
Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 1

Fast Near Neighbor Search in High-Dimensional Binary Data

Anshumali Shrivastava

Dept. of Computer Science

Cornell University

Ping Li

Dept. of Statistical Science

Cornell University

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 2

High Dimensional Sparse Binary Data in Practice

• Consider a Web-scale term-doc matrix X ∈ Rn×D with each row

representing one Web page. Certain industry applications used 5-grams (i.e.,

D = O(1025) is conceptually possible. Assuming 105 common English

words).

• Usually, when using 3- to 5-grams, most of the grams only occur at most once

in each document. It is thus common to utilize only binary data when using

n-grams.

• Conceptually, the textual content of the Web may be viewed as a giant matrix

of size n×D, with n = 1011 Web pages and each page in D = 264 dims.

• Image Representations for retrieval and search using vector quantization

naturally leads to sparse high dimensional binary data.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 3

Near Neighbor Search

• The Classical Problem: Given a high dimensional query vector (Document or

Image) we want to search a huge database for items similar to the given

query.

• The simple strategy to scan all the database and compute similarities is

prohibitive when

– The data matrix X itself may be too large for the memory.

– Computing similarities on the fly can be too time-consuming when the

dimensionality D is high.

– The cost of scanning all n data points is prohibitive and may not meet the

demand in user-facing applications (e.g., search).

– Parallelizing linear scans will not be energy-efficient if a significant portion

of the computations is not needed.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 4

Locality Sensitive Hashing (LSH)

• Early space partitioning based approaches like K-D trees, R trees, etc, only

good for low dimensions, typically D < 10, but leads to almost linear scan

for higher D.

• LSH is currently one of the most popular technique in industrial practice.

• The basic idea behind LSH is to construct a randomized hash function such

that similar objects are more likely to have the same hash key.

• More specifically, we are interested in hash function families H, such that

Prh∈H(h(x) = h(y)) = F (sim(x, y)), where F is a monotonically

increasing function and sim(x,y) is the similarity of interest between x and y.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 5

Sub-linear Time Approximate Near Neighbor Search Using LSH

• For each point x, generate a hash key by concatenating K hash signatures

g(x) = {h1(x), h2(x), ..., hK(x)}, where each hi(x) drawn

independently from the LSH family H.

• Store data point x in a hashtable at location g(x).

• Generate L such independent hashtables.

• For a given query point q, retrieve elements from the bucket g(q) =

{h1(q), h2(q), ..., hK(q)} corresponding to each of the L hashtables.

• Smart choices of L, K lead to worst case approximate solution in O(nρ)

where ρ < 1. (Adoni-Indyk 08)

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 6

Minwise Hashing: LSH for Set Similarity

• Binary vector can be thought of as sets. Consider two sets

S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1} (e.g., D = 264)

f
2

f
1 a

f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|.

The resemblance is a popular measure of similarity

R = |S1∩S2|
|S1∪S2|

= a
f1+f2−a

Suppose a random permutation π is performed on Ω, i.e., π : Ω −→ Ω

An elementary probability argument shows that

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|

|S1 ∪ S2|
= R.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 7

Shortcomings of Minwise Hashing

• The signatures from Minwise Hashing could be potentially 64-bits, after

concatenation of K signatures, the size of hashtable will just blow up beyond

feasibility.

• We are mostly interested in highly similar pairs, we probably don’t need all the

64-bits.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 8

Introduction to b-Bit Minwise Hashing

Define the minimum values to be : z1 = min (π (S1)) , z2 = min (π (S2)) .

Recall minwise hashing: Pr (z1 = z2) = R. For b-bit minwise hashing,

Pr (lowest b bits of z1 = lowest b bits of z2) = C1,b + (1− C2,b)R

r1 =
f1

D
, r2 =

f2

D
, f1 = |S1|, f2 = |S2|, D = |Ω|

C1,b = A1,b

r2

r1 + r2
+A2,b

r1

r1 + r2
,

C2,b = A1,b

r1

r1 + r2
+A2,b

r2

r1 + r2
,

A1,b =
r1 [1− r1]

2
b
−1

1− [1− r1]
2b

, A2,b =
r2 [1− r2]

2
b
−1

1− [1− r2]
2b

.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 9

Accuracy Space Tradeoff

• When the data are highly similar, a small b (e.g., 1 or 2) may be good enough.

