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Abstract—This work has two main objectives, namely, to introduce a novel algorithm, called the Fast Condensed Nearest Neighbor

(FCNN) rule, for computing a training-set-consistent subset for the nearest neighbor decision rule and to show that condensation

algorithms for the nearest neighbor rule can be applied to huge collections of data. The FCNN rule has some interesting properties: it is

order independent, its worst-case time complexity is quadratic but often with a small constant prefactor, and it is likely to select points

very close to the decision boundary. Furthermore, its structure allows for the triangle inequality to be effectively exploited to reduce the

computational effort. The FCNN rule outperformed even here-enhanced variants of existing competence preservation methods both in

terms of learning speed and learning scaling behavior and, often, in terms of the size of the model while it guaranteed the same

prediction accuracy. Furthermore, it was three orders of magnitude faster than hybrid instance-based learning algorithms on the

MNIST and Massachusetts Institute of Technology (MIT) Face databases and computed a model of accuracy comparable to that of

methods incorporating a noise-filtering pass.

Index Terms—Classification, large and high-dimensional data, nearest neighbor rule, prototype selection algorithms, training-set-

consistent subset.

Ç

1 INTRODUCTION

THE nearest neighbor (NN) decision rule [10] assigns to an
unclassified sample point the classification of the nearest

of a set of previously classified points. For this decision rule,
no explicit knowledge of the underlying distributions of the
data is needed. A strong point of the NN rule is that for all
distributions, its probability of error is bounded above by
twice the Bayes probability of error [10], [27], [16]. That is, it
may be said that half of the classification information in an
infinite size sample set is contained in the NN.

The naive implementation of the NN rule requires the
storage of all of the previously classified data and then the
comparison of each sample point to be classified to each
stored point. In order to reduce both space and time
requirements, several techniques to reduce the size of the
stored data for the NN rule have been proposed (see [32]
and [28] for a survey), referred to as training-set reduction,
training-set condensation, reference set thinning, and
prototype selection algorithms. In particular, among these
techniques, training-set-consistent ones aim to select a subset
of the training set that classifies the remaining data correctly
through the NN rule.

Using a training-set-consistent subset, instead of the
entire training set, to implement the NN rule has the
additional advantage that it may guarantee better classifica-
tion accuracy. Indeed, Karaçali and Krim [22] showed that
the Vapnik-Chervonenkis (VC) dimension of an NN
classifier is given by the number of reference points in the
training set. Thus, in order to achieve a classification rule

with controlled generalization, it is better to replace the
training set with a small consistent subset. Unfortunately,
computing a minimum-cardinality training-set-consistent
subset for the NN rule turns out to be intractable [30].

Several training-set-consistent condensation algorithms
have been introduced in the literature. We point out that
among the criteria characterizing condensation methods,

learning speed is usually neglected. However, in order to
manage huge amounts of data, methods exhibiting good
scaling behavior are definitively needed. This work intro-

duces a novel order-independent algorithm for finding a
training-set-consistent subset for the NN rule, called the
Fast Condensed NN (FCNN) rule, shows that it is scalable
on large multidimensional training sets, and compares it

with existing condensation methods.
The rest of the paper is organized as follows. In Section 2,

previous approaches are described and compared to the
approach here proposed, and the contribution of this work
is illustrated. In Section 3, the FCNN rule is described, and

its main properties are stated. In Section 4, experimental
results are presented together with a thorough comparison
with existing methods. Finally, in Section 5, the strengths
and weaknesses of the different condensation methods are

discussed, and conclusions are drawn.

2 RELATED WORKS AND CONTRIBUTION

Starting from the seminal work in [21], several training-
set condensation algorithms have been introduced in the

literature, also known as instance-based [2], lazy [1],
memory-based [26], and case-based learners [29]. These
methods can be grouped into three main categories
depending on the objectives that they want to achieve

[8], that is, competence preservation, competence enhancement,
and hybrid approaches.
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Sistemistica, Università della Calabria, Via P. Bucci, 41C, 87036 Rende
(CS), Italy. E-mail: f.angiulli@deis.unical.it.

Manuscript received 20 Sept. 2006; revised 30 June 2007; accepted 11 July
2007; published online 1 Aug. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0443-0906.
Digital Object Identifier no. 10.1109/TKDE.2007.190645.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society



The goal of competence preservation methods is to
compute a training-set-consistent subset, removing super-
fluous instances that will not affect the classification
accuracy of the training set. Competence enhancement
methods aim to remove noisy instances in order to increase
classifier accuracy. Finally, hybrid methods search for a
small subset of the training set that simultaneously achieves
both noisy and superfluous instances elimination.

Competence enhancement and preservation methods
can be combined in order to achieve the same objectives
as hybrid methods. However, although the goals of
enhancement and preservation methods are clearly sepa-
rated, that is, smoothing the decision boundary in the
former case and computing a possibly small training-set-
consistent subset in the latter, often it is not clear how
subsets computed by hybrid methods can be related to the
sets computed by the two other methods. Thus, searching
for a small training-set-consistent subset is a relevant task
per se, improving both classification speed and classifier
accuracy [22], and computationally hard [30].

Next, we first describe training-set-consistent subset
methods for the NN rule and some other related work
and then point out the contributions of this work. A
detailed survey of condensation methods can be found in
[32] and [28].

2.1.1 Condensed Nearest Neighbor (CNN) Rule

The concept of a training-set-consistent subset was intro-
duced by Hart [21] together with an algorithm, called the
CNN rule, to determine a consistent subset of the original
sample set.

The algorithm uses two bins, called S and T . Initially, the
first sample of the training set is placed in S, whereas the
remaining samples of the training set are placed in T . Then,
one pass through T is performed. During the scan,
whenever a point of T is misclassified using the content
of S, it is transferred from T to S. The algorithm terminates
when no point is transferred during a complete pass of T .

The motivation for this heuristic is that misclassified data
lie close to the decision boundary. Nevertheless, the CNN
rule may select points far from the decision boundary.
Furthermore, the CNN rule is order dependent, that is, it
has the undesirable property that the consistent subset
depends on the order in which the data is processed. Thus,
multiple runs of the method over randomly permuted
versions of the original training set should be executed in
order to settle the quality of its output [3].

2.1.2 Modified Condensed Nearest Neighbor (MCNN)

Rule

The MCNN rule [14] computes a training-set-consistent
subset in an incremental manner.

The consistent subset S is initially set to the empty set.
During each main iteration of the algorithm, first, the points
St of the training set T misclassified by using S are selected.
Then, the set of centroids1 C of the points in St are
computed and used to classify St. St is thus partitioned into

two sets, Sr and Ss, of points that are correctly classified and
misclassified, respectively, by using the centroids C. If
set Ss is empty, then the set S is augmented with the set C;
otherwise, St is set to Sr, and the process is repeated until Ss

becomes empty. The algorithm terminates when there are
no misclassified points of T by using S.

Different from the CNN rule, the MCNN rule is order
independent, that is, it always returns the same consistent
subset independent of the order in which the data is
processed. As claimed by the authors of the algorithm, the
MCNN rule may work well for data with a Gaussian
distribution or that can be split up into regions with a
Gaussian distribution, but, in general, it is unlikely to select
points close to the decision boundary. Also, during each
iteration of the MCNN rule, at most m points can be added
to the subset S, where m is the number of classes in T ; thus,
the method might require a lot of iterations to converge.

