Fast Near Neighbor Search in High-Dimensional Binary Data

Anshumali Shrivastava

Dept. of Computer Science

Cornell University

Ping Li

Dept. of Statistical Science

Cornell University

High Dimensional Sparse Binary Data in Practice

- Consider a Web-scale term-doc matrix X ∈ R^{n×D} with each row representing one Web page. Certain industry applications used 5-grams (i.e., D = O(10²⁵) is conceptually possible. Assuming 10⁵ common English words).
- Usually, when using 3- to 5-grams, most of the grams only occur at most once in each document. It is thus common to utilize only binary data when using n-grams.
- Conceptually, the textual content of the Web may be viewed as a giant matrix of size $n \times D$, with $n = 10^{11}$ Web pages and each page in $D = 2^{64}$ dims.
- Image Representations for retrieval and search using vector quantization naturally leads to sparse high dimensional binary data.

Near Neighbor Search

- The Classical Problem: Given a high dimensional query vector (Document or Image) we want to search a huge database for items similar to the given query.
- The simple strategy to scan all the database and compute similarities is prohibitive when
 - The data matrix X itself may be too large for the memory.
 - Computing similarities on the fly can be too time-consuming when the dimensionality D is high.
 - The cost of scanning all n data points is prohibitive and may not meet the demand in user-facing applications (e.g., search).
 - Parallelizing linear scans will not be energy-efficient if a significant portion of the computations is not needed.

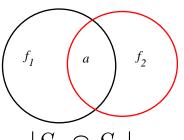
Locality Sensitive Hashing (LSH)

- Early space partitioning based approaches like K-D trees, R trees, etc, only good for low dimensions, typically D < 10, but leads to almost linear scan for higher D.
- LSH is currently one of the most popular technique in industrial practice.
- The basic idea behind LSH is to construct a randomized hash function such that similar objects are more likely to have the same hash key.
- More specifically, we are interested in hash function families \mathcal{H} , such that $Pr_{h\in\mathcal{H}}(h(x) = h(y)) = F(sim(x, y))$, where F is a monotonically increasing function and sim(x,y) is the similarity of interest between x and y.

- For each point x, generate a hash key by concatenating K hash signatures $g(x) = \{h_1(x), h_2(x), ..., h_K(x)\}$, where each $h_i(x)$ drawn independently from the LSH family \mathcal{H} .
- Store data point x in a hashtable at location g(x).
- Generate *L* such independent hashtables.
- For a given query point q, retrieve elements from the bucket $g(q) = \{h_1(q), h_2(q), ..., h_K(q)\}$ corresponding to each of the *L* hashtables.
- Smart choices of L, K lead to worst case approximate solution in $O(n^{\rho})$ where $\rho < 1$. (Adoni-Indyk 08)

Minwise Hashing: LSH for Set Similarity

• Binary vector can be thought of as sets. Consider two sets $S_1, S_2 \subseteq \Omega = \{0, 1, 2, ..., D - 1\}$ (e.g., $D = 2^{64}$)



$$f_1 = |S_1|, \ f_2 = |S_2|, \ a = |S_1 \cap S_2|.$$

The **resemblance** is a popular measure of similarity

$$R = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \frac{a}{f_1 + f_2 - a}$$

Suppose a random permutation π is performed on Ω , i.e., $\pi : \Omega \longrightarrow \Omega$

An elementary probability argument shows that

$$\mathbf{Pr}\left(\min(\pi(S_1)) = \min(\pi(S_2))\right) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = R.$$

Shortcomings of Minwise Hashing

- The signatures from Minwise Hashing could be potentially 64-bits, after concatenation of *K* signatures, the size of hashtable will just blow up beyond feasibility.
- We are mostly interested in highly similar pairs, we probably don't need all the 64-bits.