However, when the data are not very similar, b cannot be too small.

• The advantage of b-bit minwise hashing can be demonstrated through the

“variance-space“ trade-off: Var

(

R̂b

)

× b.

• For all practical purposes, the similarities estimated from 4-bit is

indistinguishable compared to 64-bit minwise hashing. (Li-Konig WWW 2010)

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 10

Our Proposal for Near Neighbor Search

• In the limiting case when the data is very sparse and rj is typically very small

then for all practical purposes we can set Aj,b =
1
2b in the formula.

• b-bit minwise hashing in such case is LSH with collision probability

Pr (lowest b bits of z1 = lowest b bits of z2) =
1

2b
+ (1−

1

2b
)(R)

• The signatures are now at most b (1,2,4, etc.) bits, the hash table size is

manageable and so it can naturally be used to build hash table for sublinear

search.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 11

Example of Hashtables

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

8, 13, 251
 5, 14, 19, 29
(empty)

33, 174, 3153
 7, 24, 156

 61, 342

00 10

11 10
11 11

00 00
00 01

Index Data Points

11 01

8

17, 36, 129
2, 19, 83

7, 198

56, 989
,9, 156, 879

4, 34, 52, 796

Figure 1: An example of hash tables, with b = 2, K = 2, and L = 2.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 12

Real Datasets used for Comparisons and Evaluations

Table 1: Data Information

Dataset n D

Webspam 70,000 16,609,143

NYTimes 20,000 102,660

EM30k 30,000 34,950,038

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 13

Competitor 1: Signed Random Projections (SRP)

• One of the most popular LSH is SRP (Charikar STOC 2002),

hr(x) =







1 if rTx ≥ 0

0 otherwise

where r ∈ Rd drawn independently from N(0, I)

• The seminal work of Geomens-Williamson showed that

Pr(h(x) = h(y)) = 1−
1

π
cos−1(

xT y

‖x‖‖y‖
)

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 14

Why b-bit minwise hashing should be better ?

• We compare the variance of estimators of resemblance (R) using b-bit

hashing V ar
(

R̂b

)

and signed random projections V ar
(

R̂S

)

.

• We compute the ratio

Wb =
V ar

(

R̂S

)

V ar
(

R̂b

)

× b
=

θ(π − θ)f1f2 sin
2(θ)

(

f1+f2
(f1+f2−a)2

)2

[C1,b+(1−C2,b)R][1−C1,b−(1−C2,b)R]

[1−C2,b]
2

(1)

• Wb > 1 means b-bit minwise hashing is more accurate than SRP at the

same storage.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 15

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Resemblance (R)

W
b

b = 4, r2 = r1

r1 = 0.01

r1 = 0.99

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

Resemblance (R)

W
b

b = 4, r2 = 0.8× r1

r1 = 0.99

r1 = 0.01

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

Resemblance (R)

W
b

b = 4, r2 = 0.4× r1

r1 = 0.99

r1 = 0.01

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Resemblance (R)

W
b

b = 2, r2 = 1× r1

r1 = 0.99

r1 = 0.01

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

Resemblance (R)

W
b

b = 2, r2 = 0.8× r1

r1 = 0.99

r1 = 0.01

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

Resemblance (R)

W
b

b = 2, r2 = 0.4× r1

r1 = 0.99

r1 = 0.01

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Resemblance (R)

W
b

b = 1, r2 = r1

r1 = 0.01

0.99

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

Resemblance (R)

W
b

b = 1, r2 = 0.8× r1

r1 = 0.01

0.99

0.99

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

Resemblance (R)

W
b

b = 1, r2 = 0.4× r1

r1 = 0.01

r1 = 0.99

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 16

Learning Approaches

• The idea is to learn a mapping from data vectors to compact binary codes

which preserves the pairwise similarity.

• Unlike LSH, these approaches take into account the underlying data

distribution.

• Machine learning approaches tend to outperform LSH where the data is

usually sitting on some low dimensional manifolds.

• What about extremely high dimensional sparse data?

– Most of these methods are almost impossible to train at such scale.

– Not much is known about the performance of these approaches at such

scale.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 17

Competitor 2: Spectral Hashing

• Spectral Hashing is one of the state-of-the-art learning based hashing

methods.

