
Fast Nearest-neighbor Search in Disk-resident
Graphs

Purnamrita Sarkar Andrew W. Moore
February 5, 2010

CMU-ML-10-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Keywords: random walks, link prediction, external memory

Abstract

Link prediction, personalized graph search, fraud detection, and many such graph mining problems
revolve around the computation of the most “similar” k nodes to a given query node. One widely
used class of similarity measures is based on random walks on graphs, e.g., personalized pagerank,
hitting and commute times, and simrank. There are two fundamental problems associated with
these measures. First, existing online algorithms typically examine the local neighborhood of the
query node which can become significantly slower whenever high-degree nodes are encountered
(a common phenomenon in real-world graphs). We prove that turning high degree nodes into sinks
results in only a small approximation error, while greatly improving running times. The second
problem is that of computing similarities at query time when the graph is too large to be memory-
resident. The obvious solution is to split the graph into clusters of nodes and store each cluster
on a disk page; ideally random walks will rarely cross cluster boundaries and cause page-faults.
Our contributions here are twofold: (a) we present an efficient deterministic algorithm to find the k
closest neighbors (in terms of personalized pagerank) of any query node in such a clustered graph,
and (b) we develop a clustering algorithm (RWDISK) that uses only sequential sweeps over data
files. Empirical results on several large publicly available graphs like DBLP, Citeseer and Live-
Journal (∼ 90 M edges) demonstrate that turning high degree nodes into sinks not only improves
running time of RWDISK by a factor of 3 but also boosts link prediction accuracy by a factor of 4
on average. We also show that RWDISK returns more desirable (high conductance and small size)
clusters than the popular clustering algorithm METIS, while requiring much less memory. Finally
our deterministic algorithm for computing nearest neighbors incurs far fewer page-faults (factor of
5) than actually simulating random walks.

1 Introduction
A number of important real world applications (e.g. collaborative filtering in recommender net-
works, link prediction in social networks, fraud detection, and personalized graph search tech-
niques) rely on finding nearest neighbors in large graphs, where “nearness” is defined using graph-
theoretic measure of similarity. A widely applied class of measures are based on random walks
on graphs [5, 15, 13]; examples include personalized pagerank, hitting time and commute time,
simrank, etc. Yet, there are limitations to what we can do when graphs become enormous.

Some algorithms, such as streaming algorithms [18], must make passes over the entire dataset
to answer any query; this can be prohibitively expensive in online settings. Others perform clever
preprocessing so that queries can be answered efficiently [9, 17]. However these algorithms store
information which can be used for computing a specific similarity measure (e.g., personalized
pagerank for [9]). This paper introduces analysis and algorithms which try to address the scalability
problem in a generalizable way: not specific to one kind of graph partitioning nor one specific
proximity measure.

Another broad class of algorithms estimate the similarity between the query node and other
nodes by examining local neighborhoods around the query node [3, 2, 5, 17, 20]. The intuition
is that in order to compute nearest neighbors, hopefully one would not need to look too far away
from the query node. However, one fundamental computational issue with these techniques is
the presence of very high degree nodes in the network. These techniques rely on updating one
node’s value by combining that of its neighbors; whenever a high degree node is encountered these
algorithms have to examine a much larger neighborhood leading to severely degraded performance.
Unfortunately, real-world graphs contain such high-degree nodes which, though few in number,
are easily reachable from other nodes and hence are often encountered in random walks. Our
first contribution is a simple transform of the graph that can mitigate the damage while having a
provably bounded impact on accuracy. Indeed, we show that they improve accuracy in certain tasks
like link prediction.

Another problem linked to large graphs is that algorithms can no longer assume that the entire
graph can be stored in memory. In some cases, clever graph compression techniques can be applied
to fit the graphs into main memory, but there are at least three settings where this might not work.
First, social networks are far less compressible than Web graphs [7]. Second, decompression
might lead to an unacceptable increase in query response time. Third, even if a graph could be
compressed down to a gigabyte (comfortable main memory size in 2009) it is undesirable to keep
it in memory on a machine which is running other applications, and in which there are occasional
user queries to the graph. A good example of this third case is the problem of searching personal
information networks [6], which integrates the user’s personal information with information from
the Web and hence needs to be performed on the user’s own machine for privacy preservation [8].

Is there an intuitive representation of a disk-resident graph such that any random walk based
measure can be easily computed from this representation? The obvious solution is to split the graph
into clusters of nodes and store each cluster on a disk page; ideally random walks will rarely cross
cluster boundaries and cause page-faults. This clustered representation can be used to quickly
simulate random walks from any graph node, and by extension, any similarity measure based on
random walks. Still, while simulations are computationally cheap, they have a lot of variation,
and for some real-world graphs lacking well-defined clusters, they often lead to many page-faults.

1

We propose a deterministic local algorithm guaranteed to return nearest neighbors in personalized
pagerank from the disk-resident clustered graph. The same idea can also be used for computing
nearest neighbors in hitting times. This is our second contribution.

Finally, we develop a fully external-memory clustering algorithm (RWDISK) that uses only
sequential sweeps over data files. This serves as a preprocessing step that yields the disk-resident
clustered representation mentioned above, on top of which any nearest-neighbor algorithms can
then be run.

We present extensive experimental results on real-world graphs with up-to 86 million edges.
We show how tackling the high degree nodes boost both computational efficiency and link predic-
tion accuracy; the improved performance of the deterministic algorithm over vanilla Monte Carlo
simulations; and finally the finer quality of clusters returned by our clustering algorithm compared
to a popular in-memory clustering algorithm METIS ([14]).

The paper is organized as follows: in section 3.1 we theoretically show the effect of high
degree nodes on personalized pagerank (PPV). We also show the same for discounted hitting times
by presenting a new result which expresses discounted hitting times in terms of PPV. In section 3.2
we present a deterministic local algorithm to compute top k nodes in personalized pagerank using
these clusters. In section 3.5 we describe our RWDISK algorithm for clustering a disk resident
graph by only using sequential sweeps of files. We conclude with experimental results on large
disk-resident Live Journal, DBLP and Citeseer graphs.

2 Background and Related Work
In this section we will briefly describe interesting random walk based proximity measures, namely
personalized pagerank and hitting times. We will also discuss the relevance of personalized pager-
ank for graph clustering.

PERSONALIZED PAGERANK. Consider a random walk starting at node a, such that at any step the
walk can be reset to the start node with probability α. The stationary distribution corresponding to
this stochastic process is defined as the personalized pagerank vector (PPV) of node a. The entry
corresponding to node j in the PPV vector for node a is denoted by PPV (a, j). Large values
of PPV (a, j) is indicative of higher similarity/relevance of node j w.r.t a. For a general restart
probability distribution r personalized pagerank is defined as v = αr + (1− α)P Tv. P is the row
normalized probability transition matrix and P Tv is the distribution after one step of random walk
from v. Let’s define xt as the probability distribution over all nodes at timestep t. x0 is defined as
the probability distribution with 1.0 at the start node and zero elsewhere. By definition we have
xt = P Txt−1 = (P T)tx0. Let vt be the partial sum of occupancy probabilities up-to timestep t.
Now we can write PPV as:

v(j) =
∞∑
t=1

α(1− α)t−1xt−1(j) = lim
t→∞

vt(j) (1)

Personalized pagerank has been shown to have empirical benefits in keyword search [5], link pre-
diction [15], fighting spam [13]; there has been an extensive literature on algorithms for computing
them locally [3, 5], off-line [12, 9, 17], and from streaming data [18] etc.