Introduction to b-Bit Minwise Hashing

Define the minimum values to be : $z_1 = \min(\pi(S_1))$, $z_2 = \min(\pi(S_2))$. Recall minwise hashing: $\Pr(z_1 = z_2) = R$. For b-bit minwise hashing,

 \mathbf{Pr} (lowest b bits of $z_1 =$ lowest b bits of $z_2) = C_{1,b} + (1 - C_{2,b}) R$

$$r_{1} = \frac{f_{1}}{D}, \quad r_{2} = \frac{f_{2}}{D}, \quad f_{1} = |S_{1}|, \quad f_{2} = |S_{2}|, \quad D = |\Omega|$$

$$C_{1,b} = A_{1,b} \frac{r_{2}}{r_{1} + r_{2}} + A_{2,b} \frac{r_{1}}{r_{1} + r_{2}},$$

$$C_{2,b} = A_{1,b} \frac{r_{1}}{r_{1} + r_{2}} + A_{2,b} \frac{r_{2}}{r_{1} + r_{2}},$$

$$A_{1,b} = \frac{r_{1} [1 - r_{1}]^{2^{b} - 1}}{1 - [1 - r_{1}]^{2^{b}}}, \quad A_{2,b} = \frac{r_{2} [1 - r_{2}]^{2^{b} - 1}}{1 - [1 - r_{2}]^{2^{b}}}.$$

Accuracy Space Tradeoff

- When the data are highly similar, a small b (e.g., 1 or 2) may be good enough.
 However, when the data are not very similar, b cannot be too small.
- The advantage of *b*-bit minwise hashing can be demonstrated through the "variance-space" trade-off: Var $(\hat{R}_b) \times b$.
- For all practical purposes, the similarities estimated from 4-bit is indistinguishable compared to 64-bit minwise hashing. (Li-Konig WWW 2010)

Our Proposal for Near Neighbor Search

- In the limiting case when the data is very sparse and r_j is typically very small then for all practical purposes we can set $A_{j,b} = \frac{1}{2^b}$ in the formula.
- b-bit minwise hashing in such case is LSH with collision probability

 \mathbf{Pr} (lowest b bits of $z_1 =$ lowest b bits of $z_2) = \frac{1}{2^b} + (1 - \frac{1}{2^b})(R)$

• The signatures are now at most *b* (1,2,4, etc.) bits, the hash table size is manageable and so it can naturally be used to build hash table for sublinear search.

Example of Hashtables

Index		Data Points	In	dex	Data Points
00	00	8 , 13, 251	00	00	2, 19, 83
00	01	5, 14, 19, 29	00	01	17, 36, 129
00	10	(empty)	00	10	4, 34, 52, 796
	-			-	1
		1			1
11	01	7, 24, 156	11	01	7, 198
11	10	, 33, 174, 3153	11	10	56, 989
11	11	61, 342	11	11	8 ,9, 156, 879 (

Figure 1: An example of hash tables, with b = 2, K = 2, and L = 2.

Real Datasets used for Comparisons and Evaluations

Table 1: Data Information

Dataset	n	D
Webspam	70,000	16,609,143
NYTimes	20,000	102,660
EM30k	30,000	34,950,038

Competitor 1: Signed Random Projections (SRP)

• One of the most popular LSH is SRP (Charikar STOC 2002),

$$h_r(x) = egin{cases} 1 & ext{if } r^T x \geq 0 \ 0 & ext{otherwise} \end{cases}$$

