Fast Near Neighbor Search in High-Dimensional Binary Data

Anshumali Shrivastava
Dept. of Computer Science
Cornell University
Ping Li
Dept. of Statistical Science
Cornell University

High Dimensional Sparse Binary Data in Practice

- Consider a Web-scale term-doc matrix $\mathrm{X} \in R^{n \times D}$ with each row representing one Web page. Certain industry applications used 5 -grams (i.e., $\mathrm{D}=\mathrm{O}\left(10^{25}\right)$ is conceptually possible. Assuming 10^{5} common English words).
- Usually, when using 3- to 5-grams, most of the grams only occur at most once in each document. It is thus common to utilize only binary data when using n-grams.
- Conceptually, the textual content of the Web may be viewed as a giant matrix of size $n \times D$, with $n=10^{11}$ Web pages and each page in $D=2^{64}$ dims.
- Image Representations for retrieval and search using vector quantization naturally leads to sparse high dimensional binary data.

Near Neighbor Search

- The Classical Problem: Given a high dimensional query vector (Document or Image) we want to search a huge database for items similar to the given query.
- The simple strategy to scan all the database and compute similarities is prohibitive when
- The data matrix X itself may be too large for the memory.
- Computing similarities on the fly can be too time-consuming when the dimensionality D is high.
- The cost of scanning all n data points is prohibitive and may not meet the demand in user-facing applications (e.g., search).
- Parallelizing linear scans will not be energy-efficient if a significant portion of the computations is not needed.

Locality Sensitive Hashing (LSH)

- Early space partitioning based approaches like K-D trees, R trees, etc, only good for low dimensions, typically $D<10$, but leads to almost linear scan for higher D.
- LSH is currently one of the most popular technique in industrial practice.
- The basic idea behind LSH is to construct a randomized hash function such that similar objects are more likely to have the same hash key.
- More specifically, we are interested in hash function families \mathcal{H}, such that $\operatorname{Pr}_{h \in \mathcal{H}}(h(x)=h(y))=F(\operatorname{sim}(x, y))$, where F is a monotonically increasing function and $\operatorname{sim}(\mathrm{x}, \mathrm{y})$ is the similarity of interest between x and y .

Sub-linear Time Approximate Near Neighbor Search Using LSH

- For each point x , generate a hash key by concatenating K hash signatures $g(x)=\left\{h_{1}(x), h_{2}(x), \ldots, h_{K}(x)\right\}$, where each $h_{i}(x)$ drawn independently from the LSH family \mathcal{H}.
- Store data point x in a hashtable at location $g(x)$.
- Generate L such independent hashtables.
- For a given query point q, retrieve elements from the bucket $g(q)=$ $\left\{h_{1}(q), h_{2}(q), \ldots, h_{K}(q)\right\}$ corresponding to each of the L hashtables.
- Smart choices of L, K lead to worst case approximate solution in $\mathrm{O}\left(n^{\rho}\right)$ where $\rho<1$. (Adoni-Indyk 08)

Minwise Hashing: LSH for Set Similarity

- Binary vector can be thought of as sets. Consider two sets
$S_{1}, S_{2} \subseteq \Omega=\{0,1,2, \ldots, D-1\}$ (e.g., $D=2^{64}$)

$f_{1}=\left|S_{1}\right|, \quad f_{2}=\left|S_{2}\right|, \quad a=\left|S_{1} \cap S_{2}\right|$.
The resemblance is a popular measure of similarity
$R=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}=\frac{a}{f_{1}+f_{2}-a}$
Suppose a random permutation π is performed on Ω, i.e., $\pi: \Omega \longrightarrow \Omega$
An elementary probability argument shows that

$$
\operatorname{Pr}\left(\min \left(\pi\left(S_{1}\right)\right)=\min \left(\pi\left(S_{2}\right)\right)\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}=R
$$

Shortcomings of Minwise Hashing

- The signatures from Minwise Hashing could be potentially 64-bits, after concatenation of K signatures, the size of hashtable will just blow up beyond feasibility.
- We are mostly interested in highly similar pairs, we probably don't need all the 64-bits.

Introduction to b-Bit Minwise Hashing

Define the minimum values to be : $z_{1}=\min \left(\pi\left(S_{1}\right)\right), z_{2}=\min \left(\pi\left(S_{2}\right)\right)$. Recall minwise hashing: $\operatorname{Pr}\left(z_{1}=z_{2}\right)=R$. For b-bit minwise hashing,

$$
\operatorname{Pr}\left(\text { lowest } b \text { bits of } z_{1}=\text { lowest } b \text { bits of } z_{2}\right)=C_{1, b}+\left(1-C_{2, b}\right) R
$$

