̂ = Kff + σ2I,

Kf∗ = K(X,X∗), K∗∗ = K(X∗, X∗),

(3)

where X and X∗ are the training and test inputs re-
spectively. From Eq. 3 and marginalization over the
function space f, the test output conditioned on the
test input, training data, and training inputs is nor-
mally distributed given by

P (f∗|X, y,X∗) ∼ N (f̄∗, cov (f∗)),

f̄∗ = E[f∗|X, y,X∗] = KT
f∗K̂

−1y,

cov (f∗) = K∗∗ −KT
f∗K̂

−1Kf∗.

(4)

From Eq. 4, the predicted mean and covariance of test
output f∗ are fully specified by the covariance function
K and training outputs y. Once a suitable covariance
function K is selected, the hyperparmaeters can be

optimized via the negative log-marginal likelihood and
its partial derivative functions given by

− log p(y|X) =
1

2

(

log |K̂|+ yT K̂−1y +N log(2π)
)

,

−
∂ log p(y|X)

∂θi
=

1

2

(

tr
(

K̂−1P
)

− yT K̂−1PK̂−1y
)

,

(5)

where matrix P = ∂K̂/∂θi. Computing t = K̂−1y,

tTPt, log |K̂|, and tr
(

K̂−1P
)

requires O(N3) flops.

2.1 Formulation of Grid GPR

To establish notation, we denote the covariance ma-
trices Kf∗, Kff , K̂ from Eq. 3 as Cf∗, C, and Ĉ
respectively. Let matrix C and its partial derivative
of w.r.t. parameter θπ in the jth covariance matrix be
the KTPs of D covariance matrices given by

C = C1 ⊗ C2 · · · ⊗ CD = ⊗D
i=1Ci,

P = ⊗j−1

i=1
Ci ⊗

∂Cj

∂θπ
⊗D

l=j+1 Cl.
(6)

The eigendecomposition trick for Kronecker products
is as follows: The eigendecomposition of the real sym-
metric positive definite matrix Ci = UiZiU

T
i where

matrices Ui and Zi are its eigenvectors and diagonal
matrix of eigenvalues respectively. Let ∂Cj/∂θπ =
VjWjV

T
j have an analogous eigendecomposition. This

allows large matrices C−1 and P in Eq. 6 to be ex-
pressed as a series of KTPs of smaller eigendecompo-
sitions given by

U = ⊗D
i=1Ui, Z = ⊗D

i=1Zi, C−1 = UZ−1UT ,

V = ⊗j−1

i=1
Ui ⊗ Vj ⊗

D
l=j+1 Ul,

W = ⊗j−1

i=1
Zi ⊗Wj ⊗

D
l=j+1 Zl, P = VWV T ,

(7)

where the total costs of the eigendecompositions
are now O(

∑D

i=1
m3

i) flops and O(
∑D

i=1
m2

i) storage,
rather than O(N3) flops and O(N2) storage.

A vector-KTP (VKTP) and the diagonal of a KTP are
computed in in O(N) flops given by

Cf∗ = ⊗D
i=1Ki(Xi, ∗), diag (C) = ⊗D

i=1diag (Ci) ,

(8)

where ∗ is set of D inputs. A Kronecker tensor-vector
product (KTVP) between D-KTPs of matrices Ci ∈
R

mi×m̄i and vector y can also be obtained cheaply
by decomposing matrix C into D-matrix products of
three KTPs given by

Mi =

i−1
∏

j=1

mj , M̄i =

D
∏

j=i+1

m̄j ,

C = ⊗D
i=1Ci =

D
∏

i=1

IMi
⊗ Ci ⊗ IM̄i

.

(9)

 426

Yuancheng Luo, Ramani Duraiswami

Let y = vec(Y) be the vectorization of the matrix
Y formed from stacking its columns. From Eq. 9, a
single matrix-vector product is given by

(

(IMi
⊗ Ci)⊗ IM̄i

)

y = vec(Y (IMi
⊗ CT

i)), (10)

where matrix Y ∈ R
M̄i×m̄iMi and IMi

⊗CT
i is block di-

agonal. For grid GPR where mi = |Xi|, N =
∏D

i=1
mi

andmi = m̄i for all covariance matrices Ci, computing
the block diagonal matrix-vector product in Eq. 10 re-
quires O(miN) flops making the total cost of a KTVP

O(N
∑D

i=1
mi) flops and O(N +

∑D
i=1

m2
i) storage for

KTP matrices Ci and the solution vector.