where $r \in R^d$ drawn independently from $N(0,\mathcal{I})$

• The seminal work of Geomens-Williamson showed that

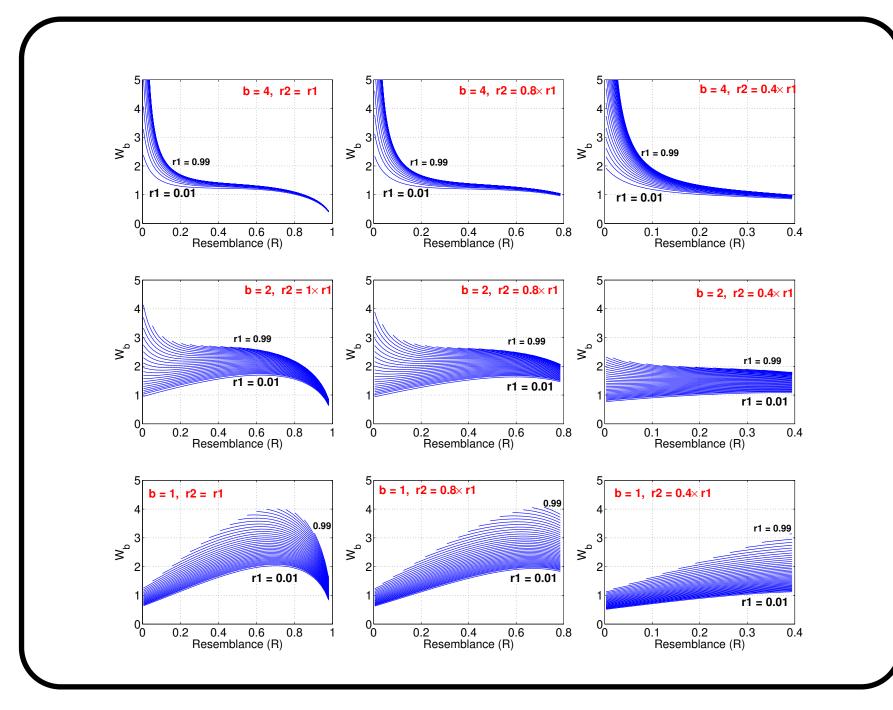
$$Pr(h(x) = h(y)) = 1 - \frac{1}{\pi} \cos^{-1}\left(\frac{x^T y}{\|x\| \|y\|}\right)$$

Why b-bit minwise hashing should be better ?

- We compare the variance of estimators of resemblance (R) using b-bit hashing $Var\left(\hat{R}_{b}\right)$ and signed random projections $Var\left(\hat{R}_{S}\right)$.
- We compute the ratio

$$W_{b} = \frac{Var\left(\hat{R}_{S}\right)}{Var\left(\hat{R}_{b}\right) \times b} = \frac{\theta(\pi - \theta)f_{1}f_{2}\sin^{2}(\theta)\left(\frac{f_{1} + f_{2}}{(f_{1} + f_{2} - a)^{2}}\right)^{2}}{\frac{[C_{1,b} + (1 - C_{2,b})R][1 - C_{1,b} - (1 - C_{2,b})R]}{[1 - C_{2,b}]^{2}}} \quad (1)$$

• $W_b > 1$ means *b*-bit minwise hashing is more accurate than SRP at the same storage.



Learning Approaches

- The idea is to learn a mapping from data vectors to compact binary codes which preserves the pairwise similarity.
- Unlike LSH, these approaches take into account the underlying data distribution.
- Machine learning approaches tend to outperform LSH where the data is usually sitting on some low dimensional manifolds.
- What about extremely high dimensional sparse data?
 - Most of these methods are almost impossible to train at such scale.
 - Not much is known about the performance of these approaches at such scale.

Competitor 2: Spectral Hashing

- Spectral Hashing is one of the state-of-the-art learning based hashing methods.
- Closely related to the problem of spectral graph partitioning.
- Aims to minimize the average hamming distance between the output codes of similar objects, subject to constraints that the bits are independent and uncorrelated.
- The minimization is done efficiently via one dimensional eigenfunctions.

Spectral Hashing (SH) Formulation

Let $\{y_i\}$ be the list of code words (binary vectors of length k) for each data point and $W_{ij} = e^{\frac{-||x_i - x_j||^2}{\epsilon^2}}$ be the similarity function. The SH aims to solve

$$minimize: \sum_{ij} W_{ij} ||y_i - y_j||^2$$

subject to:

$$y_i \in \{-1, 1\}^k$$
$$\sum_i y_i = 0$$
$$\frac{1}{n} \sum_i y_i y_i^T = \mathcal{I}$$

Spectral Hashing (SH) Algorithm

- Fit a multi-dimensional rectangle to the data. (Run PCA to align axes, then bound uniform distribution.)
- For each dimension, calculate k smallest eigenfunctions.
- Threshold eigenfunctions at zero to give binary codes.