2.1.3 Structural Risk Minimization Nearest

Neighbor Rule

In order to compute a small consistent subset S of the
training set T , Karaçali and Krim [22] proposed the
following algorithm, called Structural Risk Minimization
using the NN rule (NNSRM).

Assume that the training set T contains only two class
labels.2 First, all pairwise distances among points having
different class labels are computed. Let fxi; yig denote the
pair having the ith smallest distance, i � 1. The set S is
initialized to fx1; y1g, that is, to the closest points x1 and y1
from the two classes, and a counter k is initialized to 2.
Next, until set S misclassifies at least a point in T , the
following steps are performed: If fxk; ykg is not contained in
S, then S is augmented with both xk and yk; in any case, k is
set to kþ 1. That is, the algorithm performs one pass on the
pairs of points from the two classes ordered in increasing
distance, and until the initially empty set S misclassifies the
training set T , whenever a pair is not contained in S, it is
added to S.

The intuition underlying the method is that since the
nearest pairs of points from the opposite classes lie in the
regions where the domains of the two classes are closest,
that is, where most classification errors occur, they must be
considered first. However, the method is costly. Indeed, the
complexity of the NNSRM algorithm is OðjT j3Þ. Further-
more, we note that the size of the condensed set computed
is sensitive to the pairs having the greatest distances.
Indeed, assume that two points from opposite classes in the
training set are far from the other training-set points and
such that their distance is greater than the distance from
any other pair of the remaining points from the opposite
classes. Then, a training-set-consistent subset must contain
these two points and, hence, all the training-set points.

2.1.4 Reduced Nearest Neighbor (RNN) Rule

The RNN rule [20] is a postprocessing step that can be
applied to any other competence preservation method. It
works as follows: First, subset S is set equal to training set T
or to a training-set-consistent subset of T . Then, the points
of S whose deletion from S does not leave any point of T
misclassified are eliminated from S. Experiments have
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1. Given a set S of points having the same class label, the centroid c of S is
the point c of S that is closest to the geometrical center of S. The set of
centroids C of a set of points S ¼ S1 [ . . . [ Sn, where each Sið1 � i � nÞ is a
maximal subset of points of S having the same class label, is the set
C ¼ fc1; . . . ; cng, where ci is the centroid of Sið1 � i � nÞ.

2. They also provided a similar algorithm working on data with more
than two class labels.



shown that this rule yields a slightly smaller subset than the
CNN rule, but it is costly.

2.1.5 Minimum-Cardinality Methods

Methods previously discussed compute a training-set-
consistent subset in an incremental or decremental manner
and have polynomial execution time requirements. Next,
competence preservation methods whose aim is to compute
a minimum-cardinality training-set-consistent subset (an
NP-hard task, see [30]) are briefly described.

The Selective NN (SNN) rule [25] computes the smallest
training-set-consistent subset S of T having the following
additional property: Each point of T is closer to a point of S
of the same class than to any point of T of a different class.
This set is also called a selective subset. This algorithm runs
in exponential time (the problem of computing the
minimum-cardinality selective subset has been proved to
be NP-hard [30]) and, hence, it is not suitable on large
training sets.

The Minimal Consistent Subset (MCS) rule [12] aims to
compute a minimum-cardinality training-set-consistent sub-
set. The algorithm, based on the computation of the so-called
nearest unlike neighbors [13], is quite complex. Further-
more, counterexamples have been found to the conjecture
that it computes a minimum-cardinality subset.

Approximate optimization methods such as tabu search,
gradient descent, evolutionary learning, and others have
been used to compute subsets close to the minimum-
cardinality one. These algorithms can be applied in a
reasonable amount of time only to a small- or medium-
sized data set. The work in [24] provides a comparison of a
number of these techniques.

2.1.6 Other Approaches

Finally, we mention the literature less related to the
competence preservation task but involving complementary
or alternative approaches, concerning decision-boundary-
consistent subset methods [7], which compute a subset of
the original training set preserving the decision boundary,
condensing and editing techniques through the use of
proximity graphs [28], NN search techniques [11], [19], which
can alleviate the cost of searching for the NN of a query
point at classification time, and competence enhancement and
hybrid methods [32], introduced early in this section.

If the training set is clean, then using a consistent method
is very appropriate. In the presence of noise, if the accuracy
of the consistent methods is not adequate, they can be
combined with competence enhancement methods (for
example, Wilson editing or multiedit [31], [15]). Alterna-
tively, accuracy may be improved by using the k-NN rule
[18], [17], the generalization of the NN rule in which a new
object is assigned to the class with the most members
present among its k NNs in the training set. Indeed, the
probability of error of the k-NN rule asymptotically
approaches the Bayes error. The accuracy of CNN classifiers
can be also enhanced by combining multiple classifiers, as
done in [3], where it is proposed to train multiple CNN
classifiers on smaller training sets and to take a vote over
them, or in [5], [6], where the multiple feature subsets (MFS)
algorithm is described, combining multiple NN classifiers,
each using only a random subset of the features.

2.2 Contribution

This work introduces a novel algorithm for the computation

of a training-set-consistent subset for the NN rule.3 The

algorithm, called the FCNN rule, works as follows.
First, the consistent subset S is initialized to the centroids

of the classes contained in the training set T . Then, during

each iteration of the algorithm, for each point p in S, a point q

of T belonging to the Voronoi cell of p4 but having a different

class label is selected and added to S. The algorithm stops

when no further point can be added to S, that is, when T is

correctly classified using S.
Despite being quite simple, the FCNN rule has some

desirable properties. Indeed, it is order independent, its

worst-case time complexity scales as the product of the

cardinality of the training set and of the condensed set, it

requires few iterations to converge, and it is likely to select

points very close to the decision boundary.
For example, Fig. 1 compares the consistent subsets

computed by the CNN, MCNN, NNSRM, and FCNN rules

on a training set composed of 9,000 points uniformly

distributed into the unit square and partitioned into two

classes by a circle of diameter 0.5.
As already noted elsewhere [32], training-set reduction

algorithms can be characterized by their storage reduction,

classification speed increase, generalization accuracy, noise

tolerance, and learning speed. Among these criteria,

learning speed is usually neglected. However, in order to

be practicable on large training sets or in knowledge

discovery applications requiring a learning step in their

cycle, the method should exhibit good learning behavior.
The contribution of this work can be summarized as

follows:
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3. A preliminary version of this work appeared in [4].
4. The Voronoi cell of point p 2 S is the set of all points that are closer to p

than to any other point in S.

Fig. 1. Example of training-set-consistent subsets computed by the

CNN, MCNN, NNSRM, and FCNN rules.



. A novel order-independent algorithm, called the
FCNN rule, for the computation of a training-set-
consistent subset for the NN rule is presented.

. It is proved that the worst-case time complexity of
FCNN is quadratic with an often small constant
prefactor that corresponds to the reduction ratio.
Furthermore, an implementation cleverly exploiting
the triangle inequality and sensibly reducing this
prefactor is described.

. It is shown that the FCNN method scales well on
large-sized multidimensional data sets.

. The FCNN rule is compared with both standard and
here-enhanced implementations of existing compe-
tence preservation algorithms, showing that it out-
performs the other methods in terms of learning
speed and learning scaling behavior and, often, in
terms of size of the model.

. The FCNN rule is compared with hybrid instance-
based learning algorithms on the MNIST and MIT
Face databases showing that it is at least three orders
of magnitude faster while guaranteeing a compar-
able accuracy.