2

DISCOUNTED HITTING TIME. Hitting time in random walks is a well-studied measure in proba-
bility theory [1]. Hitting times and other local variations of it has been used as a proximity measure
for link prediction [15], recommender systems [4], query suggestion [16], manipulation resistant
reputation systems [11] etc. We would use the following variation of hitting time. Note that this
is closer to the original hitting time definition, and is different from the generalized hitting time
defined in [10]. Consider a random walk which, once started from i stops if node j is encountered,
or with probability α. The expected time to hit node j in this process is defined as the α discounted
hitting time from node i to node j, (hα(i, j)). Similar to the undiscounted hitting time, this can be
written as the average of the hitting times of its neighbors to j.

hα(i, j) =

{
1 + (1− α)

∑
k P (i, k)hα(k, j) when i 6= j

0 otherwise
(2)

The maximum value of this quantity is 1/α, which happens when node j is never hit.

GRAPH CLUSTERING. Recently there has been interesting theoretical work ([19, 2]) for using
random walk based approaches for computing good quality local graph partitions (cluster) near
a given anchor node. The main intuition is that a random walk started inside a low conductance
cluster will mostly stay inside the cluster. Cluster-quality is measured by its conductance, which
is defined as follows: For a subset of A of all nodes V , let ΦV (A) denote conductance of A, and
µ(A) =

∑
i∈A degree(i). As in [19], conductance is defined as:

ΦV (A) =
E(A, V −A)

min(µ(A), µ(V −A))
(3)

A good-quality cluster has small conductance, resulting from a small number of cross-edges com-
pared to the total number of edges. The smaller the conductance the better the cluster quality.
Hence 0 is perfect score, for a disconnected partition, whereas 1 is the worst score for having a
cluster with no intra-cluster edges. Conductance of a graph is defined as the minimum conductance
of all subsets A.

The formal algorithm to compute a low conductance local partition near a pre-selected seed
node was given in [19]. The idea is to compute sparse representation of probability distribution
over the neighboring nodes of a seed node in order to return a local cluster with small conductance
with high probability. The running time is nearly linear in the size of the cluster it outputs.

3 Proposed Work
There are two main problems with nearest neighbor computation in large real world networks.
First, most local algorithms for computing nearest neighbors suffer from the presence of high
degree nodes. In section 3.1 we propose a solution that converts high degree nodes to sinks. This
effectively stops a random walk once it hits a high degree node, thus preventing a possible blow-up
in the neighborhood-size in local algorithms. Our results imply that in power law graphs, this does
not affect the proximity measures significantly.

The second issue is that of computing proximity measures on large disk-resident graphs. While
there are existing external-memory algorithms for computing random walks in large disk-resident

3

graphs [9, 17], most of these store sketches aimed to compute one particular measure. Streaming
algorithms [18] on the other hand require multiple passes over the entire data. While all these
algorithms use interesting theoretical properties of random walks, they do not provide a generic
framework for computing arbitrary random walk based proximity measures on the fly. One solu-
tion would be to cluster the graph and store each partition on a disk-page. Given such a clustered
representation, one may easily simulate random walks, and thus compute nearest neighbors in hit-
ting times, pagerank, simrank etc. Instead in section 3.2 we propose a deterministic local algorithm
to compute nearest neighbors, which is later shown in section 4 to reduce number of page-faults
compared to random simulations.

Finding a good clustering is a well-studied problem [2, 19]. Good clusters will have few cross
edges, leading to self-contained random walks and less page-faults. Sometimes a good clustering
can be achieved by using extra features, e.g. url’s in the web-graph. However we are unaware of a
fully external memory clustering algorithm in the general setting. Building on some ideas in prior
literature [2], [17] we present an external memory clustering algorithm in section 3.3.

3.1 Effect of High Degree Nodes
Local algorithms estimate the similarity between the query node and others by examining local
neighbor-hoods around the query node. These mostly rely on dynamic programming or power
iteration like techniques which involve updating a node’s value by combining that of its neighbors.
As a result whenever a high degree node is encountered these algorithms have to examine a much
larger neighborhood leading to performance bottlenecks. The authors in [17] use rounding in order
to obtain sparse representations of personalized pagerank and simrank. However before rounding,
the simrank/pagrank vectors can become very dense owing to the high degree nodes. For [3, 5] the
authors maintain a priority queue to store the active neighborhood of the query node. Every time
a high degree node is visited all its neighbors need to be enqueued, thus slowing both algorithms
down. Because of the power-law degree distribution such high degree nodes often exist in real
world networks. Although there are only a few of them, due to the small-world property these
nodes are easily reachable from other nodes, and they are often encountered in random walks. We
will discuss the effect of high degree nodes on two proximity measures, personalized pagerank
and discounted hitting times. Our analysis of the effect of degree on hitting time, and personalized
pagerank is for the case of undirected graphs, although the main theorems, i.e. 3.5 and 3.1 holds
for any graph.

EFFECT ON PERSONALIZED PAGERANK. The main intuition behind this analysis is that a very
high degree node passes on a small fraction of its value to the out-neighbors, which might not
be significant enough to spend our computing resources on. We argue that stopping a random
walk at a high degree node does not change the personalized pagerank value at other nodes which
have relatively smaller degree. First we show that the error incurred in personalized pagerank is
inversely proportional to the degree of the sink node. Next we analyze the error for introducing a
set of sink nodes. We turn a high degree node into a sink by removing all the outgoing neighbors
and adding one self-loop with probability one, to have a well-defined probability transition matrix
P . We do not change any incoming edges.

We denote by PPV (r, j) the personalized pagerank value at node j w.r.t start distribution r,
and PPV (i, j) denotes ppv value at node j w.r.t a random walk started at node i. Let P̂PV be the

4

personalized pagerank w.r.t. start distribution r on the changed transition matrix.

Theorem 3.1. In a graph G, if a node s is changed into a sink, then for any node i 6= s, the
personalized pagerank in the new graph w.r.t start distribution r can be written as:

P̂PV (r, i) = PPV (r, i)− PPV (s, i)
PPV (r, s)

PPV (s, s)

Given theorem 3.1 we will prove that if degree of s is much higher that than of i, then the error
will be small. In order to do this we would need to examine the quantity PPV (i, j)/PPV (j, j).
Define the first occurrence probability faα(i, j). Consider a random walk which stops if it hits
node j; if j is not hit, it stops with probability α. faα(i, j) is simply the probability of hitting a
node j for the first time from node i, in this α-discounted walk. This is defined as:

faα(i, j) =

{
(1− α)

∑
k P (i, k)faα(j, k) when i 6= j

1 otherwise
(4)

Lemma 3.2. The personalized pagerank from node i to node j can be expressed as:

PPV (i, j) = faα(i, j)× PPV (j, j)

Sketch. As proven in [12, 9], the personalized pagerank from node i to node j is simply the prob-
ability that a length L path from i will end in j, where L is chosen from a geometric distribution
with probability P (L = t) = α(1 − α)t−1. Note that these paths can have multiple occurrences
of j. If we condition on the first occurrence of j, then PPV (i, j) would simply be probability of
hitting j for the first time in an α discounted random walk times the personalized pagerank from j
to itself.