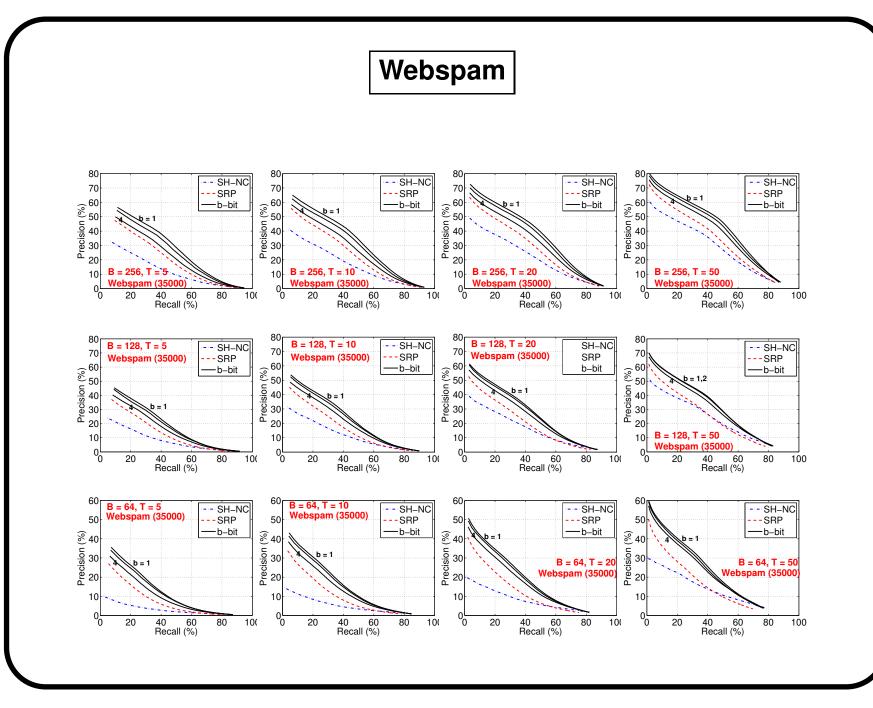
Making Spectral Hashing Work

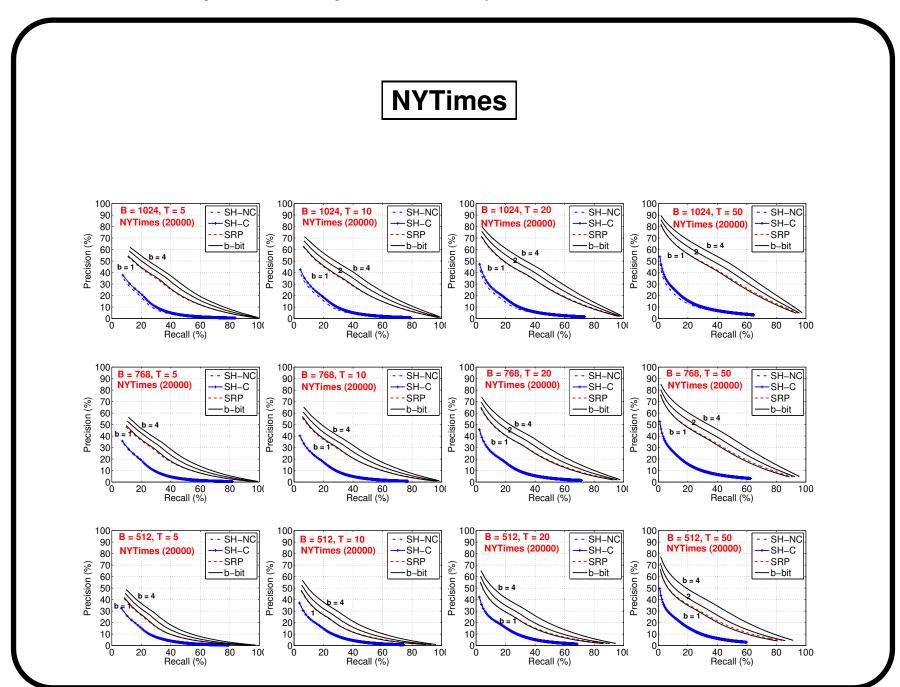
- We replace the eigen-decomposition operations by equivalent SVD operations which avoids materializing the dense covariance matrix.
- PCA need a centering step which makes the data non-sparse and impossible to handle.
- We empirically observe that skipping centering step does not affect the performance of SH on the small subsets of data.
- Skipping the centering step made it possible to train SH on full datasets instead of small samples.