2.2 Efficient Noisy Grid GPR

In the noiseless case, where matrix Ĉ = C, the terms
t = C−1y and tTPt are successive KTVPs. The log-
determinant of matrix Ĉ is the log-sum of the diagonal
of matrix Z in Eq. 7. The trace of matrix product
Ĉ−1P = ⊗D

i=1C
−1

i Pi is the sum of its diagonal entries
which is found via Eq. 8.

In the noisy case, where matrix Ĉ = C + σ2I, we
rely on the fact that the eigenvectors of the covariance
matrix C can be decomposed into products of KTP
eigenvectors for all matrices Ci; the noise constant is
simply added to the diagonal KTP eigenvalue matrix
Z given by

Ĉ−1 = (C + σ2I)−1 = U(Z + σ2I)−1UT . (11)

The inverse-matrix vector product t = Ĉ−1y is com-
puted via successive KTVPs in via Eq. 11 given by

t = KTVP
(

U,diag
(

Z + σ2I
)

−1
. ∗KTVP

(

UT , y
)

)

.

(12)

Computing the term tTPt follows a similar procedure.
The log-determinant is directly found by factorizing
the eigendecomposition of matrix C from Eq. 7 with
the isotropic noise term σ2I given by

log |Ĉ| =
N
∑

i=1

log (diag (Z)i + σ2). (13)

The trace is directly found using Eqs. 7, 11 and ap-
plying invariance under cyclic permutations given by

tr
(

Ĉ−1P
)

= diag
(

(Z + σ2I)−1
)T

diag
(

⊗j−1

i=1
Zi ⊗ UT

j VjWjV
T
j Uj ⊗

D
l=j+1 Zl

)

,
(14)

where diagonals are found via Eq. 8 within O(N+m3
j)

flops. Note that the full complexity of noisy grid GPR
was not presented in Saatci (2011). Based on the above

formulation, we can estimate that the total costs of
prediction and hyperparameter training are given by

O

(

D
∑

i=1

m3
i +N

D
∑

i=1

mi

)

, O

(

N +
D
∑

i=1

m2
i

)

, (15)

flops and storage respectively. Both are minimized
when each sub-matrix has size mi = N1/D. As a
result, the asymptotic costs have a best-case sub-
quadratic bound of O

(

D
(

N3/D +N1+1/D
))

flops and

O(N +DN2/D) storage.

2.3 Relation to GPLVM

In GPLVM, a mapping between a set of d̃l dimensional

latent variables X ∈ R
Ñ×d̃l and a set of d̃-dimensional

observations Y ∈ R
Ñ×d̃ can be determined by max-

imizing a GP likelihood with respect to variables X.
GPLVM can be shown to be an inverse formulation
of grid GPR as the two methods share similar log-
marginal likelihood function formulations given by

L = −
1

2

(

d̃ log |Ĉ|+ tr
(

Y T Ĉ−1Y
)

+N log(2π)
)

,

tr
(

Y T Ĉ−1Y
)

= yT C̃−1y, d̃ log |Ĉ| = log |C̃|,

(16)

where vector y = vec(Y) ∈ R
N , N = Ñ d̃, and

C̃ = Id̃ ⊗ C + σ2IN by vectorization. This is inter-

preted as the addition of inputs X1 = [1, . . . , d̃]T and
a leading Kronecker delta covariance function. In the
case that the latent variables X are unconstrained or
do not complete a multidimensional grid, GPLVM be-
comes grid GPR for D = 2 and the predicted mean
and gradient computations have compact forms.

The inverse-matrix vector product t = C̃−1y is a dis-
crete time Lyapunov or Sylvester equation given by

CTT + σ2T = Y, t = vec(T), (17)

in Sorensen and Zhou (2003), which has a standard
solution in Bartels and Stewart (1972). The log-term

is given by log |C̃| = d̃
∑Ñ

i=1
log (diag(Z)i + σ2) while

the gradient terms for P̃ = Id̃ ⊗ P and P = ∂Ĉ/∂θi
are given by

tr
(

C̃−1P̃
)

= diag
(

(

Id̃ ⊗ Z + σ2IN
)

−1
)T

diag
(

Id̃ ⊗ (UTPU)
)

, tT P̃ t = tTvec(PTT).
(18)

If the latent inputs are also be constrained to a mul-
tidimensional grid, then the covariance matrix decom-
poses into KTPs in addition to the leading identity-
block matrix.