• Closely related to the problem of spectral graph partitioning.

• Aims to minimize the average hamming distance between the output codes of

similar objects, subject to constraints that the bits are independent and

uncorrelated.

• The minimization is done efficiently via one dimensional eigenfunctions.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 18

Spectral Hashing (SH) Formulation

Let {yi} be the list of code words (binary vectors of length k) for each data point

and Wij = e
−||xi−xj ||2

ǫ2 be the similarity function. The SH aims to solve

minimize :
∑

ij

Wij ||yi − yj ||
2

subject to:

yi ∈ {−1, 1}k

∑

i

yi = 0

1

n

∑

i

yiy
T
i = I

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 19

Spectral Hashing (SH) Algorithm

• Fit a multi-dimensional rectangle to the data. (Run PCA to align axes, then

bound uniform distribution.)

• For each dimension, calculate k smallest eigenfunctions.

• Threshold eigenfunctions at zero to give binary codes.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 20

Making Spectral Hashing Work

• We replace the eigen-decomposition operations by equivalent SVD

operations which avoids materializing the dense covariance matrix.

• PCA need a centering step which makes the data non-sparse and impossible

to handle.

• We empirically observe that skipping centering step does not affect the

performance of SH on the small subsets of data.

• Skipping the centering step made it possible to train SH on full datasets

instead of small samples.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 21

Evaluation 1: Hash Code Quality Evaluation

• We generate binary codes of fixed length using the three methodologies.

• Retrieve nearest neighbor based on the similarity between binary codes.

• Plot precision-recall curves.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 22

Webspam

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1 4

Webspam (35000)

B = 256, T = 5

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 14

Webspam (35000)

B = 256, T = 10

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

c
is

io
n

 (
%

) b = 14

Webspam (35000)

B = 256, T = 20

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 14

Webspam (35000)

B = 256, T = 50

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1 4

Webspam (35000)

B = 128, T = 5

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 14

Webspam (35000)

B = 128, T = 10

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)
P

re
c
is

io
n

 (
%

)

b = 14

Webspam (35000)

B = 128, T = 20

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1,24

Webspam (35000)

B = 128, T = 50

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 14

Webspam (35000)
B = 64, T = 5

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1 4

Webspam (35000)
B = 64, T = 10

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 14

Webspam (35000)
B = 64, T = 20

SH−NC
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 14

Webspam (35000)
B = 64, T = 50

SH−NC
SRP
b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 23

NYTimes

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

b = 4

NYTimes (20000)

B = 1024, T = 5

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1
2 b = 4

NYTimes (20000)
B = 1024, T = 10

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1
2

b = 4

NYTimes (20000)

B = 1024, T = 20

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1 2
b = 4

NYTimes (20000)

B = 1024, T = 50

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1
b = 4

NYTimes (20000)
B = 768, T = 5

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

b = 4

NYTimes (20000)

B = 768, T = 10

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

2
b = 4

NYTimes (20000)

B = 768, T = 20

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

2
b = 4

NYTimes (20000)

B = 768, T = 50

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

b = 4

NYTimes (20000)

B = 512, T = 5

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

1

b = 4

NYTimes (20000)
B = 512, T = 10

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

b = 4

NYTimes (20000)

B = 512, T = 20

SH−NC
SH−C
SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)
P

re
c
is

io
n

 (
%

)

b = 1

2

b = 4

NYTimes (20000)
B = 512, T = 50

SH−NC
SH−C
SRP
b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 24

EM30k

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

 1 b = 2,4

EM30k (15000)

B = 1024, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

1 b = 4

EM30k (15000)

B = 1024, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

) 1 b = 4

EM30k (15000)

B = 1024, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

) 1 b = 4

EM30k (15000)

B = 1024, T = 50

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1 b = 4

EM30k (15000)

B = 512, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

1 b = 4

EM30k (15000)

B = 512, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

1 b = 4

EM30k (15000)

B = 512, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

 1 b = 4

EM30k (15000)

B = 512, T = 50

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1 b = 4

EM30k (15000)

B = 256, T = 5

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Recall (%)

P
re

c
is

io
n

 (
%

)

1 b = 4

EM30k (15000)

B = 256, T = 10

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Recall (%)

P
re

c
is

io
n

 (
%

)

1 b = 4

EM30k (15000)

B = 256, T = 20

SRP
b−bit

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Recall (%)
P

re
c
is

io
n

 (
%

)

 1 b = 4

EM30k (15000)

B = 256, T = 50

SRP
b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 25

Evaluation 2: Sublinear Near Neighbor Search

• Build hashtables with parameters L and K .