Evaluation 1: Hash Code Quality Evaluation

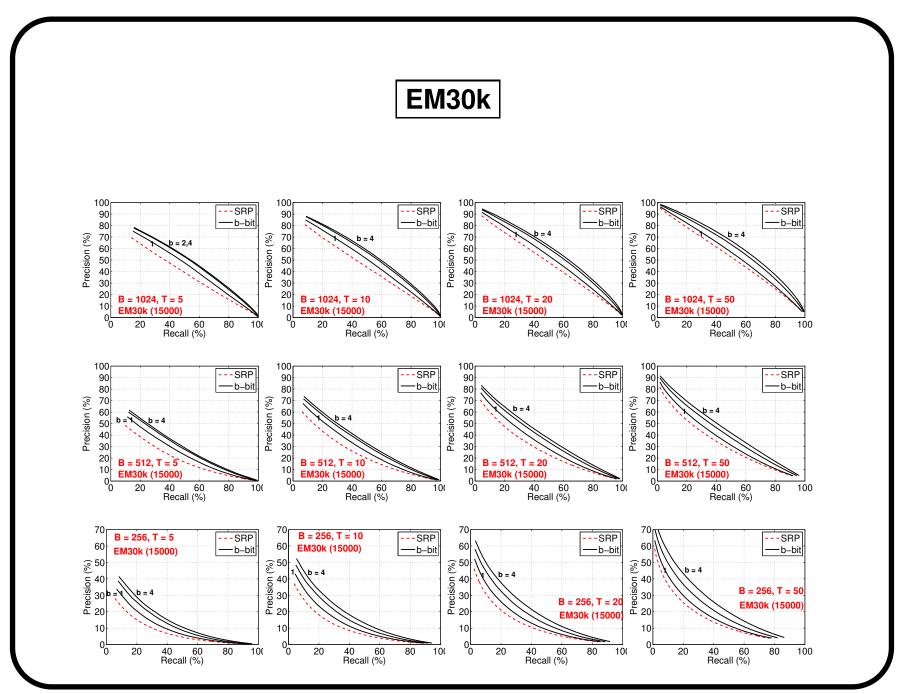
- We generate binary codes of fixed length using the three methodologies.
- Retrieve nearest neighbor based on the similarity between binary codes.
- Plot precision-recall curves.







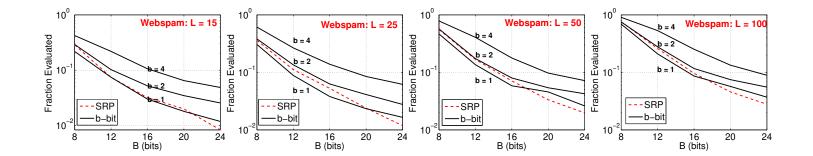
Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data,