Lemma 3.3. The error introduced at node i 6= s by converting node s into a sink can be upper
bounded by di

ds
.

Sketch. Note that by linearity of personalized pagerank vectors, we have PPV (r, i) =
∑

k rkPPV (k, i).
Also as shown in the appendix, PPV (s, i) ≤ diPPV (i, s)/ds ≤ di/ds. Now, the above statement
can be proved by combining linearity with PPV (k, s)/PPV (s, s) = faα(k, s) ≤ 1 (from lemma
3.2).

Hence if ds is much larger than di then this error is small. Now we will present the error for
converting a set of nodes S to a sink. The first step is to show that the error incurred by turning
a number of high degree nodes into sinks is upper bounded by the sum of their individual errors.
That can again be simplified to

Lemma 3.4. If we convert all nodes in set S = {s1, s2, ..., sk} into sinks, then the error introduced

at node i /∈ S can be upper bounded by
di

mins∈S ds
.

5

The proofs for theorem 3.1 and lemma 3.4 can be found in the appendix.
In real world networks the degree distribution often follows a power law, i.e. there are relatively

fewer nodes with very large degree. And also most nodes have very low degree relative to these
nodes. Hence we can make a few nodes into sinks and gain a lot of computational efficiency
without losing much accuracy. We would like to mention that although the degree in the analysis
is the weighted degree of a node, for experimental purposes we remove nodes with a large number
of out-neighbors and not the weighted degree, since a node with a few high-weight edges can have
a large weighted degree but it can pass on a considerable amount of probability to its neighbors.

EFFECT ON HITTING TIME. In order to see the effect of turning high degree nodes into sinks on
discounted hitting times, we introduce the following result in this paper.

Theorem 3.5. The α-discounted hitting time hα(i, j) is related to personalized pagerank by:

hα(i, j) =
1

α

[
1− PPV (i, j)

PPV (j, j)

]

Sketch. First we show that hα(i, j) =
1

α
(1− faα(i, j)). This can be easily verified by substituting

this in the equation for hitting time, i.e. (2). This combined with lemma 3.2 gives the result.

In this section we will only show the effect of deleting one high degree node on hitting time.
The effect of removing a set of high degree nodes follows from the analysis of the last section and
would be skipped for brevity. We denote by ĥα(i, j) the hitting time after we turn node s into a
sink. By combining theorems 3.1 and 3.5 and algebraic manipulations, we get:

hα(i, j)− dj
α2ds

≤ ĥα(i, j) ≤ hα(i, j) +
dj
α2ds

(5)

We used the fact that PPV (j, j) ≥ α and lemma 3.2 to obtain the above. This implies that turning
a very high degree node into sink has a small effect on hitting time.

In this section we have given theoretical justification for changing the very-high degree nodes
into sinks. We have shown its effects on two well known random walk based proximity measures.
In the next two sections we would demonstrate algorithms to compute nearest neighbors on a
clustered graph representation, and an external memory algorithm to compute clustering.

3.2 Nearest-neighbors on clustered graphs
Given a clustered representation, one can easily simulate random walks from a node, to obtain
nearest neighbors in different proximity measures. While simulations are computationally cheap,
they have a lot of variation, and for some real-world graphs they often lead to many page-faults,
owing to the absence of well-defined clusters. In this section we discuss how to use the clusters
for deterministic computation of nodes “close” to an arbitrary query. As the measure of “close-
ness” from i, we pick the degree-normalized personalized pagerank, i.e. PPV (i, j)/dj . dj is
the weighted degree of node j. This is a truly personalized measure, in the sense that a popular

6

node gets a high score only if it has a very high personalized pagerank value. We will use the
degree-normalized pagerank as a proximity measure for link prediction in our experiments as well.

We want to compute nearest neighbors in PPV (i, j)/dj from a node i. For an undirected graph,
we have PPV (i, j)/dj = PPV (j, i)/di. Hence it is equivalent to computing nearest neighbors in
personalized pagerank to a node i. For an un-directed graph we can easily change these bounds
to compute nearest neighbors in personalized pagerank from a node. For computing personalized
pagerank to a node, we will make use of the dynamic programming technique introduced by [12]
and further developed for computing sparse personalized pagerank vectors by [17]. For a given
node i, the PPV from j to it, i.e. PPV (j, i) can be written as

PPV t(j, i) = αδ(i) + (1− α)
∑

k∈nbs(j)

PPV t−1(k, i)

Now let us assume that j and i are in the same cluster S. Hence the same equation becomes

PPV t(j, i) = αδ(i) + (1− α)

 ∑
k∈nbs(j)∩S

P (j, k)PPV t−1(k, i)+

∑
k∈nbs(j)∩S̄

P (j, k)PPV t−1(k, i)

Since we do not have access to PPV t−1(k), k /∈ S, we will replace it with upper and lower bounds.
The lower bound is simply zero, i.e. we pretend that S is completely disconnected to the rest of the
graph. A random walk from outside S has to cross the boundary of S, δ(S) to hit node i. Hence
PPV (k, i) =

∑
m∈δ(S) Prα(Xm|Xδ(S))PPV (m, i), where Xm denotes the event that Random

walk hits nodem before any other boundary node for the first time, and the eventXδ(S) denotes the
event that the random walk hits the boundary δ(S). Since this is a convex sum over personalized
pagerank values from the boundary nodes, this is upper bounded by maxm∈δ(S) PPV (m, i). Hence
we have the upper and lower bounds as follows:

lbt(j, i) = αδ(i) + (1− α)
∑

k∈nbs(j)∩S

lbt−1(k, i)

ubt(j, i) = αδ(i) + (1− α)

 ∑
k∈nbs(j)∩S

P (j, k)ubt−1(k, i)+

{1−
∑

k∈nbs(j)∩S

P (j, k)} max
m∈δ(S)

ubt−1(m, i)

Since S is small in size, the power method suffices for computing these bounds, one could also use
rounding methods introduced by [17]. At each iteration we maintain the upper and lower bounds
for nodes within S, and at the global upper bound maxm∈δ(S) ub

t−1(m, i). In order to expand S we
bring in the clusters for x of the external neighbors of
arg maxm∈δ(S) ub

t−1(m, i). Once this global upper bound falls below a pre-specified small thresh-
old γ, we use these bounds to compute approximate k closest neighbors in degree-normalized
personalized pagerank.

7

The ranking step to obtain top k nodes using upper and lower bounds is simple: we return all
nodes which have lower bound greater than the k + 1th largest upper bound (when k = 1, kth
largest is the largest probability). We denote this as ubk+1. Since all nodes outside the cluster are
guaranteed to have personalized pagerank smaller than the global upper bound, which in turn is
smaller than γ, we know that the true (k+1)th largest probability will be smaller than ubk+1. Hence
any node with lower bound greater than ubk+1 is guaranteed to be greater than the k + 1th largest
probability. We use an additive slack, e.g. (ubk+1 − ε) in order to return the top k approximately
large ppv nodes. The reason for using an additive slack is that, for larger values of ubk+1, this
behaves like a small relative error, whereas for small ubk+1 values it allows a large relative slack,
which is useful since we do not want to spend energy on the tail of the rank list anyways. In
our algorithm we initialize γ with 0.1 and keep decreasing it until the bounds are tight enough
to return k largest nodes. Note that one could rank the probabilities using the lower bounds, and
return top k of those after expanding the cluster a fixed number of times. This translates to a larger
approximation slack.