 427

Fast Near-GRID Gaussian Process Regression

2.4 Grid GPR with Sparse Structures

A unified framework for sparse GPR Quinonero-
Candela and Rasmussen (2005) was presented as a
modification of the joint prior p(f, f∗) assuming that
the latent function values f are conditionally inde-
pendent of a set of M << N latent variables u =
[u1, . . . , uM]T at locations X(u). The approximated
joint priors q(y, f∗), after marginalizing out the latent
variables u, share the common form given by

q(y, f∗) ∼ N

(

0,

[

Q̂ Qf∗

Q∗f c

])

,

Q̂ = Qff + ∧, Qff = KfuK
−1
uuKuf ,

(19)

where matrices Kuu = K(X(u), X(u)), Kfu =
K(X,X(u)), and (∧, c) varies by sparse method. The
modified log-marginal likelihood function and its gra-
dient w.r.t. hyperparameter θi are similar to Eq.
5 with matrix Q̂ replacing K̂ and partial derivative
matrix P = ∂Q̂/∂θi. We show below that these
sparse structures have an analogous efficient formu-
lation when either input or latent variables are grid-
ded. In particular, we extend grid GPR to the subset
of regressors (SoR) and deterministic training condi-
tional (DTC) methods that both have the common
term ∧ = σ2I. For reference, their GP predicted
mean and variance estimates are given by q(f∗|y) =
N (σ−2K∗uΣKufy, c−Q∗∗+K∗uΣKu∗) where the eco-
nomical Gram matrix is Σ = (σ−2KufKfu +Kuu)

−1.

Case 1: For gridded inputs X and arbitrary latent
inputs X(u), the rows of matrix Kuf are VKTPs com-
puted from Eq. 8 and matrix products Kufy and

KufKfu only require O(MN) and O(M2
∑D

i=1 mi)
flops with O(M2) and O(M) storage respectively.

Case 2: For arbitrary inputs X and gridded latent
inputs X(u), the matrix products Kufy and KufKfu

are computed via outer-product decompositions
∑N

i=1 K(X(u), xi)yi and
∑N

i=1 K(X(u), xi)K(xi, X
(u))

in O(MN) and O(NM2) flops with O(M) and O(M2)
storage respectively.

Case 3: For gridded inputs X and gridded latent in-

puts X(u) = X
(u)
1 × X

(u)
2 × . . . × X

(u)
D where m

(u)
i =

|X
(u)
i | and M =

∏D
i=1 m

(u)
i , matrices Kfu, Kuf , and

Kuu are expressible as KTPs and the low-rank de-

compositions as KufKfu = ⊗D
i=1K

(uf)
i K

(fu)
i . Ma-

trix Σ can also be expressed as products of KTPs
with diagonal scaling by the expansion of the inver-
sion of matrix sums; we compute the eigendecompo-
sitions of KTP matrices Kuu = ⊗D

i=1UiZiU
T
i where

U = ⊗D
i=1Ui and Z = ⊗D

i=1Zi followed by a sec-
ond set of eigendecompositions of the KTP matrix
Z−1/2UTKufKfuUZ−1/2 = ⊗D

i=1ŪiZ̄iŪ
T
i . Both ma-

trices Kuu and σ−2KufKfu have KTP eigendecompo-

sitions which expresses matrix Σ as products of KTPs
with diagonal scaling given by

Σ = σ2Ω(Z̄ + σ2I)−1ΩT , Ω = UZ−1/2Ū ,

Ū = ⊗D
i=1Ūi, Z̄ = ⊗D

i=1Z̄i,
(20)

and computed within O
(

∑D
i=1 m

(u)2

i (m
(u)
i +mi)

)

operations and O
(

∑D
i=1 m

(u)
i (m

(u)
i +mi)

)

storage.