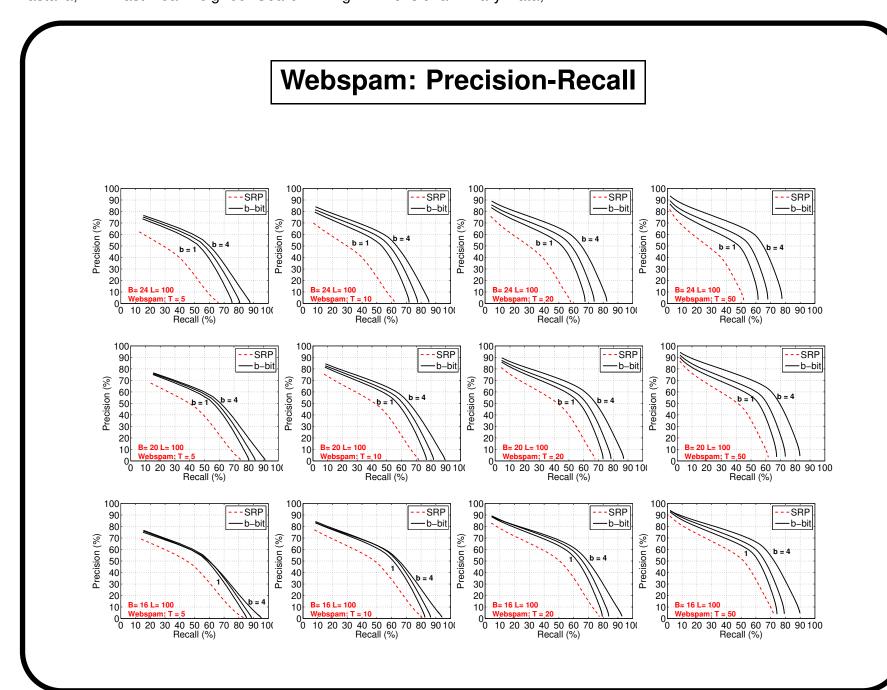


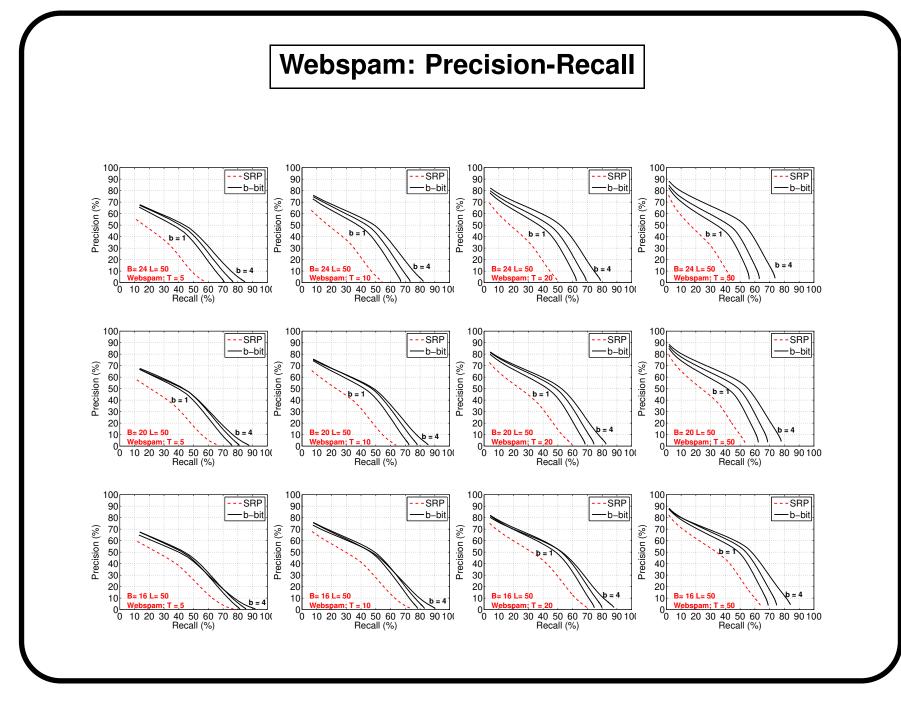
Evaluation 2: Sublinear Near Neighbor Search

- Build hashtables with parameters L and K.
- Retrieve elements for every query point.
- Rank the retrieved candidates based on the total number of signature matches (note we already have precomputed signatures while building hash tables).
- Plot precision-recall curve.
- Plot number of points retrieved.