What if we want to compute this on a graph with high degree nodes converted into sinks? Al-
though this is not undirected anymore, using our error bounds from section 3.1 we can easily show
that (skipped for brevity) if the difference between two personalized pagerank values PPV (a, i)
and PPV (b, i) is larger than di

minsi∈S d(si)
in the original graph, then a will have larger PPV value

than b in the altered graph. Given that the networks follow a power law degree distribution, the
minimum degree of the nodes made into sinks is considerably larger than di for most i, we see that
the pairs which had a considerable gap in their original values should still have the same order-
ing. Note that for high degree nodes the ordering will have more error. However because of the
expander like growth of the neighborhood of a high degree node, most nodes are far away from it
leading to an uninteresting set of nearest neighbors anyways.

3.3 Clustered Representation on Disk
Now that we have discussed how to use a given clustered representation for computing nearest
neighbors efficiently, we will present an algorithm to generate such a representation on disk. The
intuition behind this representation is to use a set of anchor nodes and assign each remaining
node to its “closest” anchor. Since personalized page-rank has been shown to yield good quality
clusters [2], we use it as the measure of “closeness”. Our algorithm starts with a random set of
anchors, and compute personalized pagerank from them to the remaining nodes. Since all nodes
might not be reached from this set of anchors, we iteratively add new anchors from the set of
unreachable nodes, and the recompute the cluster assignments. Thus our clustering satisfies two
properties: new anchors are far away from the existing anchors, and when the algorithm terminates,
each node each node i is guaranteed to be assigned to its closest anchor. Even though the anchors
are chosen randomly this should not affect the clustering significantly because, any node within a
tight cluster can serve as the anchor for that cluster.

While clustering can be done based on personalized pagerank from or to a set of anchor nodes,
one is not known to be better or worse than the other a priori. We use personalized pagerank from
the anchor nodes as the measure of closeness. In [17] the authors presented a semi-external mem-
ory algorithm to compute personalized pagerank to a set of nodes. While the authors mention that
their algorithm can be implemented purely via external memory manipulations, we close the loop

8

via external memory computation of personalized pagerank from a set of anchor nodes (algorithm
RWDISK). While we also use the idea of rounding introduced by the authors, the analysis of ap-
proximation error is different from their analysis. We provide proof sketches for the main results
in this section, details of the proof can be found in the appendix.

We will first present the basic idea behind RWDISK, and we will call it RWDISK-simple.
We will demonstrate the algorithm on a simple line graph. Then we will show when the simple
algorithm does not work, and present RWDISK.

3.4 Algorithm RWDISK-simple
Algorithm RWDISK-simple computes PPV values from a set of anchor nodes based solely on
passes on input files. In the subsequent sections we will describe the full algorithm. First we will
show how to compute xt and vt by doing simple join operations on files. We will demonstrate
by computing PPV from node b in a line graph of 4 nodes (Figure 1). The RWDISK algorithm
will sequentially read and write from four kinds of file. We will first introduce some notation.
Xt denotes a random variable, which represents the node the random walk is visiting at time t.
P (X0 = a) is the probability that the random walk started at node a.

• The Edges file remains constant and contains all the edges in the graph and the transition
probabilities. Treating Edges as an ASCII file with one line per edge, each line is a triplet
{sourcenode,destnode,p}, where sourcenode and destnode are strings represent-
ing nodes in the graph, and p = P (Xt = destnode|Xt−1 = sourcenode). Number of lines
in Edges equals number of edges in the graph. Edges is sorted lexicographically by sourcenode.

• At iteration t, the Last file contains the values for xt−1. Thus each line in Last is {source,anchor,value},
where value equals P (Xt−1 = source|X0 = anchor). Last is sorted by source.

• At iteration t of the algorithm, the file Newt will contain the values for xt, i.e. each line
is {source,anchor,value}, where value equals P (Xt = source|X0 = anchor).
Newt, once construction is finished, will also be sorted by source. Needless to say, the Newt of
iteration t becomes the Last of iteration t+ 1.

• The final file is Ans. At iteration t of the algorithm, the file Ans represents the values for vt. Thus
each line in Ans is {source,anchor,value}, where value =

∑t
n=1 α(1−α)n−1xn−1(j).

Ans, once construction is finished, will also be sorted by source.

We will now confirm that these files can be derived from each other by a series of merges and
sorts. In step 1 of Algorithm RWDISK, using the simple 4-node graph in figure 1 with b as the sole
anchor, we initialize Last as the single line b, b, 1.0, and Ans with the single line b, b, α.

In the next step we compute the Newt file from Last and Edges by a disk-based matrix multi-
plication, which is a simple join operation of two files. Both Last and Newt sum to 1, since these

Figure 1: Line Graph

9

b ,b, 1.0

a, b, 1.0
b, a, 0.5
b, c, 0.5
c, d, 0.5
d, c, 1.0

b, b, 0.2

Last
(t=1)

Ans

(t=1)

a, b, 0.5
c ,b, 0.5

Edges

Newt

(t=2) b, b, 0.2
a, b, 0.08
c, b, 0.08

α(1- α)t-1=0.2x0.8

Ans

(t=2)

a, b, 1.0
b, a, 0.5
b, c, 0.5
c, d, 0.5
d, c, 1.0

Last
(t=2)

Ans

(t=2)

a, b, 0.5
c ,b, 0.5

Edges

Newt

(t=3)

a, b, 0.08
b, b, 0.2
c, b, 0.08

α(1- α)t-1=0.128

Ans

(t=3)

b, b, 0.5
b, b, 0.25
d, b, 0.25

a, b, 0.08
b, b, 0.2
b, b, 0.096
c, b, 0.08
d, b, 0.032

b, b, 0.75
d, b, 0.25

compress

compress

a, b, 0.08
b, b, 0.296
c, b, 0.08
d, b, 0.032

(A) (B)

Figure 2: A. shows the first step of our algorithm on a line graph, and B. shows the second step.
The input file (Edges) is in green, the intermediate files (Last, Newt) are in red and the output file
(Ans) is in black.

are the occupancy probabilities at two consecutive timesteps. Once we have Newt, we multiply the
probabilities by α(1 − α)t−1 (the probability that a random walk will stop at timestep t, if at any
step the probability of stopping is α) and accumulate the values into the previous Ans file. Now the
Newt file is renamed to Last file. Figure 2 is the same process on the new Last, i.e. old Newt file.

Now let us look at some details. For any node y it can appear many times in Newt, since the
values in Last from different in-neighbors of y accumulate in Newt. For example in the Newt file at
timestep 2, probability mass accumulates in b from both its incoming neighbors {c,d}. Hence we
need to sort and compress Newt, in order to add all the different values. Compressing is the simple
process where sets of consecutive lines in the sorted file that have the same source and anchor (and
each have their own value) are replaced by one line containing the given source and anchor, and
the sum of the values. Sorting and compression can each happen with O(n) sequential operations
through the file (the former by means of bucket sort).