. An extension of the basic rule taking into account the
k NNs is presented, and it is shown that the
computed subset has the same accuracy as the
hybrid methods incorporating a noise-filtering step.

In its entirety, this is the first work providing NN condensa-

tion algorithms that have been shown experimentally to be

scalable on large multidimensional data sets.

3 THE FCNN RULE

We start by giving some preliminary definitions.
In the following, we denote by T a labeled training set

from a metric space with distance metrics d.
Let p be an element of T . We denote by nnðp; T Þ the NN

of p in T according to the distance d. If p 2 T , then p itself is

its first NN. We denote by lðpÞ the label associated with p.
Given a point q, the NN rule NNðq; T Þ assigns to q the

label of the NN of q in T , that is, NNðq; T Þ ¼ lðnnðq; T ÞÞ.
A subset S of T is said to be a training-set-consistent subset

of T if for each p 2 ðT � SÞ, lðpÞ ¼ NNðp; SÞ.
Let S be a subset of T and let p be an element of S. We

denote by Vorðp; S; T Þ the set fq 2 T jp ¼ nnðq; SÞg, that is,

the set of the elements of T that are closer to p than to

any other element p0 of S. Furthermore, we denote by

Vorenðp; S; T Þ the set of Voronoi enemies of p in T with

respect to S, defined as fq 2 Vorðp; S; T Þ j lðqÞ 6¼ lðpÞg.
We denote by CentroidsðT Þ the set containing the

centroids of each class label in T .
The following theorem states the property exploited by

the FCNN rule in order to compute a training-set-consistent

subset.

Theorem 3.1. S is a training-set-consistent subset of T for the

NN rule if and only if for each element p of S, Vorenðp; S; T Þ

is empty.

Proof. ð)Þ By contradiction, assume that there is an

element p of S such that Vorenðp; S; T Þ is not empty.

Then, at least an element q of Vorenðp; S; T Þ and, hence,

of T is such that NNðq; SÞ ¼ lðnnðq; SÞÞ ¼ lðpÞ 6¼ lðqÞ, and
S is not training set consistent.

ð(Þ First of all, note that [p2SVorðp; S; T Þ
� �

¼ T .
Thus, for each q 2 T , there is p 2 S such that
q 2 Vorðp; S; T Þ, and since Vorenðp; S; T Þ is empty, it
holds that lðnnðq; SÞÞ ¼ lðpÞ ¼ lðqÞ. tu

3.1 Algorithm

The algorithm FCNN rule is shown in Fig. 2. It initializes
the consistent subset S with a seed element from each class
label of the training set T . In particular, the seeds employed
are the centroids of the classes in T .

The algorithm works in an incremental manner: During
each iteration, the set S is augmented until the stop
condition, given by Theorem 3.1, is reached. For each
element of S, a representative element of Vorenðp; S; T Þwith
respect to p, denoted as repðp;Vorenðp; S; T ÞÞ in Fig. 2, is
selected and inserted into S.

Given p 2 T and a subset X � T , the representative
repðp;XÞ of X with respect to p can be defined in different
ways. We investigate the behavior of two different defini-
tions for repðp;XÞ. The first definition, we call FCNN1 the
variant of the FCNN rule using this definition, selects the
NN of p in X, that is, repðp;XÞ ¼ nnðp;XÞ. The second
definition, we call FCNN2 the variant of the FCNN rule
using it, selects the class centroid in X closest to p, that is,
repðp;XÞ ¼ nnðp; CentroidsðXÞÞ.

If during an iteration, no new element can be added to S,
then by Theorem 3.1, S is a training-set-consistent subset of
T , and the algorithm terminates, returning the set S.

Figs. 3 and 4 report an example of the execution of
the FCNN1 and FCNN2 rules on the same data set. The
data set considered is composed of 2,000 points on the
plane. Half of the points belong to one of two concentric
spirals representing two distinct classes. In this case, the
FCNN1 rule performs nine iterations and returns a
subset composed of 54 points, whereas the FCNN2 rule
performs 10 iterations and computes a subset composed
of 74 points. It is clear from these figures that the FCNN
rule requires few iterations to converge to a solution.
Indeed, the number of points contained in the subset
could double at the end of each iteration. This is due to
the fact that for each point p such that Vorenðp; S; T Þ is
not empty, a new point is added to the set S.
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As discussed above, the FCNN1 and FCNN2 rules build
the set �S by selecting a representative of the Voronoi
enemies of all the points in the current subset S. It is thus of
interest to analyze the behavior of the FCNN rule in the
special case in which the set �S is constrained to be
composed of one single point per iteration, that is, in the
special case in which �S is built by selecting the
representative of the Voronoi enemies of only one of the
elements of S.

Such an element can be defined in different ways, but a
natural choice is to select the point p� of S such that
jVorenðp�; S; T Þj is maximum, that is, the point having most
Voronoi enemies. In the following, we will call the FCNN3
rule the variant of the FCNN rule whose set �S is built by
selecting only point nnðp�;Vorenðp�; S; T ÞÞ and FCNN4 the
variant whose set �S is built by selecting only point
nnðp�; CentroidsðVorenðp�; S; T ÞÞ. Different from FCNN1
and FCNN2, both FCNN3 and FCNN4 initialize the set S
by using only the centroid of the most populated class.

The following theorem states the main properties of the
algorithm.

Theorem 3.2. The algorithm FCNN rule 1) terminates in a finite
time, 2) computes a training-set-consistent subset, and 3) is
order independent.

The proof of Theorem 3.2 is reported in the Appendix.
Fig. 5 shows the implementation of the FCNN1 rule. For the
sake of clarity, the treatment of the ties described in
Theorem 3.2 is not reported in the figure.

The algorithm maintains in the array nearest for each
training-set point q the closest point nearest½q� of q in the
set S and in the array rep for each point p in S its current
representative rep½p� of the misclassified points lying in the
Voronoi cell of p.

During each iteration, the array nearest and rep must be
updated. Let �S be the set of points added to the set S at
the beginning of the current iteration. To update the array
nearest, it is sufficient to compare the training-set points in

ðT � SÞ with the points in the set �S, as the NNs in S ��S
of the points in ðT � ðS ��SÞÞ were computed in the
previous iterations and are already stored in nearest.

After having computed the closest point nearest½q� in �S

and, hence, in S of a point q in ðT � SÞ, the array rep can be

updated efficiently as follows: If the label of q is different

from the label of nearest½q�, then q is misclassified. In this

case, if the distance from nearest½q� to q is less than the

distance from nearest½q� to its current associated represen-

tative rep½nearest½q��, then rep½nearest½q�� is set to q.
The following theorem states an upper bound to the

complexity of the FCNN rule.
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Fig. 3. Example of the execution of the FCNN1 rule. Fig. 4. Example of the execution of the FCNN2 rule.

Fig. 5. The FCNN1 rule.



Theorem 3.3. The FCNN1 rule requires at most jT j � jSj distance
computations using OðjT jÞ space.

Proof. The algorithm shown in Fig. 5 has space complexity
OðjT jÞ, as it employs the two arrays nearest and rep,
having size jT j and jSj, respectively, with jSj � jT j.

Let Si�1 and �Si�1 denote, respectively, the values of
sets S and �S at the beginning of the ith iteration of the
algorithm in Fig. 5 and let Si denote set Si�1 [�Si�1. In
order to find the NN among the points in �Si�1 of each
training-set point in ðT � SiÞ, the algorithm computes
ðjT j � jSijÞj�Si�1j distances.