While matrix Ω is not orthogonal and (Z̄ + σ2I)−1

are not scaled eigenvalues of Σ, the determinant |Σ|
remains easy to compute as the product of orthogonal
matrix determinants cancel to give the expression

log |Σ| = log σ2 + log |Z| − log |(Z + σ2I)|. (21)

We omit the remaining gradient terms produced in
Quinonero-Candela (2004), which can be easily rear-
ranged for efficient KTP operations.

2.5 Modifying Grid GPR for Missing Data

For missing observations yr from vector y, denote its
corresponding input set by X(r) of size R for row in-
dex ri in matrix C. Note that removing a single row
or column cr from matrix C invalidates its KTP de-
composition. However, a single row-column deletion
within matrix Ĉ is given by

Ĉ =





C11 c1r C13

cTr1 crr cTr3
C31 c3r C33



+ σ2I,

C̄ =





C11 + σ2I 0 C13

0T 1 0T

C31 0 C33 + σ2I



 ,

(22)

after zeroing out the rth row-column and replacing the
diagonal entry with 1 in the resulting matrix C̄. This
equates the determinant of matrix C̄ and the entries
excluding the rth row-column of the inverse matrix
C̄−1 to that of a row-column deleted matrix C since
matrix C̄ can be permuted into dense and identity
blocks. While this property holds true for multiple
row-column deletions in Davis and Hager (2005), a
transformation from matrix C to C̄ can be expressed
as a series of rank-1 updates given by

C̄ = Ĉ + aaT − bbT , a =

√

||c̄r||

2

(

c̄r
||c̄r||

+ er

)

,

b =

√

||c̄r||

2

(

c̄r
||c̄r||

− er

)

, c̄r =





−c1r
1−crr−σ2

2
−c3r



 ,

(23)

where vector er is the rth column of the identity
matrix. Multiple R row-columns are concatenated

 428

Yuancheng Luo, Ramani Duraiswami

into two rank-R updates C̄ = Ĉ + AAT − BBT for
A,B ∈ R

N×R where the columns of matrices A and B

follow Eq. 23 for each vector c̄r and zeroing out entries
Ar,r+1:R and Br,r+1:R.

The inverse of a rank-R update of matrix Ĉ in Saigal
(1993) is efficiently computed by the modified Wood-

bury formulation for diagonal matrix D given by

(Ĉ −BBT)−1 = Ĉ−1 +B(R)DB(R)T ,

B(k) =
[

B
(1)
1 , . . . , B

(k)
k

]

∈ R
N×k,

D
(k)
ii = (1− < Bi, B

(i)
i >)−1,

(24)

and log |Ĉ − BBT | = log |Ĉ| − log |D| for superscript
iteration and subscript column index. The column up-
date rule for matrix B is given by

B
(k+1)
k+1 =

(

Ĉ−1 +B(k)D(k)B(k)T
)

Bk+1. (25)

Matrix C̄−1 =
(

(Ĉ −BBT) +AAT
)−1

is computed

by two rank-R updates in Eqs. 24 and 25 using ma-
trices A,B from Eq. 23 given by

C̄−1 = Ĉ−1 +B(R)DB(R)T −A(R)EA(R)T ,

A(k) =
[

A
(1)
1 , . . . , A

(k)
k

]

∈ R
N×k,

E
(k)
ii = (1+ < Ai, A

(i)
i >)−1,

(26)

with the column update rule for matrix A given by

A
(k+1)
k+1 =

(

Ĉ−1 +B(R)DB(R)T −A(k)E(k)A(k)T
)

Ak+1,

(27)

and log |C̄| = log |Ĉ − BBT | − log |E|. Note that
since matrix Ĉ−1 is expanded with Eq. 12, the costs
of computing matrices B(R) and A(R) are O(R2N +

RN
∑D

i=1 mi) flops and O(RN) storage from the
KTVPs. Computing the inverse-matrix vector prod-
uct t̄ = C̄−1ȳ uses KTVPs followed by series of N ×R

sized matrix-vector products given by

t̄ =
(

Ĉ−1 +B(R)DB(R)T −A(R)EA(R)T
)

ȳ, (28)

where entries t̄i∈X(r) = ȳi∈X(r) = 0; setting these en-
tries in t̄ to zero gives a valid expression for the term
t̄TP t̄. The trace term tr

(

C̄−1P
)

is given by

tr
(

C̄−1P
)

= tr
(

Ĉ−1P
)

+ tr
(

DB(R)TPB(R)
)

− tr
(

EA(R)TPA(R)
)

−
∑

i∈R

Pii,

(29)

which requires Eq. 14 followed by the trace of two
R × R matrices computed from 4R KTVPs each and
the subtraction of the missing data diagonal entries
of matrix P ; the asymptotic costs remain unchanged
from computing matrices A(R) and B(R).