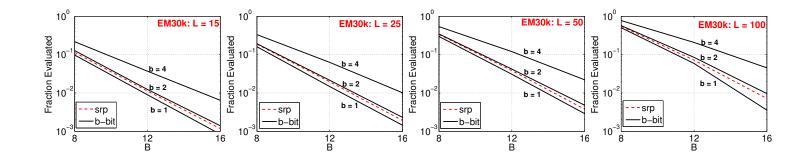
Webspam: Number of Retrieved Points

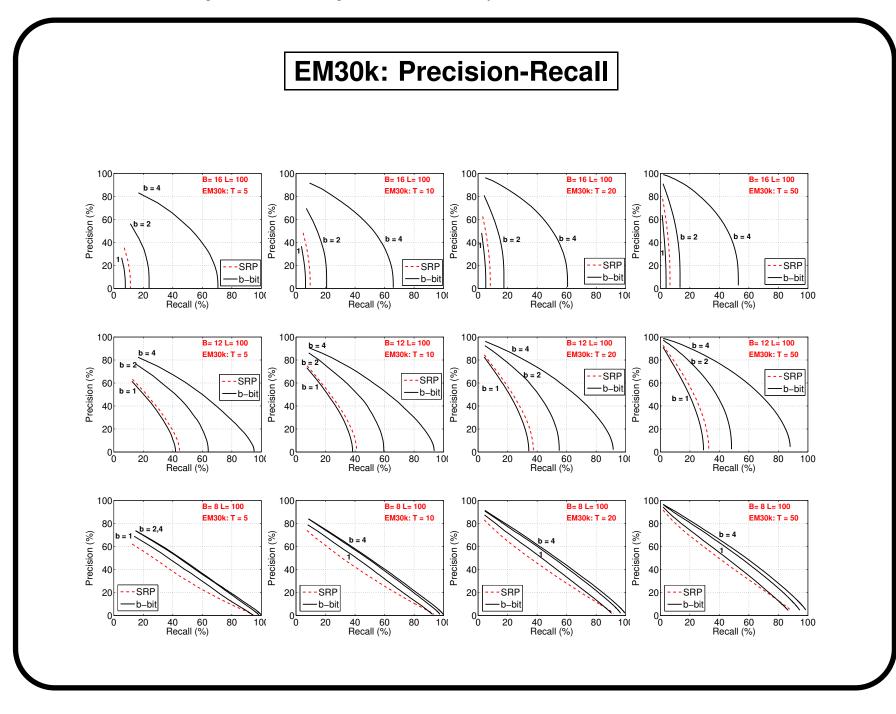


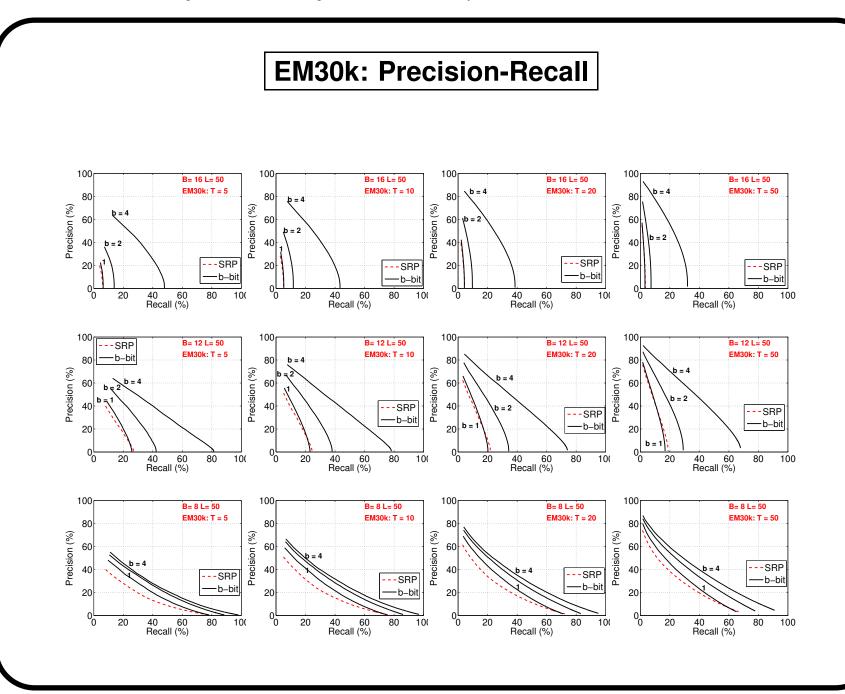




EM30k: Number of Retrieved Points







Analysis of b-bit minwise LSH

- b-bit minwise hashing comes with interesting behavior with parameters b, K, L.
- For fixed b, K, to guarantee approximate near neighbor with probability 1 δ , we need

$$L \ge \frac{\log 1/\delta}{\log \left(\frac{1}{1 - P_b^k(R)}\right)}$$

where $P_b(R)$ is collision probability at R.