Note that in order to avoid repeated distance
calculations, distances fdðq; nearest½q�Þ j q 2 Tg and
fdðp; rep½p�Þ j p 2 Sg can be maintained into two addi-
tional arrays of floating-point numbers having size jT j
and jSj, respectively, without additional asymptotic
space requirements.

Thus, the overall number of distances computed is

jT j �
X

i

j�Sij �
X

i

jSij � j�Si�1j ¼ jT j � jSj �
X

i<j

j�Sij � j�Sjj

and, hence, jT j � jSj is an upper bound to the number of
distance computations required. tu

FCNN2 has a very similar implementation. The only
difference lies in the update of the array rep. Indeed, in
order to determine the centroids of the misclassified
points of each Voronoi cell induced by the points in S, the
FCNN2 rule performs a supplemental training-set scan at
the end of each main iteration. Hence, as for the worst-
case time complexity of the FCNN2 rule, it requires at
most

P

i½ðjT j � jSijÞj�Si�1j þ ðjT j � jSijÞ� � jT j � ðjSj þ tÞ �
2jT j � jSj distance computations, where t � jSj is the
number of iterations required to converge. As we will
see in the experimental results section, the number t of
iterations performed by the FCNN2 rule is always small
(up to 20–30 iterations, even when S is composed of tens
of thousands objects).

3.2 Exploiting the Triangle Inequality

In a metric space, the FCNN rule can take advantage of the
triangle inequality in order to avoid the comparison of each
point in ðT � SÞ with each point in �S.

To this aim, the grouping in Voronoi cells of the training-
set points is exploited. During the generic ith main
iteration, for each p 2 Si�1, the Voronoi cell Vorðp; Si�1; T Þ
is visited, and the points q 2 ðVorðp; Si�1; T Þ � fpgÞ are
compared with the points in �Si�1. Before starting the
comparison, the distances between the point p and the
points in �Si�1 are computed, and the points in �Si�1 are
sorted in order of increasing distance from p. Then, instead
of comparing each point q in Vorðp; Si�1; T Þ with each point
in �Si�1, each q is compared with the points in �Si�1

having a distance from p less than twice the distance from q
and p. Indeed, by the triangle inequality, they are all and the
only points of �Si�1 candidate to be closer to q than p.

We note that the partitioning of points in the Voronoi
cells is induced by the array nearest. In order to retrieve the
points lying in the same Voronoi cell efficiently, the array
nearest does not directly store the identifiers of training-set
NNs. Rather, it is used to implement lists of points lying in
the same Voronoi cell. To this aim, each entry nearest½q�
stores the identifier of the successor of q in the list

associated with the Voronoi cell containing q. The identifier
of the first point of each list is then stored in an additional
array having size jSij.

This implementation of the FCNN rule requires
P

i<j j�Sij � j�Sjj additional distance computations and
has no additional asymptotic space requirements. Thus,
the upper bound of Theorem 3.3 remains unchanged.
Furthermore,

P

i<j j�Sij � j�Sjj � log j�Sjj worst-case com-
parisons of floating-point numbers to sort distances are
additionally required, but it must be noticed that the former
operation is more expensive (its cost being related to the
dimensionality of the feature space) than the latter (which
has instead a constant cost). Nevertheless, the last imple-
mentation guarantees great savings in terms of computed
distances and definitively outperforms the previous one, as
will be confirmed by the experimental results.

3.3 Extension to k Nearest Neighbors

The NN decision rule can be generalized to the case in
which the k NNs are taken into account. In such a case, a
new object is assigned to the class with the most members
present among the k NNs of the object in the training set.
This rule has the additional property that it provides a good
estimate of the Bayes error and that its probability of error
asymptotically approaches the Bayes error [18], [17]. Let T
be a training set and let p be an element of T . We denote by
nnkðp; T Þ the kth NN of p in T and by nnskðp; T Þ the set
fnniðp; T Þ j 1 � i � kg. Given a point q, the k-NN rule
NNkðq; T Þ assigns to q the label of the class with the most
members present in nnskðp; T Þ.

The FCNN algorithm can be directly adapted to deal with
k NNs by using the following notion of consistency: A
subset S of T is said to be a k-training-set-consistent subset of T
if for each p 2 ðT � SÞ, lðpÞ ¼ NNkðp; SÞ. Thus, this definition
guarantees that the objects in T � S are correctly classified
by S through the k-NN rule. For k ¼ 1, the above definition
coincides with the definition provided in Section 3.

The FCNN rule can directly compute a k-training-set-
consistent subset S of T by using the following definition of
Vorenðp; S; T Þ. Let p be an element of S. We denote by
Vorenkðp; S; T Þ the set

fq 2 ðVorðp; S; T Þ � fpgÞ j lðqÞ 6¼ NNkðq; SÞg:

Thus, the set Vorenkðp; S; T Þ is composed of the points lying
in the Voronoi cell of p (p excluded), which are misclassified
by S through the k NN rule. The implementation of the
variant taking into account k NNs is the same as that shown
in Fig. 5 with two differences: each entry nearest½q� of the
array nearest stores the k objects of S closest to q, whereas S
assigns q to the most frequent class label associated with the
points in nearest½q�. Thus, Theorems 3.2 and 3.3 remain
valid, but the space required is now OðkjT jÞ.

In Section 4.3, the behavior of this variant will be studied
on some real-world domains.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results obtained by
using the FCNN rule.

Next, the competence preservation algorithms compared
are commented upon. As far as the FCNN rule is concerned,
the algorithm described in Section 3 was used. As for the

ANGIULLI: FAST NEAREST NEIGHBOR CONDENSATION FOR LARGE DATA SETS CLASSIFICATION 1455



other methods, first of all, it must be noticed that the
NNSRM rule is impracticable on large training sets since its
first step consists of computing all the pairwise distances
among training-set objects. Hence, we considered it only in
experiments involving small-sized data sets. Furthermore,
we note that the MCNN and CNN rules are slow if
compared with FCNN. Thus, in order to improve the
efficiency of these methods, we enhanced them by adopting
the two following strategies: 1) avoiding repeated distance
computations by maintaining the NN of each training-set
point computed so far in an array of size jT j and then
comparing each point only with the incremental part of the
training-set-consistent subset (whose definition varies de-
pending on the method considered) during a generic
iteration and 2) exploiting the triangle inequality technique
described in Section 3.2 with the MCNN rule. Indeed, when
set Sm becomes empty, the set C of the centroids computed
by the MCNN method plays the same role as set �S in the
FCNN rule. Since these implementations represent a major
modification of the basic methods, in the following, the
variant of the CNN rule augmented with strategy 1 is called
fCNN, and the variant of the MCNN rule employing both
strategies 1 and 2 is called fMCNN. It is worth pointing out
that with respect to the subset computed and the number of
iterations performed, the fCNN rule is equivalent to the
CNN rule, and fMCNN is equivalent to MCNN.

The experiments are organized as follows:
Section 4.1 describes the experiments executed on three

large training sets in order to study the scaling and learning
behavior of the FCNN rule.

Next, Section 4.2 compares the competence preservation
methods on small-sized real training sets. Both mutual
condensation ratios and classification accuracies are mea-
sured and compared.

Finally, Section 4.3 experiments with the FCNN method
on two pattern recognition domains, studies the behavior of
the variant of the basic rule taking into account k neighbors,

and compares the FCNN rule with hybrid instance-based
learning algorithms.