2.6 Modifying Grid GPR for Extra Data

For input sets X = {X(s), X(c)} where set X(s) of
size S contain points outside a multidimensional grid
X(c), the inverse of its covariance matrix K̂ by the
block-matrix inversion lemma can be expressed as

K̂ =

[

Ĥ GT

G Ĉ

]

, Ĥ = K(X(s), X(s)) + σ2I,

G = K(X(c), X(s)), Ĉ = K(X(c), X(c)) + σ2I,

K̂−1 =

[

H̄ −H̄GT Ĉ−1

−Ĉ−1GH̄ Ĉ−1GH̄GT Ĉ−1 + Ĉ−1

]

,

(30)

where matrix H̄ = (Ĥ−GT Ĉ−1G)−1 and the columns
of matrix G are VKTPs. As extra data size S grows,
the cost of the matrix inversion H̄ dominates with
O(S3) flops and can be interpreted as performing stan-
dard GPR over the arbitrary input set X(s).

Computing the inverse-matrix vector product t =
K̂−1y requires Eq. 12 followed by series of N×S sized
matrix-vector products. Since matrix Ĉ is invertible,
the block-determinant of matrix K̂ follows Eq. 13 and

log |K̂| = log |Ĉ| − log |H̄|. (31)

The gradient terms tTPt and tr
(

K̂−1P
)

are com-

puted from the block-partial derivative of matrix K̂

and block-matrix products

P =

[

∂Ĥ
∂θ

∂GT

∂θ
∂G
∂θ

∂Ĉ
∂θ

]

, tr
(

K̂−1P
)

= tr
(

H̄P11

)

+ tr
(

Ĉ−1P22

)

+ tr
(

GT Ĉ−1(P22Ĉ
−1G− 2P21)H̄

)

,

(32)

where the matrix product Ĉ−1G is expanded using Eq.
12 and computed as 2S KTVPs.

If the extra data set X(s) is gridded, then the covari-
ance matrix Ĥ and inverse have analogous Kronecker
decompositions to that of matrix Ĉ. Difficulties arise
in handling the non-zero noise term σ as the eigen-
vectors of the block-matrix K are not computed and
may not be expressible as a single KTP. In the noise-
less case, matrix H̄ = (H + GTC−1G)−1 can readily
be expressed as products of KTPs with diagonal scal-
ing via Eq. 20 by substituting matrices H → Kuu,
GTC−1G → KufKfu and removing the σ term; all

blocks in K̂−1 have KTP structures and the total costs
are the sum of two grid GPRs for inputsX(c) andX(s).

3 Experiments

For reference, all experiments are done on an Intel i7-
2630QM laptop running Matlab 2010 on 64-bit Win-

 429

Fast Near-GRID Gaussian Process Regression

dows. All hyperparameters are trained using the natu-
ral gradient with resilient back-propagation (RPROP)
as Igel and Toussaint (2005) for 10 iterations unless
otherwise stated. RPROP locally rescales each hy-
perparameter via an online stepsize adaptation based
the signs of the gradient evaluated once per iteration.
The heuristic gives a fast convergence rate and pre-
vents oscillatory behavior compared to standard gra-
dient descent. Compared to nonlinear conjugate gradi-
ent, RPROP provides tractable run-time cost analyses
due to the absence of line-search.

3.1 Synthetic Data

A D dimensional unit cube centered about the origin
is uniformly partitioned by a multidimensional grid of
inputs X = X1 × . . .×XD with linear spacing of size
m along each dimension. The N = mD outputs y are
assigned the Euclidean distance

Xj =

{

−
1

2
:

1

m− 1
:
1

2

}

, yi =

√

√

√

√

D
∑

j=1

x2
ij , (33)

from the origin and then corrupted by additive Gaus-
sian white noise ŷi = yi +N (0, σ2).