$$
\begin{aligned}
& r_{1}=\frac{f_{1}}{D}, \quad r_{2}=\frac{f_{2}}{D}, \quad f_{1}=\left|S_{1}\right|, \quad f_{2}=\left|S_{2}\right|, \quad D=|\Omega| \\
& C_{1, b}=A_{1, b} \frac{r_{2}}{r_{1}+r_{2}}+A_{2, b} \frac{r_{1}}{r_{1}+r_{2}}, \\
& C_{2, b}=A_{1, b} \frac{r_{1}}{r_{1}+r_{2}}+A_{2, b} \frac{r_{2}}{r_{1}+r_{2}}, \\
& A_{1, b}=\frac{r_{1}\left[1-r_{1}\right]^{2^{b}-1}}{1-\left[1-r_{1}\right]^{2^{b}}}, \quad A_{2, b}=\frac{r_{2}\left[1-r_{2}\right]^{2^{b}-1}}{1-\left[1-r_{2}\right]^{2^{b}}} .
\end{aligned}
$$

Accuracy Space Tradeoff

- When the data are highly similar, a small b (e.g., 1 or 2) may be good enough. However, when the data are not very similar, b cannot be too small.
- The advantage of b-bit minwise hashing can be demonstrated through the "variance-space" trade-off: $\operatorname{Var}\left(\hat{R}_{b}\right) \times b$.
- For all practical purposes, the similarities estimated from 4-bit is indistinguishable compared to 64-bit minwise hashing. (Li-Konig WWW 2010)

Our Proposal for Near Neighbor Search

- In the limiting case when the data is very sparse and r_{j} is typically very small then for all practical purposes we can set $A_{j, b}=\frac{1}{2^{b}}$ in the formula.
- b-bit minwise hashing in such case is LSH with collision probability

$$
\operatorname{Pr}\left(\text { lowest } \mathrm{b} \text { bits of } z_{1}=\text { lowest } \mathrm{b} \text { bits of } z_{2}\right)=\frac{1}{2^{b}}+\left(1-\frac{1}{2^{b}}\right)(R)
$$

- The signatures are now at most $b(1,2,4$, etc.) bits, the hash table size is manageable and so it can naturally be used to build hash table for sublinear search.

Example of Hashtables

Index	Data Points
0000	, 8, 13, 251
00.01	5, 14, 19, 29
0010	(empty)
1101	17, 24, 156
1110	,33, 174, 3153
1111	, 61, 342

Index
$\mathbf{0 0}$ $\mathbf{0 0}$ Data Points $\mathbf{0 0}$ $\mathbf{0 1}$ $17,3,83$ $\mathbf{0 0}$ $\mathbf{1 0}$ $4,34,52, \mathbf{7 9 6}$ $\mathbf{1 1}$ $\mathbf{0 1}$ 7,198 $\mathbf{1 1}$ $\mathbf{1 0}$ 56,989 $\mathbf{1 1}$ $\mathbf{1 1}$ $8,9,156,879$

Figure 1: An example of hash tables, with $b=2, K=2$, and $L=2$.

Real Datasets used for Comparisons and Evaluations

Table 1: Data Information

Dataset	n	D
Webspam	70,000	$16,609,143$
NYTimes	20,000	102,660
EM30k	30,000	$34,950,038$

Competitor 1: Signed Random Projections (SRP)

- One of the most popular LSH is SRP (Charikar STOC 2002),

$$
h_{r}(x)= \begin{cases}1 & \text { if } r^{T} x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where $r \in R^{d}$ drawn independently from $N(0, \mathcal{I})$

- The seminal work of Geomens-Williamson showed that

$$
\operatorname{Pr}(h(x)=h(y))=1-\frac{1}{\pi} \cos ^{-1}\left(\frac{x^{T} y}{\|x\|\|y\|}\right)
$$

Why b-bit minwise hashing should be better ?

- We compare the variance of estimators of resemblance (R) using b-bit hashing $\operatorname{Var}\left(\hat{R}_{b}\right)$ and signed random projections $\operatorname{Var}\left(\hat{R}_{S}\right)$.
- We compute the ratio

$$
\begin{equation*}
W_{b}=\frac{\operatorname{Var}\left(\hat{R}_{S}\right)}{\operatorname{Var}\left(\hat{R}_{b}\right) \times b}=\frac{\theta(\pi-\theta) f_{1} f_{2} \sin ^{2}(\theta)\left(\frac{f_{1}+f_{2}}{\left(f_{1}+f_{2}-a\right)^{2}}\right)^{2}}{\frac{\left[C_{1, b}+\left(1-C_{2, b}\right) R\right]\left[1-C_{1, b}-\left(1-C_{2, b}\right) R\right]}{\left[1-C_{2, b}\right]^{2}}} \tag{1}
\end{equation*}
$$

- $W_{b}>1$ means b-bit minwise hashing is more accurate than SRP at the same storage.