The results of the experiments presented in this section
are then discussed in Section 5.

In all of the experiments, we used the euclidean distance
as the distance metric. All the experiments were executed
on a Pentium IV 2.66-GHz-based machine with 1 Gbyte of
main memory under the Windows operating system.

4.1 Large Data Set

We tested the training-set-consistent subset methods on the
three following large data sets.

The Checkerboard data set is a synthetically generated
4	 4 checkerboard data set partitioning points of the unit
square into two classes composed of 1,000,000 points.

The Forest Cover Type data set5 contains forest cover
type data from the US Forest Service. It is composed of
581,012 tuples associated with 30 	 30 meter cells. Each
tuple has 54 attributes, of which 10 are quantitative (for
example, elevation, aspect, slope, and so forth), 4 are
binary wilderness areas, and 40 are binary soil type
variables. The data is partitioned into seven classes.

The US Defense Advanced Research Projects Agency’s
(DARPA) 1998 intrusion detection evaluation data set6

consists of network intrusions simulated in a military
network environment. The Transmission Control Protocol
(TCP) connections have been elaborated to construct a data
set of 23 numerical features, one of which identifies the kind
of attack: denial of service (DoS), remote to local (R2L), user to
root (U2R), and PROBING. We used the TCP connections
from five weeks of training data. The training set is
composed of 458,301 objects partitioned into five classes
(one representing normal data and the others associated
with the different types of attack).

Table 1 summarizes the results of the experiments on the
whole training set. The following are reported for each
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Experiments on Large Data Sets
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experiment: the execution time in seconds, the number of
objects composing the consistent subset (between parenth-
eses there is the relative size of the subset), the test accuracy
measured using the hold-out method, the number of
iterations performed, the empirical complexity (defined
next), and the speedup achieved by exploiting the triangle
inequality (see Section 3.2).

The empirical complexity is the ratio logD= log jT j, where
D denotes the number of distances computed by the
method, and provides an estimate of its computational
complexity. Although it provides a short summary, it is not
sufficient to characterize the effective effort of the method,
since the execution time is influenced also by the number of
iterations and by the number of training-set passes per
iteration.

The speedup (defined only for the FCNN methods) is
defined as the ratio between the worst case number of
distances computed by the method (see Theorem 3.3 and
the related part in the text) and the number of distances
actually computed by the method exploiting the triangle
inequality. It was measured to verify the effectiveness of the
triangle inequality technique described in Section 3.2.

Scaling analysis of the execution time and of the size of
the consistent subset computed is reported in Fig. 6.

4.1.1 Execution Time

On the Checkerboard data set, the methods can be partitioned
into three groups: FCNN1 and FCNN2 are very fast,
FCNN3 and FCNN4 have higher time requirements than
the previous two rules, and fMCNN and fCNN are slow. It
is worth noting that the fMCNN and fCNN rules are
40 times slower than the FCNN2 rule. We also measured
the execution time of the MCNN and CNN rules and,
unfortunately, they turned out to be very slow. Indeed,
MCNN required 131,402 sec to process 200,000 points,

whereas CNN required 4,032 sec to process 400,000 points.
Since these rules are too time demanding, we decided to
disregard their analysis on larger samples. Moreover, they
are no longer considered in subsequent experiments.

On the Forest Cover Type data set, the FCNN rules clearly
outperformed both the fCNN and the fMCNN rules. In
particular, on the whole training set, the FCNN2, FCNN3,
and FCNN4 rules required about 2,500 sec, FCNN1
performed slightly worse, and the fCNN rule was more
than 14 times slower than the FCNN rules, and fMCNN
was about 27 times slower.

On the DARPA 1998 data set, the fastest rules were
FCNN2 and FCNN1, followed by FCNN4 and FCNN3 and,
eventually, by fMCNN and fCNN. The first method was
about 45 times faster than the latter.

4.1.2 Subset Size

On the Checkerboard data set, FCNN1 and FCNN3 computed
the smallest subsets, whereas the FCNN2, FCNN4, CNN,
and MCNN computed greater subsets, even though the
MCNN computed a subset noticeably greater than those
computed by any other method.

Fig. 7 shows the subset computed by the various
methods on the whole data set (for clarity, only the square
[0.15, 0.35] 	 [0.15, 0.35] is reported). The circles and crosses
are the consistent subset points of the two classes. It can be
noticed that the FCNN1 and FCNN3 rules select points very
close to the boundaries between the checkerboard cells,
whereas the other methods also contain points inside the
cells, though the MCNN and CNN appears to have a high
percentage of such points.

On Forest Cover Type, FCNN3 computed the smallest
subset, followed by FCNN4, FCNN1, FCNN2, MCNN, and
CNN. Notice that the subset computed by the FCNN3 rule
contains 10,000 points less than the last two subsets.
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As for DARPA 1998, three groups can be identified, that

is, FCNN3 together with FCNN1, which reported the

smallest subsets, FCNN4 together with FCNN2 and, finally,

CNN together with MCNN. It is worth noting that the

largest subset is about 1.5 times greater than those returned

by the FCNN3 rule.

4.1.3 Iterations

As far as the number of iterations is concerned (see Table 1),

it can be noticed that the behavior of the methods was the

same in all the experiments. Indeed, the FCNN3 and

FCNN4 rules in general execute a lot of iterations. In fact,

since these rules add one point per iteration, the number of

performed iterations is identical to the size of the training-

set-consistent subset. Also, the MCNN rule adds at most

m points per iteration, where m is the number of classes in

T and, thus, the number of iterations it requires is greater

than the number of subset points divided by the number of

classes. The CNN rule always performs few iterations (less

than 10) since it selects almost all the points of the subset

during the first two iterations, and some additional

iterations are then needed to assure consistency. However,

this strategy has the drawback of producing a consistent

subset noticeably larger than that returned by competitor

methods. The FCNN2 rule always performs about a few

tens of iterations, since it starts from the centroids of the

classes and, due to the strategy adopted to select the

representatives of the misclassified points, rapidly covers

the regions of the feature space far from the centroids.

Finally, the FCNN1 rule is sensitive to the complexity of the

decision boundary. The more involved this boundary is, the

more iterations are required by the rule. Indeed, an

involved decision boundary can make it difficult to cover

the feature space quickly, due to the strategy of selecting

nearest Voronoi enemies as representatives of misclassified

points. In summary, in general, the FCNN1 rule performs

more iterations than the FCNN2 rule. Depending on the

complexity of the decision boundary, it might execute from

approximately the same number of iterations as the FCNN2

rule to some hundreds of iterations.

4.1.4 Training-Set Accuracy

Fig. 8 shows the accuracy of the subset Si, computed during

the ith iteration of the algorithms, in classifying the overall

training set T .
As for Checkerboard, for clarity, only values of accuracy

between 70 percent and 100 percent and subsets containing

less than 6,000 points are shown. On this training set, the

curve of the FCNN1 rule oscillates sensibly and converges

quite slowly. Differently, the curves of the FCNN2, FCNN3,

and FCNN4 methods rapidly converge to high values of

accuracy. The curve of the FCNN3 method also oscillates,

but its fluctuation is more contained than that of the FCNN1

rule. It can be noticed that the area under the curve of the

FCNN4 rule is the largest among the areas of all the

methods (the first 178 points achieved an accuracy of

95.09 percent, 968 points, an accuracy of 99.00 percent, and

5,164 points, an accuracy of 99.90 percent), whereas the

FCNN2 achieved the second largest area (366 points

achieved an accuracy of 94.38 percent, 2,377 points, an

accuracy 99.04 percent, and 6,727 points, an accuracy of

99.96 percent). The curve of the MCNN rule is similar to

that of the FCNN1 rule, but it is less wavering. Finally, the

curve of the CNN rule is the least accurate.
The above behavior is confirmed by the Forest Cover Type

data set, where the curve of the FCNN4 method is the more

accurate (the first 11,023 points achieved an accuracy of

90 percent, 20,738 points, an accuracy of 95 percent, and

48,009 points, an accuracy of 99 percent), and by the

DARPA 1998 data set, where the FCNN3 and FCNN4

showed the largest area (the curves of these two methods

were smoothed for readability).
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computed.