In all experiments, we specify the well-known
squared exponential covariance function Ki(xj , xk) =

exp
(

−
(xj−xk)

2

2θ2

i

)

for each dimension and the overall co-

variance function as cov (xj , xk) = α2
∏D

i=1 Ki(xj , xk)
since the underlying function is smooth. Training the
global-scale and length-scale hyperparameters α and
θi respectively follows the gradient descent of the log-
marginal likelihood function. The predicted outputs f̄
for inputs X are compared against the noiseless syn-
thetic data via the root mean squared error (RMSE)
√

∑N

i=1(f̄i − yi)2/N . A log-marginal likelihood of the

final iteration and the total runtimes for hyperparam-
eter training are recorded.

Table. 1 shows the results of standard, grid, SoR, and
SoR grid GPs trained over the synthetic data ŷ for
fixed D = 2, m = 32, and σ = .3. The bolded meth-

ods mark our contributions. Note that the dimensions
and grid size are kept small for standard GPR to fit
in working memory. In both SoR and SoR grid GPR
methods, the latent inputs are chosen to be an uni-
formly spaced multidimensional grid of length M̂ = 4
replacing m in Eq. 33. The runtime gains of the other
methods over standard GPR are apparent. The small
RMSE indicates that all methods including SoR GPR
and SoR grid GPR approximations approach the true
solution. SoR grid GPR runtimes remain similar to
that of grid GPR for small m until higher dimensions
D as seen in Figure. 1.

Table 1: GPR synthetic data reconstruction

Full Data RMSE LH Train sec

STD-GPR 1.600e-002 222 65
GRID-GPR 1.600e-002 222 0.079
SoR-GPR 1.851e-002 249 0.74
SoR-GRID-GPR 1.851e-002 249 0.063
Missing Data

STD-GPR 1.601e-002 219 58
GRID-GPR 1.601e-002 219 0.22
SoR-GPR 1.855e-002 247 0.84
SoR-GRID-GPR 1.855e-002 247 0.073
Extra Data

STD-GPR 1.606e-002 224 66
GRID-GPR 1.606e-002 224 0.27
SoR-GPR 1.860e-002 252 0.79
SoR-GRID-GPR 1.860e-002 252 0.16

1 2 3 4 5 6 7
10

−2

10
−1

10
0

10
1

10
2

Dimension D

T
im

e
 (

se
c
)

STD−GPR

GRID−GPR

SoR−GPR

SoR−GRID−GPR

Figure 1: Runtimes for varying dimension D, fixed
grid sizes m = 8, M̂ = 2.

In the missing data problem, 1% or R = 10 inputs are
randomly removed from the synthetic set X with all
else equal to the full data experiment. The resulting
increase in RMSE and decline in log-marginal likeli-
hood are indicative of the missing data. The runtime
for SoR grid GPR remain an order magnitude faster
than that of SoR GPR for increasing missing data en-
tries R in Figure. 2. In the extra data problem, 1%
or S = 10 inputs are randomly generated within the
unit cube with all else equal to the full data experi-
ment. The resulting decrease in RMSE and increase
in log-marginal likelihood are indicative of added data.
The runtimes for SoR grid slowly converge to that of
SoR GPR for increasing extra data entries S in Figure.
2. The runtimes of exact grid GPR for both missing
and extra data problems are predictably slower than

 430

Yuancheng Luo, Ramani Duraiswami

0 50 100 150 200 250 300

10
−1

10
0

10
1

10
2

Missing Data R

T
im

e
(s

ec
)

GRID−GPR

SoR−GPR

SoR−GRID−GPR

0 50 100 150 200 250 300

10
−1

10
0

10
1

10
2

Extra Data S

T
im

e
 (

se
c
)

GRID−GPR

SoR−GPR

SoR−GRID−GPR

Figure 2: Runtimes for varying missing data size R

(top, fixed dimension D = 3, grid sizes m = 16,
M̂ = 2) and for varying extra data size S (bot, fixed
dimension D = 3, grid sizes m = 16, M̂ = 2).

the approximation methods. The log-marginal likeli-
hood difference between the two remain constant for
increasing missing and extra data entry sizes.