• Expected fraction of retrieved points with similarity R, assuming uniform distribution over the similarity values is

$$1 - \sum_{i=0}^{L} {\binom{L}{i}} (-1)^{i} \frac{1}{2^{bki}} \frac{1}{(2^{b}-1)R} \frac{\left((2^{b}-1)R+1\right)^{ki+1}-1}{ki+1}$$

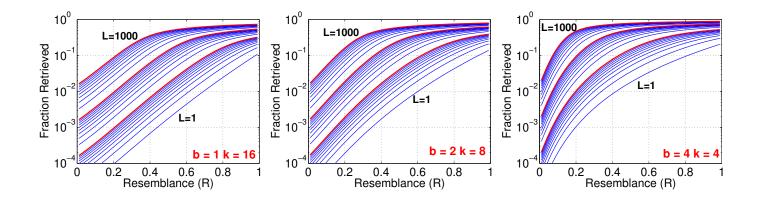


Figure 2: Numerical values for the fraction of retrieved points.

Operating Threshold

• The overall collision probability is

$$P_{b,k,L}(R) = 1 - (1 - P_b^k(R))^L$$

• Given b, K, L, the optimum operating point is the point where the rate of change of probability is maximum or where the second derivative vanishes

$$R_0 = \frac{\left(\frac{k-1}{Lk-1}\right)^{1/k} - \frac{1}{2^b}}{1 - \frac{1}{2^b}}$$

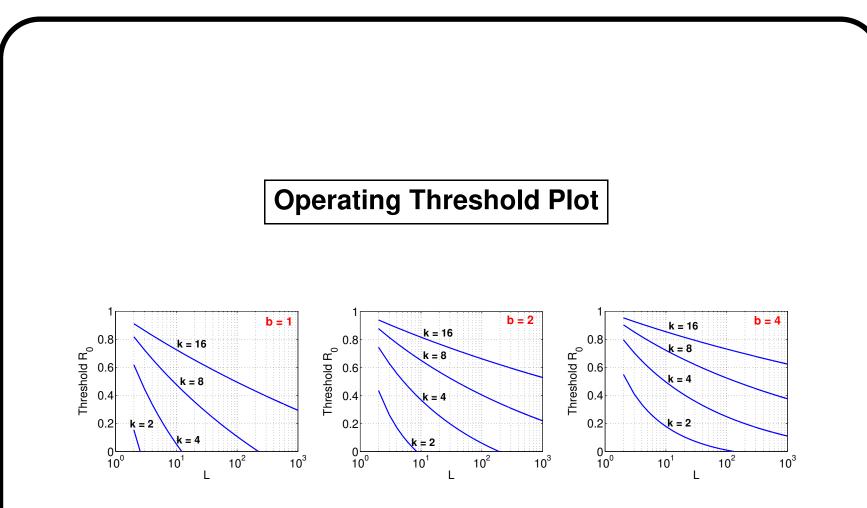


Figure 3: The threshold R_0 , i.e., inflection point of $P_{b,k,L}(R)$.

Conclusions

- We present a first study of directly using the bits generated by *b*-bit minwise hashing to construct hashtables.
- Our proposed scheme is extremely simple and exhibits superb performance compared to two strong baselines: spectral hashing (SH) and sign random projections (SRP).
- The new scheme poses some interesting tradeoffs.

References

- Li, P., Konig, A.C.: b-bit minwise hashing. In: WWW, Raleigh, NC (2010) 671-680.
- Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of ACM 42(6) (1995) 1115-1145.
- Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC, Montreal, Quebec, Canada (2002) 380-388.
- Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: Commun. ACM. Volume 51. (2008) 117-122.

Thanks for your attention