Fig. 8. Large data sets: training-set classification accuracy versus

subset size.



4.1.5 Course of the Subset Size

Fig. 9a shows the number j�Sij of points added versus the
iteration number i for the FCNN1 and FCNN2 methods.
The curves show that during the initial and final iterations,
the incremental sets include a relatively small number of
points, whereas during the central iterations, the size of
the incremental sets reaches a peak. Interestingly, the
curve of the FCNN2 rule follows a Gaussian-like distribu-
tion, whereas the curve of the FCNN1 is also unimodal but
less symmetrical. This behavior is observed in all the
experiments.

Fig. 9b shows the size jSij of the subset Si versus the
normalized iteration number i

imax
. The curves of the FCNN3,

FCNN4, and MCNN rules are straight lines, since they add
almost a constant number of points per iteration (one point
in the case of FCNN3 and FCNN4). The curve of CNN is a
step, as almost all the points are selected during the first

and the second iterations. Finally, the curves of the FCNN1
and FCNN2 rules resemble a Sigmoid as expected from the
previous diagrams.

4.1.6 Distance Computation Savings

Fig. 10 shows the distances computed by the FCNN1 and
FCNN2 methods versus the iteration number. The solid
lines represent the number of distances actually calculated
by the methods exploiting the triangle inequality, whereas
the dashed lines represent the worst-case number of
distances to be calculated by the same algorithms. It is
clear from these figures that great savings are obtained,
since the area between the solid and the dashed curves is at
least one order of magnitude greater than the area under the
solid curve. Similar curves were obtained also for the
FCNN3 and FCNN4 rules. Table 1 summarizes the speedup
obtained by the FCNN methods through the use of the
triangle inequality.

4.1.7 Test Accuracy

We discussed in Section 1 techniques for improving the
accuracy of NN classifiers. Here, we are mainly interested
in comparing the performances of different competence
preservation methods on the same data, rather than in
improving the accuracy of the classifier. The test accuracy
measured through the hold-out method is summarized in
Table 1. The accuracy of the methods was always almost the
same and, in two cases, identical to the accuracy of the
whole training set, whereas on the Forest Cover Type data
set, all the methods reported a sensible loss in accuracy with
respect to the training set.

4.2 Small Data Sets

In these experiments, a number of small training sets are
considered in order to compare the CNN, MCNN, and
NNSRM rules with the FCNN rule.

The training sets employed are reported in Table 2. The
data sets are from the University of California, Irvine (UCI)
Machine Learning (ML) Repository.7 Tenfold cross valida-
tion has been accomplished for each training set. Therefore,
the measures reported in the following paragraphs con-
cerning subset sizes, classification accuracies, and execution
times are average values over the 10 executions. The
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Fig. 9. Large data sets: points added per iteration versus iteration
numbe r ( on t he bo t t om : circle ¼ FCNN1, square ¼ FCNN2,
pentagram ¼ FCNN3, hexagram ¼ FCNN4, triangle ¼ MCNN, and
diamond ¼ CNN).

7. http://mlearn.ics.uci.edu/MLRepository.html.

Fig. 10. Large data sets: distances computed versus iteration number
(solid lines = distances computed by exploiting the triangle inequality,

dashed lines = worst case number of distances to be calculated by the

triangle inequality-based method).

TABLE 2
UCI ML Repository Data Sets Used in the Experiments



NNSRM rule was tested only on training sets having two

class labels, since the implementation we had available

supports only this kind of data sets.
We start commenting on the results shown in Table 3.

This table reports the size of the training-set-consistent

subsets (first line) together with the percentage of objects

included in each subset (second line). At the bottom of the

table, the achieved compression ratios are compared.

Since the size of the smallest training-set-consistent

subset is an intrinsic property of the training set, to

compare the various methods, we measured the ratios
sizem1

%

sizem2
%
, where m1 and m2 denote two methods, and sizemi

%

denotes the percentage of training-set objects composing the

subset computed by the method mi. In particular, the entry

in row mr and column mc at the bottom of the table

represents the geometric mean of the ratios sizemr%
sizemc%

achieved

in the experiments reported at the top of the table.
As for the size of the subset, on these training sets, the

FCNN3 and FCNN4 rules performed better than any other

method. As for the FCNN1 and the FCNN2 methods, they
computed a subset that is, on the average, respectively, four
and five percent larger than that computed by the FCNN4
method. This difference can be explained by noticing that
the FCNN3 and FCNN4 rules are more accurate than the
FCNN1 and FCNN2 rules in the choice of the prototypes to
add to the current subset. The MCNN method performed
even well: indeed, the increase in size with respect to the
FCNN3 method is, on the average, one percent. The
increase in size with respect to the FCNN3 and FCNN4 of
the CNN rule is noticeable, since it amounts to 16 percent.
Finally, it can be observed that the NNSRM rule contains a
huge percentage of the training-set objects. Thus, its
increase in size with respect to the other methods is very
high, namely, more than 200 percent in almost all the
experiments.

Table 4 shows the classification accuracy measured using
tenfold cross validation. The last column is the classification
achieved when all the training-set objects are used as a
reference set during classification. At the bottom, the mean
over all the experiments (mean 1) and the mean over the
experiments concerning the NNSRM rule (mean 2) are
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Small Data Sets: Training-Set-Consistent Subset Size and Percentage of Training-Set Instances Composing the

Training-Set-Consistent Subset (between Parentheses)

TABLE 4
Small Data Sets: Classifier Accuracy



reported. We can observe that all of the methods present a
loss of classification accuracy with respect to the use of the
overall training set. This loss ranges from�1.5 percent of the
FCNN2 rule to �2.0 percent of the CNN rule. Furthermore,
we note that the NNSRM rule exhibits a negligible loss in
accuracy. This can be explained by noticing that the subset
computed by this rule contains a high percentage of training-
set objects, almost all the object in most cases; thus, the small
loss in accuracy is not repaid by a significant reduction of the
reference set.

Finally, Table 5 summarizes the execution times. In
almost all cases, the times amount to a small fraction of 1 sec
or to a few seconds. Thus, we reported only the relative
speeds: The entry in row mr and column mc of the table
represents the geometric mean of the ratios timemr

timemc
, where

timemi
denotes the execution time of the method mi. It can

be observed that on these data sets, FCNN2 is the fastest
method, followed by the FCNN1 method, whereas CNN,
NNSRM, and MCNN are the slowest methods. In parti-
cular, CNN is two and half times slower than FCNN2,
NNSRM is three times slower, and MCNN is 30 times
slower. It should be noticed that the last result is due to the
presence of some outlying data sets on which the MCNN
rule performs badly (that is, COI, SAT, and SPA).