3.2 MRI and Text Scan Data

For the small non-synthetic case, we choose a salt-
pepper denoising example of imaged text data. The
image is cropped to 32 × 32 px, scaled to [0, 1] for
the output, and inverted so that all methods can
be compared without memory and runtime limita-
tions. The row-columns of the image form the mul-
tidimensional grid of inputs X = X1 × X2 where
X1 = X2 = [1 : m]T and m = 32. The corrupted pix-
els shown in Figure. 4 are treated as a variable number
R of inputs-outputs pairs that are missing and a GP
is trained over the remaining points. We find that
specifying the Ornstein-Uhlenbeck covariance function

Ki(xj , xk) = exp
(

−
|xj−xk|

θi

)

along each dimension

produces the lowest RMSE and largest log-marginal
likelihood over the missing data after hyperparame-

ter training and mean prediction. For both SoR and
SoR grid methods, the latent inputs are chosen to be
an uniformly spaced multidimensional grid of length
M̂ = 16 spanning half the inputs. The performance

Table 2: Small reconstruction, R = 100, N = 1024

Method RMSE LH Train sec
STD-GPR 0.192 49 230
GRID-GPR 0.192 49 10
SoR-GPR 0.244 -1.18e5 8.3
SoR-GRID-GPR 0.244 -1.18e5 2.5
Neighbor Avg 0.231 - -

and accuracy of the reconstructions are shown in Ta-
ble. 2 after 50 training iterations for fixed σ = .01
across all methods. As a baseline, the results of aver-
aging the known neighbors of the missing inputs are
also reported. Both standard and grid GPR produce
identical RMSE and likelihood estimates but with an
order difference in the training time. The SoR meth-
ods are faster but inaccurate due to the constraint that
latent inputs are fixed to a static multidimensional
grid. Compared to the baseline neighbor averaging,
standard and grid GPR produce visible improvements
in the reconstructions as seen in Figure. 4.

For the large non-synthetic case, we choose multidi-
mensional tensor MRI data from the 3-D Matlab MRI
data set. A 2-D horizontal slice is cropped to 97× 97
px and the range scaled to [0, 1] for the output. Un-
like the synthetic case, the MRI data seen in Figure.
3 are not smooth and so the OU covariance function
specified across each dimension performs well. A simi-
lar multidimensional grid as the small case is specified
over the inputs for m = 97 and several regions of inter-
est considered visual artifacts are declared as missing
data. This is closely related to the inpainting problem
for reconstructing lost parts of an image. The first case
considers four visual blotches on the scan as missing
data, the second case a 3 px wide scanline, and the fi-
nal case a set of randomized salt and pepper artifacts.
The performance and accuracy of the reconstructions

Table 3: GRID-GPR large reconstruction, N = 9409

Miss Data (R) RMSE LH Train sec
Blotch: 65 0.199 3809 54
Line: 201 0.136 3719.5 323

Random: 300 0.156 3738 735

are shown in Table. 3 after 50 training iterations for
fixed σ = .01. The results for both standard and SoR
GPR methods are omitted due to runtime barriers.

 431

Fast Near-GRID Gaussian Process Regression

(a) Original (b) Blotches (c) Scanline (d) Random

(e) Inpainted Blotches (f) Inpainted Scanline (g) Inpainted Rand

Figure 3: Grid GPR reconstruction of MRI brain slice for missing points in red

Both SoR methods did not converge for varying la-
tent point intervals M̂ due to the large variance in the
output domain. When inference is performed with-
out hyperparameter training, both SoR methods pro-
duce inaccurate results as the posterior variances may
be large. Only the exact grid GPR produced inter-
pretable reconstructions within a reasonable time.

These issues may be addressed in future works by al-
lowing the coordinates of the latent multidimensional
grid to vary or be trained. This has applications to
GPLVM with latent variables constrained to a non-
uniform multidimensional grid. Another possibility
considers a domain decomposition of the tensor data
where the size or density of each latent grid are allowed
to vary. In turn, the missing data are partitioned and
constrained to local boundaries such that the size of
each sub-problem is reduced.