3.5 Algorithm RWDISK
The problem with the previous algorithm is that some of the intermediate files can become very
large: much larger than the number of edges. Let N and E be the total number of nodes and edges
in the graph. Let d be the average outdegree of a node. In most real-world networks within 4-5
steps it is possible to reach a huge fraction of the whole graph. Hence for any anchor the Lastfile
might have N lines, if all nodes are reachable from that anchor. Therefore the Lastfile can have
at most O(AN) lines. The ultimate goal of the paper is to create a pagesize cluster (partition) for
each anchor. If roughly na nodes can fit per page, then we would need N/na anchors. Hence the
naive file join approach will lead to intermediate files of size O(N2/na). Since these files are also
sorted every iteration, this will greatly affect both the runtime and disk-storage.

10

RWDISK(Edges, ε, α, Anchors)

• Initialize: For each anchor a ∈ Anchors,

1. Append to each empty file Last the line a, 1.0.

2. Append to each empty file Ans the line a, α.

• i = 1.

• Create Newt files from a pass over the Last and
Edges files.
Newt← CreateNewtFile(Last,Edges).

• If the Newt file is empty or i > maxiter, return
Ans after sorting and compressing it.

• Update the Ans file.
Ans← Update(Ans,Newt,α,i+ 1).

• Round values in Newt files and copy to Last files.
Last← Round(Newt,ε).

• ε = ε/
√

1− α

• Increment counter i. Goto step 3.

CreateNewtFile(Last,Edges)

• Read triplets {src,anchor,val} from
Lastwith common prefix “src”

• Read triplets {src,dst,prob} from
Edgeswith common prefix “src”

• Append to a temporary buffer Tmp the
triplets {dst,anchor,prob× val}

• If number of lines in Tmp ≥ M sort
and compress Tmp, and merge with already
sorted file Newt

Table 1: Pseudocode for RWDISK

Rounding for reducing file sizes: We address this serious problem by means of rounding tricks.
In the step from Newt to Last at timestep t we round all values below εt to zero. Elements of a
sparse rounded probability density vector sums to at most one. By rounding we only store the
entries bigger than εt−1. Hence the total number of nonzero entries can be at most 1/εt−1. In fact,
since the probability of stopping decreases by a factor of (1− α)t with t, we gradually increase εt,
leading to sparser and sparser solutions.

As Last stores rounded xt−1 values for A anchors, its length can never exceed A/εt−1. Since
Newt is obtained by spreading the probability mass along the out-neighbors of each node in Last,
its total length can be roughly A × d/εt−1, where d is the average out-degree. For A = N/na
anchors, this value is (N/na)×d/εt−1 = E/(na×εt−1). Without rounding this length wasN2/na.

In table 1 we present this rounding algorithm using only sequential scans of datafiles on disk.
At one iteration of CreateNewtFile, for each outneighbor dst of node src appearing in Last
file, we append a line {dst,anchor,prob × val} to the Newt file. Since the length of Last
is no more than A/εt−1, the total number of lines before sorting and compressing Newt can be
A× d/εt−1. We avoid sorting a huge internal Edges every iteration by updating the Newt in a lazy
fashion. We maintain a sorted Newt and append the triplets to a temporary buffer Tmp. Every time
the number of lines exceed M = 2A/εt−1, we sort the buffer, and merge it with the already sorted
Newt file. Since the total number of lines in Newt can be as big as A× d/εt−1, this update happens
roughly d/2 times, where d is the average out-degree.

The update function reads a triplet {source,anchor,val} from Newt and appends it after

11

adjusting val by a factor of α(1 − α)iter−1 to Ans. Since Ans is not needed to generate the
intermediate probability distributions, we do not sort and compress it in every iteration. We only
do so once at the end. How big can the Ans file get? Since each Newt can be as big as A× d/εt−1,
and we iterate for maxiter times, the size of Ans can be roughly as big as maxiter×A×d/εt−1.
Since we increase εt every iteration, εt ≥ ε,∀t. Here are the file-sizes obtained from RWDISK in
a nutshell:

Algorithm # anchors Last Size Newt Size Ans Size

No-rounding N
na

O(N
2

na
) O(N

2

na
) O(N

2

na
)

Rounding N
na

O(N
ε×na

) O(E
ε×na

) O(maxiter×E
ε×na

)

3.6 Approximation Error
We present a proof sketch. The proofs of each lemma/theorem can be found in the appendix.

Error from rounding: The rounding step saves vast amounts of time and intermediate disk
space, but how much error does it introduce? In this section we will describe the effect of rounding
on computing the degree-normalized personalized pagerank values. First we will bound the error
in personalized pagerank. Ψε(x) is an operation from a vector to a vector which rounds all entries
of x below ε to 0. Thus Ψε(x[j]) equals 0 if x[j] ≤ ε, and equals x[j], otherwise.

We will denote x̂t as the approximated xt value from the rounding algorithm at iteration t. We
want to have a bound on v− v̂, where v is the exact personalized pagerank (equation (1)). In order
to do that we will first bound xt − x̂t, and then combine these errors to get the bound on the final
error vector. We will denote ε̄t as a vector of errors accumulated at different nodes by rounding at
time t. Note that ε̄t is strictly less than the probability vector xt. Also note that x̂t is strictly smaller
than xt. . Hence we can prove the following recursive equation.

Lemma 3.6. We have x̂t = Ψεt(P
T x̂t−1). Let ε̄t equal P T x̂t−1 − x̂t. At any node i we have

0 ≤ ε̄t(i) ≤ xI(x ≤ εt) ≤ εt, where I(.) is the indicator function, and x = P T x̂t−1(i). Then we
can prove xt − x̂t ≤ ε̄t + P T (xt−1 − x̂t−1).

We will use this to bound the total error accumulated up-to time t in the probability vector xt.

Lemma 3.7. Let Et denote xt − x̂t, the vector of errors accumulated up to timestep t. Et has only
non-negative entries. We have Et ≤

∑t
r=1(P T)t−r ε̄r.

The above error equation shows how the epsilon-rounding accumulates over time. From equa-
tion (1) the total error incurred in the PPV value E can be bounded as follows.

Theorem 3.8. Let E denote v − v̂, and PPVα(r) denote the personalized pagerank vector for
start distribution r, and restart probability α. We have E ≤ 1

α
PPVα(ε̄) where ε̄ is a vector, with

maximum entry smaller than αε
1−
√

1−α , and sum of entries less than 1.

12

Theorem 3.8 indicates that our rounding scheme incurs an error in the personalized pagerank
vector which is upper bounded by a constant times the stationary distribution of a α-restart walk
whose start distribution is ε̄. For an undirected graph it can be shown (Appendix) that the total error

at any node i can be at most
d(i)

δ

ε

1−
√

1− α
. where d(i) is the weighted degree of node i, and

δ is the minimum weighted degree. Since we are using degree-normalized personalized pagerank,
the d(i) at any node gets normalized leading to an error of

ε

δ(1−
√

1− α)
.