4.3 Comparison with Hybrid Methods

In this section, some experiments on the MNIST and MIT
Face databases are described. These two real-world data-
bases are considered good testbeds for learning techniques
and pattern recognition methods. Thus, the goal of this
section is to test the applicability of the FCNN rule on some
typical pattern recognition domains and to compare the
FCNN methods with hybrid instance-based learning meth-
ods on some real-world applications.

TheMNIST database8 of handwritten digits has a training
set of 60,000 examples and a test set of 10,000 examples. The
digits have been size-normalized and centered in a 28 	
28 image. Each example is composed of 784 features, each
associated with a distinct pixel of the image (pixel values
range from 0 to 255). Examples are partitioned in 10, about
equally sized, classes. The MIT Face database9 is a database
of faces and nonfaces, which has been used extensively at the
Center for Biological and Computational Learning, MIT.
This database has been partitioned in a training set of
25,317 face and 2,603 nonface examples and in a test set of
2,804 face and 298 nonface examples. Each example (a 19 	
19 image) consists of 361 features whose values range
between 0 and 1.

In all of the experiments, the euclidean distance was
used.

Experimental results concerning the FCNN method are
summarized in Table 6. As for the MNIST data set (see
Table 6a), all the FCNN methods employed from 15 to
20 minutes to compute a consistent subset including about
10 percent of the data set objects. The test accuracy of the
FCNN rule is 94.5 percent (in [23], a k-NN classifier using
the whole training set, the parameter k set to three, and the
euclidean distance achieved 5.0 percent test error rate). On
the MIT Face data set, FCNN1 and FCNN2 employed about
25 sec, whereas FCNN3 and FCNN4, about 95 sec. The
extracted subset is, in all cases, composed of 5.5 percent of
data set objects. The test accuracy is good, being close to
97 percent.

Fig. 11 shows the results obtained by using the variant of
the FCNN rule taking into account k NNs (see Section 3.3)
for k ranging from one to seven. By using k ¼ 3, the
execution time (Fig. 11a) increased with respect to the case
of k ¼ 1. For greater values of k, the growth slowed down,
and the time remained substantially unchanged. As for the
subset size (Fig. 11b), it remained almost the same for
MNIST and slightly decreased for MIT Face. In the latter
case, the reduction achieved by the FCNN3 and FCNN4
methods is substantial. Finally, by increasing the number k
of considered NNs, the test accuracy (Fig. 11c) improved.
For example, the accuracy of the FCNN1 rule increased by
1.5–2.0 percent for k ¼ 7.

The FCNN rule was compared with the DROP3 [32],
ELGrow, and Explore [9] hybrid instance-based learning
algorithms.10 DROP3 was observed to have the best mix of
storage reduction and generalization among the Decremental
Reduction Optimization Procedures, DROP1–DROP5, pre-
sented in [32]. The ELGrow and Explore methods are able
to achieve high storage reduction but are not as accurate as
the DROP methods.

These methods were compared with the FCNN rules on
the data sets MNIST and MIT Face (see Fig. 12). The whole
training set and some random samples having an increasing
size were considered to study the scaling behavior. If
required by the method, the parameter k was set to three as
done in [32].
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Small Data Sets: Relative Execution Time

TABLE 6
Execution Time (Seconds), Subset Size, and Test Accuracy of
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Fig. 12a shows the execution time versus the training-
set size of the FCNN2, DROP3, ELGrow, and Explore
algorithms on the two above-described data sets. As
already stated, the FCNN rule employed about 1,000 sec
on the whole MNIST data set. On this data set, the other
methods were very slow, and it was decided to stop their
execution. Thus, the largest sample considered for all
methods included 10,000 examples. In this case, DROP3
required about 25,000 sec, ELGrow and Explore, about
7,000 sec, and FCNN, about 45 sec. On the whole MIT Face
training set, DROP3 employed about 75,000 sec, ELGrow
and Explore, about 23,000 seconds, and FCNN, about
25 sec. It is clear that as far as the learning speed is
concerned, there is a difference of at least three orders of
magnitude between the FCNN and the other competence
enhancement methods on these medium-sized data sets.
On larger data sets the hybrid methods are impractical.

Fig. 12b shows the relative subset size versus the
training-set sample size. The competence enhancement
methods confirmed their expected behavior, since ELGrow
and Explore achieved very high data reduction. FCNN has
the smallest reduction ratio, but except for very small
sample sets, the size of its consistent subset is very close to
that of DROP3, although slightly larger.

Finally, Fig. 12c shows the test accuracy achieved by
using the subset computed by the various condensation
methods. The ELGrow and Explore methods are the less
accurate methods. As observed in [32], their aggressive
storage reduction strategy may worsen their generalization
capability. For example, on the MIT Face data set, the
subsets computed by ELGrow and Explore always mis-
classify the examples of the minority class. The loss in
accuracy of ELGrow/Explore with respect to FCNN on the
MNIST is about 10 percent. On the contrary, the DROP3
method confirms its good generalization capabilities due to
a noise-filtering pass. It must be pointed out that FCNN
performed remarkably well compared to instance-based
competence enhancement methods. Indeed, other than
performing better than ELGrow/Explore, it has the same
accuracy as DROP3 on the MNIST data set, whereas the
difference in accuracy between these two methods is about
1 percent on the MIT Face data set.

Since DROP3 incorporates a noise-filtering pass based on
removing instances misclassified by its k NNs (k ¼ 3 in the

experiments), Fig. 12 reports also the behavior of the
FCNN2 rule taking into account k ¼ 3 neighbors (the solid
dotted line). By considering three NNs, as already observed,
FCNN slightly increases its execution time, with no
appreciable difference on the size of the subset, and the
accuracy improves and is identical to that of noise-filtering
methods.

5 DISCUSSION AND CONCLUSIONS

This work introduces a novel algorithm, called the FCNN
rule, for computing a training-set-consistent subset for the
NN rule.

The algorithm starts by selecting the centroid of each
training-set class and, then, until consistency is achieved,
selects for insertion a representative of the misclassified
points of each Voronoi cell induced by the current subset.
Four variants of the basic method are presented, called
FCNN1–4 rules. In particular, the FCNN1 and FCNN2 rules
augment the subset with all such representatives, whereas
the FCNN3 and FCNN4 rules select only a representative
per iteration. The FCNN1 (respectively, FCNN2) and the
FCNN3 (respectively, FCNN4) rules are based on the same
definition of a representative.

Each of these rules has strengths and weaknesses that,
generally speaking, can be summarized as follows:

FCNN3 and FCNN4 are more careful in the choice of the
points to select for insertion and, hence, FCNN3 (respec-
tively, FCNN4) returns a subset smaller than FCNN1
(respectively, FCNN2).

On the contrary, FCNN1 and FCNN2 execute few
iterations and are noticeably faster, with FCNN2 being the
fastest. This can be explained by noticing that it appears to
be a little sensitive to the complexity of the decision
boundary. Indeed, it rapidly covers regions of the space
far from the centroids of the classes and always performs
about a few tens of iterations.

FCNN1 is slightly slower than FCNN2, and it requires
more iterations, up to a few hundreds. However, together
with the FCNN3, it is likely to select points very close to the
decision boundary and hence may return a subset smaller
than that of FCNN2. From what has been stated above, as
far as the subset computed is concerned, FCNN1 and
FCNN3 are probably preferable when the classes are well
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Fig. 11. The effect of considering k NNs on the MNIST and MIT Face

data sets.
Fig. 12. Comparison with hybrid methods.



separated (for an example, see the subsets of the Checker-
board data set in Fig. 7).