• Retrieve elements for every query point.

• Rank the retrieved candidates based on the total number of signature

matches (note we already have precomputed signatures while building hash

tables).

• Plot precision-recall curve.

• Plot number of points retrieved.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 26

Webspam: Number of Retrieved Points

8 12 16 20 24
10

−2

10
−1

10
0

Webspam: L = 15

B (bits)

F
ra

c
ti
o

n
 E

v
a

lu
a

te
d

b = 1

b = 2

b = 4

SRP

b−bit

8 12 16 20 24
10

−2

10
−1

10
0

Webspam: L = 25

B (bits)

F
ra

c
ti
o

n
 E

v
a

lu
a

te
d

b = 1

b = 2

b = 4

SRP

b−bit

8 12 16 20 24
10

−2

10
−1

10
0

B (bits)
F

ra
c
ti
o

n
 E

v
a

lu
a

te
d

b = 1

b = 2

b = 4

Webspam: L = 50

SRP

b−bit

8 12 16 20 24
10

−2

10
−1

10
0

Webspam: L = 100

B (bits)

F
ra

c
ti
o

n
 E

v
a

lu
a

te
d

b = 1

b = 2

b = 4

SRP

b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 27

Webspam: Precision-Recall

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 24 L= 100

Webspam: T = 5

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)
B= 24 L= 100

Webspam: T = 10

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 24 L= 100

Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 24 L= 100

Webspam: T = 50

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 20 L= 100

Webspam: T = 5

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 20 L= 100

Webspam: T = 10

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)
P

re
c
is

io
n

 (
%

)

B= 20 L= 100

Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 20 L= 100

Webspam: T = 50

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 100

Webspam: T = 5

1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 100

Webspam: T = 10

1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 100

Webspam: T = 20

1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 100

Webspam: T = 50

1

b = 4

SRP
b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 28

Webspam: Precision-Recall

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 24 L= 50

Webspam: T = 5

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 24 L= 50

Webspam: T = 10

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 24 L= 50

Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 24 L= 50

Webspam: T = 50

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 20 L= 50

Webspam: T = 5

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 20 L= 50

Webspam: T = 10

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)
P

re
c
is

io
n

 (
%

)

B= 20 L= 50

Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 20 L= 50

Webspam: T = 50

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 50

Webspam: T = 5 b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 50

Webspam: T = 10

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 50

Webspam: T = 20

b = 1

b = 4

SRP
b−bit

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 50

Webspam: T = 50

b = 1

b = 4

SRP
b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 29

EM30k: Number of Retrieved Points

8 12 16
10

−3

10
−2

10
−1

10
0

EM30k: L = 15

B

F
ra

c
ti
o

n
 E

v
a

lu
a

te
d

b = 4

b = 2

b = 1

srp

b−bit

8 12 16
10

−3

10
−2

10
−1

10
0

EM30k: L = 25

B

F
ra

c
ti
o

n
 E

v
a

lu
a

te
d

b = 4

b = 2

b = 1

srp

b−bit

8 12 16
10

−3

10
−2

10
−1

10
0

EM30k: L = 50

B
F

ra
c
ti
o

n
 E

v
a

lu
a

te
d

b = 4

b = 2

b = 1

srp

b−bit

8 12 16
10

−3

10
−2

10
−1

10
0

EM30k: L = 100

B

F
ra

c
ti
o

n
 E

v
a

lu
a

te
d

b = 4

b = 2

b = 1

srp

b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 30

EM30k: Precision-Recall

0 20 40 60 80 100
0

20

40

60

80

100
B= 16 L= 100

EM30k: T = 5

Recall (%)

P
re

c
is

io
n

 (
%

)

1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 16 L= 100

EM30k: T = 10

Recall (%)

P
re

c
is

io
n

 (
%

)

1

b = 2 b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 16 L= 100

EM30k: T = 20

Recall (%)

P
re

c
is

io
n

 (
%

)

1

b = 2 b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 16 L= 100

EM30k: T = 50

Recall (%)