In fact this result turns out to be very similar to that of [2], which uses a similar idea to [3]
for obtaining sparse representations of personalized pagerank vectors. The main difference is that
RWDISK streams through the data without needing random access.

Error from early termination: Here is the error bound for terminating RWDISK early.

Theorem 3.9. Let vt be the partial sum of distributions up to time t. If we stop at t = maxiter,
then the error is given by v− vmaxiter = (1− α)maxiterPPVα(xmaxiter). where PPVα(xmaxiter)
is the personalized pagerank with start distribution xmaxiter.

This theorem indicates that the total error incurred by early stopping is (1 − α)maxiter. Now
we will combine theorems 3.8 and 3.9 to obtain the final approximation error guarantee.

Lemma 3.10. If v̂maxiter is obtained from RWDISK with parameters ε, α, maxiter and start
distribution r then

v − v̂maxiter ≤
1

α
PPVα(ε̄) + (1− α)maxiterPPVα(xmaxiter)

where xmaxiter is the probability distribution after maxiter steps, when the start distribution is
r.

HIGH DEGREE NODES. In spite of rounding one problem with RWDISK is that if a node has high
degree then it has large personalized pagerank value from many anchors and as a results can appear
in a large number of {node,anchor} pairs in the Last file. After the matrix multiplication each
of these pairs now will lead to {nb,anchor} pairs for each outgoing neighbor of the high degree
node. Since we can only prune once the entire Newt file is computed the size can easily blow up.
This is why RWDISK benefits from turning high degree nodes into sinks as described before in
section 3.1.

THE CLUSTERING STEP. We randomly pick about 1 percent of the nodes as anchor points, and
compute personalized pagerank from them by the RWDISK algorithm. Each node is assigned to
the anchor node which has the largest pagerank value to it, and this assignment defines our graph
clustering. However there might be orphan nodes after one pass of the algorithm: nodes which
no anchor can reach. We need every node to be placed in exactly one cluster, and so if there are
orphans, we go ahead and pick another set of random anchor nodes from the orphans from step 1,
and compute personalized pagerank from them by rerunning RWDISK. For any batch of anchors
we only store the information {src,closest-anchor,value}, where src is a node which
is not an orphan. closest-anchor is the anchor with the maximum PPV value among all

13

anchors seen so far, and value is the PPV value from that anchor to src. Now we reassign the
nodes to the new anchors, in case some node found a closer anchor. We continue this process until
there are no orphans left. The clustering satisfies two properties: 1) a new batch of anchors are far
away from the existing pool of anchors, since we picked them from nodes which has PPV value 0
from the pre-existing pool of anchors; 2) after R rounds if the set of anchors is SR, then each node
i is guaranteed to be assigned to its closest anchor, i.e. arg maxa∈SR

PPV (a, i).

4 Results
We present our results in three steps: first we show the effect of high degree nodes on i) com-
putational complexity of RWDISK, ii) page-faults in random walk simulations for an actual link
prediction experiment on the clustered representation, and iii) link prediction accuracy. Second,
we show the effect of deterministic algorithms for nearest-neighbor computation on reducing the
total number of page-faults by fetching the right clusters. Last, we compare the usefulness of the
clusters obtained from RWDISK w.r.t a popular in-memory algorithm METIS.

DATA AND SYSTEM DETAILS. We present our results on three of the largest publicly available
social and citation networks: a connected subgraph of the Citeseer co-authorship network, the
entire DBLP corpus, and Live Journal (table 2). We used an undirected graph representation,
although RWDISK can be used for directed graphs as well. The experiments were done on an off-
the-shelf PC. We used a size 100 buffer and the least recently used replacement scheme. Each time
a random walk moves to a cluster not already present in the buffer, the system incurs page-faults.
We used a pagesize of 4KB, which is standard in most computing environments.

Dataset
Size of Nodes Edges Median
Edges Degree

Citeseer 24MB 100K 700K 4

DBLP 283MB 1.4M 12M 5

LiveJournal 1.4GB 4.8M 86M 5

Table 2: # nodes,directed edges in graphs

4.1 Effect of High Degree Nodes
Turning high degree nodes into sinks have three-fold advantage: first, it drastically speeds up our
external memory clustering; second, it reduces number of page-faults in random walk simulations
done in order to rank nodes for link-prediction experiments; second it actually improves link-
prediction accuracy.

EFFECT ON RWDISK. Table 3 contains running times of RWDISK on three graphs. For Citeseer,
RWDISK algorithm completed roughly in an hour without introducing any sink nodes. For DBLP,

14

Dataset Sink Nodes Time

Min degree Number

Citeseer None 0 1.3 hours

DBLP
None 0 ≥ 2.5 days
1000 900 11 hours

LiveJournal
1000 950 60 hours

100 134, 000 17 hours

Table 3: For each dataset, the minimum degree, above which nodes were turned into sinks, and the
total number of sink nodes, time for RWDISK.

without degree-deletion, the experiments ran for above 2.5 days, after which they were stopped.
After turning nodes with degree higher than 1000, the time was reduced to 11 hours, a larger than
5.5 fold speedup. The Live-Journal graph is the largest and most dense of all three. After we made
nodes of degree higher than 1000 into sinks, the algorithm took 60 hours, which was reduced to 17
(≥ 3 fold speedup) after removing nodes above degree 100. In table 2 note that, for both DBLP
and LiveJournal the median degree is much smaller than the minimum degree of nodes converted
into sink nodes. This combined with our analysis in section 3.1 confirms that we did achieve a
huge computational gain without sacrificing the quality of approximation.

LINK PREDICTION. For link-prediction we used degree-normalized personalized pagerank as
the proximity measure for predicting missing links. We picked the same set of 1000 nodes and
the same set of links from each graph before and after turning the high degree nodes into sinks.
For each node i we held out 1/3rd of its edges and reported the percentage of held-out neighbors
in top 10 ranked nodes in degree-normalized personalized pagerank from i. Only nodes below
degree 100 and above degree 3 were candidates for link deletion, so that no sink node can ever be
a candidate. From each node 50 random walks of length 20 were executed. Note that this is not
AUC score; so a random prediction does much worse that 0.5 in these tasks.

From table 4 we see that turning high-degree nodes into sinks not only decrease page-faults by
a factor of ∼ 7, it also boosts the link prediction accuracy by a factor of 4 on average. Here is the

Dataset Sink nodes Accuracy Page-faults

LiveJournal
none 0.2 1502

degree above 100 0.43 255

DBLP
none 0.1 1881

degree above 1000 0.58 231

Citeseer
none 0.79 69

degree above 100 0.74 67

Table 4: Mean link-pred. acc. and pagefaults

15

reason behind the surprising trend in link prediction scores. The fact that page-faults decrease after
introducing sink nodes is obvious, since in the original graph every time a node hits a high degree
node there is higher chance of incurring page-faults. We believe that the link prediction accuracy
is related to quality of clusters, and transitivity of relationships in a graph. More specifically in a
well-knit cluster, two connected nodes do not just share one edge, they are also connected by many
short paths, which makes link-prediction easy. On the other hand if a graph has a more expander-
like structure, then in random-walk based proximity measures, everyone ends up being far away
from everyone else. This leads to poor link prediction scores. In table 4 one can catch the trend of
link prediction scores from worse to better from LiveJournal to Citeseer. Our intuition about the
relationship between cluster quality and predictability is reflected in figure 3, where we see that
LiveJournal has worse page-fault/conductance scores than DBLP, which in turn has worse scores
than Citeseer. Within each dataset, we see that turning high degree nodes into a sink generally
helps link prediction, which is probably because it also improves the cluster-quality. Are all high-
degree nodes harmful? In DBLP high degree nodes without exception end up being words which
can confuse random walks. However the Citeseer graph only contains author-author connections,
and hence has relevant high degree nodes, which is probably why the link-prediction accuracy
decreases slightly when we introduce sink nodes.