The FCNN4 rule presents the greatest area under the
curve of the training set accuracy versus the current subset
size. Hence, it can be stopped early, when a satisfactory
degree of training-set accuracy is achieved, to obtain a
noticeably smaller condensed subset (as an example, the
first thousand points selected on the Checkerboard data set
guarantee a 99 percent accuracy on the training set, though
the final set includes about 7,000 points). This strategy can
be profitably used also with the other FCNN rules.

The FCNN rule is order independent, its worst-case time
complexity is quadratic with an often small constant
prefactor, and it permits the triangle inequality to be
effectively exploited to reduce the computational effort (as
witnessed in Fig. 10). It was tested on large and high-
dimensional training sets with very good results. For
example, on an ordinary personal computer, it was able to
compute a consistent subset (including about 4,000 out of
about half a million points) of the DARPA 1998 data set in
more or less 20 sec.

The FCNN rule was compared with the CNN, MCNN,
and NNSRM algorithms.

Comparison on small data yielded the following out-
comes. With regard to classification accuracy, there are no
appreciable differences, since all the methods present a
comparable loss (about 1.5 percent) with respect to the
whole training set. The only exception is NNSRM, which
scored the same accuracy as the training set. Nevertheless,
as far as the condensation size is concerned, MCNN is the
only rule comparable with FCNN. Indeed, CNN computes
a subset from 10 percent to 15 percent larger than that of the
FCNN, whereas NNSRM tends to select almost all the
training-set objects and, hence, the slightly better accuracy it
offers is not repaid by an appreciable reduction of the
training set.

Existing condensation algorithms are too slow to be
applicable to large data sets, since their complexity is
superquadratic or even cubic. Thus, improved implementa-
tions of the CNN and MCNN rules, called, respectively,
fCNN and fMCNN, are introduced here and compared to
FCNN. Experiments show that the FCNN rule outperforms
even these enhanced methods while guaranteeing the same
accuracy as the training set. It is worth noticing that as far as
the classification accuracy is concerned, this is the expected
behavior of the compared methods, since their goal is to
preserve the competence of the whole training set.

The observed superior learning speed is also substan-
tiated by the learning behavior comparison. Indeed, the
FCNN rules approach consistency more rapidly (see Fig. 8)
and return a smaller subset.

A variant of FCNN taking into account k NNs has been
introduced and experimented on two real data sets. By
increasing k, the execution time slightly increases, the size
of subset remains almost the same, and the test accuracy
may improve.

The comparison with hybrid methods on medium-
sized (including from 10,000 to 20,000 examples) real-
world (character and face recognition) high-dimensional
(up to 784 features) data sets showed that FCNN is at
least three orders of magnitude faster and that it
achieves both a reduction ratio and a test accuracy
comparable to DROP3 (see Fig. 12), although DROP3

incorporates a data-set-editing step able to filter out noise
and producing a slightly smaller subset. ELGrow and
Explore perform noticeably worse than FCNN in terms
of accuracy but have higher reduction ratios. From the
scaling analysis, it is clear that hybrid methods are
impractical on larger data sets. Thus, in real-world
domains, FCNN can compute a model comparable to
that of hybrid algorithms. FCNN is efficient even if the
collection of data to be processed is very large, whereas
other algorithms may be not able to manage the same
data set sizes in a reasonable amount of time.

To conclude, it is worth pointing out that this is the first

work providing condensation algorithms for the NN rule

that can be efficiently applied to large data sets.

APPENDIX

PROOF OF THEOREM 3.2

1) First, we note that the time required to compute the class
centroids of the training set and to perform a single iteration
of the algorithm is upper bounded by a polynomial in the
number jT j of training-set instances.

During a generic iteration of the algorithm, at least one
element of T � S is selected and inserted in S; otherwise,
the algorithm stops. Let us call m the number of class labels
in the training set. Since subset S contains initially
m elements, in the worst case, the algorithm performs jT j �
mþ 1 iterations.

With the training set T being composed of a finite
number of elements, it can be concluded that the overall
time required by the method is finite.

2) The property is guaranteed by the termination

condition. Indeed, the algorithm stops when the set �S

becomes empty, that is, if the condition of Theorem 3.1 is

satisfied.
3) First of all, we show that given a (not necessarily

proper) subset X of T , it holds that

. the set CentroidsðXÞ, composed of the class cen-
troids of X, is order independent,

. point nnðp;XÞ ofX closest to p is order independent,

. for each p 2 X, the Voronoi cell V orðp;X; T Þ is order
independent, and

. point p� ofX such that jV orenðp�; X; T Þj is maximum
is order independent.

a) Consider the set CentroidsðXÞ. Let l1; . . . ; lm be the

class labels in X and let Xi be the subset of X composed of

the points of the class li. Then, the set CentroidsðXÞ has the
form fc1; . . . ; cmg, where each ci is the centroid of Xi, that is,

the point of Xi that is closest to the geometrical center Ci of

Xi. Clearly, Ci is unique. As for ci, usually, it is unique, but

ties are possible and are solved in favor of the lexicogra-

phically smallest point.
Let q ¼ ðq1; . . . ; qdÞ and r ¼ ðr1; . . . ; rdÞ be two points.

Then, q is lexicographically smaller than r if there is an

integer j, 1 � j � d, such that q1 ¼ r1; . . . ; qj�1 ¼ rj�1 and

qj < rj. If there is more than one lexicographically smallest

point, then it is the case that these points are identical, no

matter which is selected. Thus, the set computed is

independent of the order in which Xi is processed.
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b) Consider point nnðp;XÞ. Usually, the point of X
closest to p is unique, but ties are possible and are solved in
favor of the lexicographically smallest point. Nevertheless,
it can be that there are two lexicographically smallest
points q and r having different class labels lq and lr. In this
case, q is selected, provided that lq < lr. Hence, the point
selected is independent of the order in which X is
processed.

c) Usually, for each point q 2 T , the NN of q in X is
unique and, thus, also the Voronoi cell that it belongs to, but
ties are possible and are solved as explained in point b)
above.

d) We have already seen that the set V orðp;X; T Þ is order
independent. Thus, for each p 2 X, sets V orenðp;X; T Þ are
order independent. Usually, point p� 2 X maximizing
jV orenðp�; X; T Þj is unique, but ties are possible and are
solved in favor of the lexicographically smallest point.

It remains to be shown that for each iteration i � 0, the
set of points �Si selected by the algorithm is independent
of the order in which training-set elements are processed.
The proof now proceeds by induction on the iteration
number.

Let i ¼ 0, then S0 ¼ ;, and �S0 is the set CentroidsðT Þ.
Hence, the result follows from point a).

Let i > 0 and assume that �S0; . . . ;�Si�1 are order
independent. Then, Si ¼ Si�1 [�Si�1 ¼ Si�2 [�Si�2 [
�Si�1 ¼ . . . ¼ �S0 [ . . . [�Si�1 is order independent.
Furthermore, for each p 2 Si, i) V orenðp; Si; T Þ is order
independent, being a particular subset of V orðp; Si; T Þ, and
ii) repðp; V orenðp; Si; T ÞÞ is order independent, as both
nnðp; V orenðp; Si; T ÞÞ and nnðp; CentroidsðV orenðp; Si; T ÞÞÞ
are order independent. Hence, it can be concluded that
�Si is order independent, and the result follows. tu
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