4 Conclusions

We have provided a derivation of multidimensional
grid GPR and extended the computational savings
to sparse GPR. A connection between grid GPR and
GPLVM was made. Two problems for handling miss-
ing and extra data for the multidimensional grid were
posed and solutions presented with computational
costs proportional to the grid size. This allowed grid
GPR to address near-multidimensional grid inputs
more quickly than standard or non-grid methods. The
savings were empirically verified on high-dimensional
synthetic data for the full, missing, and extra data
problems. Last, we demonstrated missing data recon-

struction for denoising and inpainting applications to
text scan and MRI data using our fast methods.

(a) Original (b) Missing Data

(c) Neighbor Average (d) Grid-GPR

Figure 4: Grid GPR reconstruction of text scan for
R = 100 missing points in red

Acknowledgments

This work was partially supported by the National Sci-
ence Foundation (NSF grant IIS-1117716) and Office
of Naval Research (MURI grant N00014-08-10638).

 432

Yuancheng Luo, Ramani Duraiswami

References

L. Baldassarre, L. Rosasco, A. Barla, and A. Verri.

Multi-output learning via spectral filtering. Tech-

nical report, Massachusetts Institute of Technology,

2011.

R. H. Bartels and G. W. Stewart. Solution of the

matrix equation AX + XB = C. Comm. ACM, 15:

820–826, 1972.

E.V. Bonilla, K.M.A. Chai, and C.K.I. Williams.

Multi-task Gaussian process regression. Advances

in Neural Information Processing Systems, 20:153–

160, 2008.

T.A. Davis and W.W. Hager. Row modifications of

a sparse Cholesky factorization. SIAM. J. Matrix

Anal. Appl., 26:621–639, 2005.

C. Igel and M. Toussaint. Rprop using the natural

gradient. Trends and Applications in Constructive

Approximation. International Series of Numerical

Mathematics, 151:259–272, 2005.

N. Lawrence. Probabilistic non-linear principal com-

ponent analysis with Gaussian process latent vari-

able models. Journal of Machine Learning Research,

6:1783–1816, 2005.

A. Liutkus, R. Badeau, and G. Richard. Gaussian pro-

cesses for underdetermined source separation. IEEE

Transactions on Signal Processing, 59:3155–3167,

2011.

R. Magnus, Hestenes, and Eduard Stiefel. Methods of

conjugate gradients for solving linear systems. Jour-

nal of Research of the National Bureau of Standards,

49:409–436, 1952.

J. Quinonero-Candela. Learning with Uncertainty -

Gaussian Processes and Relevance Vector Machines.

PhD thesis, Technical University of Denmark, 2004.

J. Quinonero-Candela and C.E. Rasmussen. A uni-

fying view of sparse approximate Gaussian process

regression. Journal of Machine Learning Research,

6:1939–1959, 2005.

J. Rougier. Efficient emulators for multivariate deter-

ministic functions. Journal of Computational and

Graphical Statistics, 17:827–843, 2008.

Y. Saatci. Scalable Inference for Structured Gaussian

Process Models. PhD thesis, University of Cam-

bridge, 2011.

R. Saigal. On the inverse of a matrix with several

rank one updates. Technical report, University of

Michigan Ann Arbor, 1993.

E Snelson and Z. Ghahramani. Sparse Gaussian pro-

cesses using pseudo-inputs. In Advances in Neural

Information Processing Systems, 2006.

D.C. Sorensen and Y. Zhou. Direct methods for ma-

trix Sylvester and Lyapunov equations. Journal of

Applied Math, 6:277–303, 2003.

O. Stegle, C. Lippert, J. Mooij, N. Lawrence, and

K. Borgardt. Efficient inference in matrix-variate

Gaussian models with iid observation noise. In Ad-

vances in Neural Information Processing Systems,

2011.

F. Van Loan. The ubiquitous Kronecker product.

Journal of Computational and Applied Mathemat-

ics, 123:85–100, 2000.

C.K.I. Williams and M. Seeger. Using the Nyström

method to speed up kernel machines. In Advances

in Neural Information Processing Systems, 2000.

Z. Xu, F. Yan, and Y. Qi. Infinite Tucker decomposi-

tion: Nonparametric Bayesian models for multiway

data analysis. In International Conference on Ma-

chine Learning, 2012.