4.2 Deterministic vs. Simulations
We present the mean and median number of pagefaults incurred by the deterministic algorithm
in section 3.2. We executed the algorithm for computing top 10 neighbors with approximation
slack 0.005 for 500 randomly picked nodes. For Citeseer we computed the nearest neighbors in

Dataset Mean Page-faults Median Page-faults
LiveJournal 64 29

DBLP 54 16.5

Citeseer 6 2

Table 5: Page-faults for computing 10 nearest neighbors using lower and upper bounds

the original graph, whereas for DBLP we turned nodes with degree above 1000 into sinks and for
LiveJournal we turned nodes with degree above 100 into sinks. Both mean and median pagefaults
decrease from LiveJournal to Citeseer, showing the increasing cluster-quality, as is evident from
the previous results. The difference between mean and median reveals that for some nodes the
neighborhood is explored much more in order to compute the top 10 nodes. Upon closer investi-
gation we found that for high degree nodes, the clusters have a lot of boundary nodes and hence
the bounds are hard to tighten. Also from high degree nodes all other nodes are more or less far-
ther away. In contrast to random simulations (table 4), these results show the superiority of the
deterministic algorithm over random simulations in terms of number of page-faults (roughly 5 fold
improvement).

16

4.3 RWDISK vs. METIS
We used maxiter = 30, α = 0.1 and ε = 0.001 for PPV computation. We use PPV and RWDISK
interchangeably in this section. Note that α = 0.1 in our random-walk setting is equivalent to a
restart probability of α/(2− α) = 0.05 in the lazy random walk setting of [2].

We used METIS as a baseline algorithm [14]1, which is a state of the art in memory graph
partitioning algorithm. We used METIS to break dblp into about 50, 000 parts, which used 20 GB
of RAM, and LiveJournal into about 75, 000 parts which used 50 GB of RAM. Since METIS was
creating comparably larger clusters we tried to divide the Live Journal graph into 100, 000 parts,
however the memory requirement was 80 GB which was prohibitively large for us. In comparison
RWDISK can be executed on a 2− 4 GB standard computing unit. Table 2 contains the details of
the three different graphs and table 3 contains running times of RWDISK on these. Although the
clusters are computed after turning high degree nodes into sinks, the comparison with METIS is
done on the original graphs.

MEASURE OF CLUSTER QUALITY. A good disk-based clustering must combine two character-

Figure 3: The histograms for the expected number of pagefaults if a random walk stepped outside a
cluster for a randomly picked node. Left to right the panels are for Citeseer, DBLP and LiveJournal.

istics: (a) the clusters should have low conductance, and (b) they should fit in disk-sized pages.
Now, the graph conductance φ measures the average number of times a random walk can escape
outside a cluster [19], and each such escape requires the loading of one new cluster, causing an
average of m page-faults (m = 1 if each cluster fits inside one page). Thus, φ ·m is the average
number of page-faults incurred by one step of a random walk; we use this as our overall measure
of cluster quality. Note that m here is the expected size (in pages) of the cluster that a randomly
picked node belongs to, and this is not necessarily the average number of pages per cluster.

Briefly, figure 3 tells us that in a single step random walk METIS will lead to similar number
of pagefaults on Citeseer, about 1/2 pagefaults more than RWDISK on DBLP and 1 more in
LiveJournal. Hence in a 20 step random walk METIS will lead to about 5 more pagefaults than
RWDISK on DBLP and 20 more pagefaults on LiveJournal. Note that since a new cluster can be
much larger than a disk-page size its possible to make more than 20 pagefaults on a 20 step random

1The software for partitioning power law graphs has not yet been released.

17

walk in our paradigm. In order to demonstrate the accuracy of this measure we actually simulated
50 random walks of length 20 from 100 randomly picked nodes from the three different graphs.
We noted the average page-faults and average time in wall-clock seconds. Figure 4 shows how
many more pagefaults METIS incurs than RWDISK in every simulation. The wallclock seconds is
the total time taken for all 50 simulations averaged over the 100 random nodes. These numbers
exactly match our expectation from figure 3. We see that on Citeseer METIS and RWDISK gives

Figure 4: #Page-faults(METIS)-#Page-faults(RWDISK) per 20 step random walk in upper panel.
Bottom Panel contains total time for simulating 50 such random walks. Both are averaged over
100 randomly picked source nodes.

comparable cluster qualities, but on DBLP and LiveJournal RWDISK performs much better.

5 Conclusion
This paper address the following problem. Random-walk based measures of proximity in graphs,
such as Personalized Page Rank, Hitting Times and Commute times are becoming very important
and popular, and yet there are limitations to what we can do when graphs become enormous. This
paper introduces analysis and algorithms which try to address this in a generalizable way: not
specific to one kind of graph partitioning nor one specific proximity measure. We take two steps.
First, we identify the serious role played by high degree nodes in damaging computational com-
plexity, and we prove that a simple transform of the graph can mitigate the damage with bounded
impact on accuracy. Second, we apply the result to produce algorithms for the two components
of general-purpose proximity queries on enormous graphs: algorithms to rank top-n neighbors by
a broad class of random-walk based proximity measures including PPV, and a graph partitioning
step to distribute graphs over a file system or over nodes of a distributed compute-node cluster. In
future work we will experiment with a highly optimized implementation designed to respect true
disk page size and hope to give results on graphs with billions of edges.

References
[1] David Aldous and James Allen Fill. Reversible Markov Chains. 2001.

18

[2] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vec-
tors. In FOCS, 2006.

[3] P. Berkhin. Bookmark-Coloring Algorithm for Personalized PageRank Computing. Internet
Mathematics, 2006.

[4] M. Brand. A Random Walks Perspective on Maximizing Satisfaction and Profit. In SIAM
’05, 2005.

[5] Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In WWW
’07, New York, NY, USA.

[6] Soumen Chakrabarti, Jeetendra Mirchandani, and Arnab Nandi. Spin: searching personal
information networks. In SIGIR ’05.

[7] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Pan-
conesi, and Prabhakar Raghavan. On compressing social networks. In KDD ’09.

[8] Bhavana Bharat Dalvi, Meghana Kshirsagar, and S. Sudarshan. Keyword search on external
memory data graphs. Proc. VLDB Endow., 1(1):1189–1204, 2008.

[9] D. Fogaras, B. Rcz, K. Csalogny, and Tams Sarls. Towards scaling fully personalized pager-
ank: Algorithms, lower bounds, and experiments. Internet Mathematics, 2004.

[10] Fan Chung Graham and Wenbo Zhao. Pagerank and random walks on graphs. In ”Fete of
Combinatorics”.