Learning Approaches

- The idea is to learn a mapping from data vectors to compact binary codes which preserves the pairwise similarity.
- Unlike LSH, these approaches take into account the underlying data distribution.
- Machine learning approaches tend to outperform LSH where the data is usually sitting on some low dimensional manifolds.
- What about extremely high dimensional sparse data?
- Most of these methods are almost impossible to train at such scale.
- Not much is known about the performance of these approaches at such scale.

Competitor 2: Spectral Hashing

- Spectral Hashing is one of the state-of-the-art learning based hashing methods.
- Closely related to the problem of spectral graph partitioning.
- Aims to minimize the average hamming distance between the output codes of similar objects, subject to constraints that the bits are independent and uncorrelated.
- The minimization is done efficiently via one dimensional eigenfunctions.

Spectral Hashing (SH) Formulation

Let $\left\{y_{i}\right\}$ be the list of code words (binary vectors of length k) for each data point and $W_{i j}=e^{\frac{-\left\|x_{i}-x_{j}\right\|^{2}}{\epsilon^{2}}}$ be the similarity function. The SH aims to solve

$$
\operatorname{minimize}: \sum_{i j} W_{i j}\left\|y_{i}-y_{j}\right\|^{2}
$$

subject to:

$$
\begin{gathered}
y_{i} \in\{-1,1\}^{k} \\
\sum_{i} y_{i}=0 \\
\frac{1}{n} \sum_{i} y_{i} y_{i}^{T}=\mathcal{I}
\end{gathered}
$$

Spectral Hashing (SH) Algorithm

- Fit a multi-dimensional rectangle to the data. (Run PCA to align axes, then bound uniform distribution.)
- For each dimension, calculate k smallest eigenfunctions.
- Threshold eigenfunctions at zero to give binary codes.

Making Spectral Hashing Work

- We replace the eigen-decomposition operations by equivalent SVD operations which avoids materializing the dense covariance matrix.
- PCA need a centering step which makes the data non-sparse and impossible to handle.
- We empirically observe that skipping centering step does not affect the performance of SH on the small subsets of data.
- Skipping the centering step made it possible to train SH on full datasets instead of small samples.

Evaluation 1: Hash Code Quality Evaluation

- We generate binary codes of fixed length using the three methodologies.
- Retrieve nearest neighbor based on the similarity between binary codes.
- Plot precision-recall curves.

Evaluation 2: Sublinear Near Neighbor Search

- Build hashtables with parameters L and K.
- Retrieve elements for every query point.
- Rank the retrieved candidates based on the total number of signature matches (note we already have precomputed signatures while building hash tables).
- Plot precision-recall curve.
- Plot number of points retrieved.

Webspam: Number of Retrieved Points

Webspam: Precision-Recall

Webspam: Precision-Recall

EM30k: Number of Retrieved Points

EM30k: Precision-Recall

EM30k: Precision-Recall

Analysis of b-bit minwise LSH

- b-bit minwise hashing comes with interesting behavior with parameters b, K, L.
- For fixed b, K, to guarantee approximate near neighbor with probability $1-\delta$, we need

$$
L \geq \frac{\log 1 / \delta}{\log \left(\frac{1}{1-P_{b}^{k}(R)}\right)}
$$

where $P_{b}(R)$ is collision probability at R .

- Expected fraction of retrieved points with similarity R, assuming uniform distribution over the similarity values is

$$
1-\sum_{i=0}^{L}\binom{L}{i}(-1)^{i} \frac{1}{2^{b k i}} \frac{1}{\left(2^{b}-1\right) R} \frac{\left(\left(2^{b}-1\right) R+1\right)^{k i+1}-1}{k i+1}
$$

Fractions Retrieved Plot

Figure 2: Numerical values for the fraction of retrieved points.

Operating Threshold

- The overall collision probability is

$$
P_{b, k, L}(R)=1-\left(1-P_{b}^{k}(R)\right)^{L}
$$

- Given b, K, L, the optimum operating point is the point where the rate of change of probability is maximum or where the second derivative vanishes

$$
R_{0}=\frac{\left(\frac{k-1}{L k-1}\right)^{1 / k}-\frac{1}{2^{b}}}{1-\frac{1}{2^{b}}}
$$

Operating Threshold Plot

Figure 3: The threshold R_{0}, i.e., inflection point of $P_{b, k, L}(R)$.

Conclusions

- We present a first study of directly using the bits generated by b-bit minwise hashing to construct hashtables.
- Our proposed scheme is extremely simple and exhibits superb performance compared to two strong baselines: spectral hashing (SH) and sign random projections (SRP).
- The new scheme poses some interesting tradeoffs.

References

- Li, P., Konig, A.C.: b-bit minwise hashing. In: WWW, Raleigh, NC (2010) 671-680.
- Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of ACM 42(6) (1995) 1115-1145.
- Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC, Montreal, Quebec, Canada (2002) 380-388.
- Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: Commun. ACM. Volume 51. (2008) 117-122.

Thanks for your attention

$$
\mathbf{Q} \& \mathbf{A}
$$