P
re

c
is

io
n

 (
%

)

1

b = 2 b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 12 L= 100

EM30k: T = 5

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 12 L= 100

EM30k: T = 10

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 12 L= 100

EM30k: T = 20

Recall (%)
P

re
c
is

io
n

 (
%

)

b = 1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100
B= 12 L= 100

EM30k: T = 50

Recall (%)

P
re

c
is

io
n

 (
%

)

b = 1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 8 L= 100

EM30k: T = 5

b = 1

b = 2,4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 8 L= 100

EM30k: T = 10

1

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 8 L= 100

EM30k: T = 20

1

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 8 L= 100

EM30k: T = 50

1

b = 4

SRP

b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 31

EM30k: Precision-Recall

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 50

EM30k: T = 5

1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 50

EM30k: T = 10

 1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 50

EM30k: T = 20

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 16 L= 50

EM30k: T = 50

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 12 L= 50

EM30k: T = 5

b = 1

b = 2
b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 12 L= 50

EM30k: T = 10

 1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)
P

re
c
is

io
n

 (
%

)

B= 12 L= 50

EM30k: T = 20

b = 1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 12 L= 50

EM30k: T = 50

b = 1

b = 2

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 8 L= 50

EM30k: T = 5

1

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 8 L= 50

EM30k: T = 10

1

b = 4

SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 8 L= 50

EM30k: T = 20

 1

b = 4
SRP

b−bit

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re

c
is

io
n

 (
%

)

B= 8 L= 50

EM30k: T = 50

1

b = 4 SRP

b−bit

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 32

Analysis of b-bit minwise LSH

• b-bit minwise hashing comes with interesting behavior with parameters b, K ,

L.

• For fixed b, K , to guarantee approximate near neighbor with probability 1 - δ,

we need

L ≥
log 1/δ

log
(

1
1−Pk

b
(R)

)

where Pb(R) is collision probability at R.

• Expected fraction of retrieved points with similarity R, assuming uniform

distribution over the similarity values is

1−
L
∑

i=0

(

L

i

)

(−1)i
1

2bki
1

(2b − 1)R

(

(2b − 1)R+ 1
)ki+1

− 1

ki+ 1

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 33

Fractions Retrieved Plot

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

L=1

L=1000

b = 1 k = 16

Resemblance (R)

F
ra

c
ti
o

n
 R

e
tr

ie
v
e

d

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

L=1

L=1000

b = 2 k = 8

Resemblance (R)

F
ra

c
ti
o

n
 R

e
tr

ie
v
e

d

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

L=1

L=1000

b = 4 k = 4

Resemblance (R)

F
ra

c
ti
o

n
 R

e
tr

ie
v
e

d

Figure 2: Numerical values for the fraction of retrieved points.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 34

Operating Threshold

• The overall collision probability is

Pb,k,L(R) = 1−
(

1− P k
b (R)

)L

• Given b, K , L, the optimum operating point is the point where the rate of

change of probability is maximum or where the second derivative vanishes

R0 =

(

k−1
Lk−1

)1/k

− 1
2b

1− 1
2b

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 35

Operating Threshold Plot

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

k = 2

k = 4

k = 8

k = 16

b = 1

L

T
h

re
s
h

o
ld

 R
0

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

k = 2

k = 4

k = 8

k = 16
b = 2

L

T
h
re

s
h
o
ld

 R
0

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

k = 2

k = 4

k = 8

k = 16 b = 4

L

T
h

re
s
h

o
ld

 R
0

Figure 3: The threshold R0, i.e., inflection point of Pb,k,L(R).

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 36

Conclusions

• We present a first study of directly using the bits generated by b-bit minwise

hashing to construct hashtables.

• Our proposed scheme is extremely simple and exhibits superb performance

compared to two strong baselines: spectral hashing (SH) and sign random

projections (SRP).

• The new scheme poses some interesting tradeoffs.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 37

References

• Li, P., Konig, A.C.: b-bit minwise hashing. In: WWW, Raleigh, NC (2010)

671-680.

• Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming.

Journal of ACM 42(6) (1995) 1115-1145.

• Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:

STOC, Montreal, Quebec, Canada (2002) 380-388.

• Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. In: Commun. ACM. Volume 51. (2008)

117-122.

Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data, 38

Thanks for your attention

Q & A