[11] John Hopcroft and Daniel Sheldon. Manipulation-resistant reputations using hitting time.
Technical report, Cornell University, 2007.

[12] G. Jeh and J. Widom. Scaling personalized web search. In Stanford University Technical
Report, 2002.

[13] Amruta Joshi, Ravi Kumar, Benjamin Reed, and Andrew Tomkins. Anchor-based proximity
measures. In WWW ’07.

[14] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[15] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
CIKM ’03, 2003.

[16] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query suggestion using hitting time.
In CIKM ’08.

[17] Tamás Sarlós, Adrás A. Benczúr, Károly Csalogány, Dániel Fogaras, and Balázs Rácz. To
randomize or not to randomize: space optimal summaries for hyperlink analysis. In WWW,
2006.

19

[18] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph
streams. In PODS, 2008.

[19] D. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsi-
fication, and solving linear systems. In Proceedings of the STOC’04.

[20] Yen yu Chen, Qingqing Gan, and Torsten Suel. Local methods for estimating pagerank
values. In In CIKM, pages 381–389. ACM Press, 2004.

6 Appendix

SYMMETRY OF DEGREE NORMALIZED PPV IN UNDIRECTED GRAPHS. This follows directly
from the reversibility of random walks.

vi(j) = α
∞∑
t=0

(1− α)tP t(i, j) = dj/diα
∞∑
t=0

(1− α)tP t(j, i)

⇒ vi(j)/dj = vj(i)/di (6)

PROOF OF LEMMA 3.6. We have x̂t = Ψεt(P
T x̂t−1). Also ε̄t denotes the difference P T x̂t−1− x̂t.

Let y = P T x̂t−1(i). Note that ε̄t(i) is 0 if y ≥ εt, and is y if y < εt. Since ε̄t(i) ≤ P T x̂t−1(i),
for all t εt has the property that its sum is at most 1, and the maximum element is at most εt. This
gives:

xt − x̂t = xt −Ψεt(P
T x̂t−1) = xt − (P T x̂t−1 − ε̄t)

≤ ε̄t + PT(xt−1 − x̂t−1)

PROOF OF LEMMA 3.7. Let’s denote Et = xt − x̂t by the vector of errors accumulated up to
timestep t. Note that this is always going to have non-negative entries.

Et ≤ ε̄t + P TEt−1 ≤ ε̄t + P T ε̄t−1 + (P T)2ε̄t−2 + ...

≤
∑t

r=1(PT)t−rε̄r

PROOF OF THEOREM 3.8. By plugging in the result from lemma 3.7 into equation (1) the total
error incurred in the PPV value is

E = |v − v̂| ≤
∑∞

t=1 α(1− α)t−1(xt − x̂t)
≤
∑∞

t=1 α(1− α)t−1Et ≤
∑∞

t=1 α(1− α)t−1
∑t

r=1(P T)t−r ε̄r
≤
∑∞

r=1

∑∞
t=r α(1− α)t−1(P T)t−r ε̄r

≤
∑∞

r=1(1− α)r−1
∑∞

t=r α(1− α)t−r(P T)t−r ε̄r

≤
∑∞

r=1(1− α)r−1

[∑∞
t=0 α(1− α)t(P T)t

]
ε̄r

≤ 1
α

[∑∞
t=0 α(1− α)t(PT)t

]∑∞
r=1 α(1− α)r−1ε̄r

20

We used εr = εr−1/
√

1− α = ε/(
√
α− 1)r−1. Note that ε̄r is a vector such that |ε̄r|∞ ≤ εr ≤

ε/(
√

1− α)r−1, and |ε̄r|1 ≤ 1. Let ε̄ equal vector
∑∞

r=1 α(1− α)r−1ε̄r. Clearly entries of ε̄ sum to
at most 1, and the largest entry can be at most α

∑∞
r=1(1− α)r−1 ε

√
1− αr−1 =

εα

1−
√

1− α
.

Now we have E ≤ 1
α
PPVα(ε̄). The above is true because, by definition

[∑∞
t=0 α(1 −

α)t(P T)t
]
ε̄ equals the personalized pagerank with start distribution ε̄, and restart probability α.

We will analyze this for an undirected graph.

PPVα(ε̄, i) =
∑

j

∑∞
t=0 α(1− α)t(P T)t(i, j)ε̄(j)

≤ maxj ε̄(j)
∑∞

t=0 α(1− α)t
∑

j P
t(j, i)

= maxj ε̄(j)
∑∞

t=0 α(1− α)t
∑

j
diP

t(i,j)
dj

≤ di
δ

maxj ε̄(j)
∑∞

t=0 α(1− α)t
∑

j P
t(i, j)

≤ di
δ

maxj ε̄(j)
∑∞

t=0 α(1− α)t

≤ di
δ

maxj ε̄(j)

The fourth step uses the reversibility of random walks for undirected graphs, i.e. diP
t(i, j) =

djP
t(j, i), where di is the weighted degree of node i. δ is the minimum weighted degree. Thus we

have E(i) ≤ di
δ

ε
1−
√

1−α .

PROOF OF THEOREM 3.9. Let r be the start distribution, and vt be the partial sum upto time t.
We know that ∀t ≥ maxiter, xt = (P T)t−maxiterxmaxiter

v − vmaxiter =
∞∑

t=maxiter+1

α(1− α)t−1xt−1

= (1− α)maxiterPPVα(xmaxiter)

PROOF OF LEMMA 3.10. Let v̂ be rounded PPV values when maxiter equals∞, and v̂maxiter
the rounded values from RWDISK. We have

v − v̂maxiter = (v − v̂) + (v̂ − v̂maxiter)

Using the same idea as theorem 3.9 and the fact that x̂t(i) ≤ xt(i),∀i, we can upper bound the
difference v̂− v̂maxiter by (1−α)maxiterPPVα(xmaxiter). This, combined with theorem 3.8 gives
the desired result.

PROOF OF THEOREM 3.1. Personalized pagerank of a start distribution r can be written as

PPV (r) = αr + α
∞∑
t=1

(1− α)t(P T)tr = αr + (1− α)PPV (P Tr) (7)

By turning node s into a sink, we are only changing the sth row of P . We denote by rs the indicator
vector for node s. For r = rs we have personalized pagerank from node s. Essentially we are
subtracting the entire row P (s, :) = P Trs and adding back rs. This is equivalent to subtracting

21

the matrix vuT from P , where v is rs and u is defined as P Trs − rs. PPV (r) = α(I − (1 −
α)P T + (1−α)uvT)−1r Let M = I− (1−α)P T . Hence PPV (r) = αM−1r. A straightforward
application of the Sherman Morrison lemma gives P̂PV (r) = PPV (r)−α(1−α) M−1uvTM−1

1+(1−α)vTM−1u
r

Note thatM−1u is simply 1/α[PPV (P Trs)−PPV (rs)] andM−1r is simply 1/αPPV (r). Also
vTPPV (r) equals PPV (r, s). Combining these facts with equation 7 yields the following:

P̂PV (r) = PPV (r)− [PPV (rs)− rs]
PPV (r, s)

PPV (rs, s)

This leads to the element-wise error bound in theorem 3.1.

PROOF OF LEMMA 3.4. For proving the above we use a series of sink node operations on a graph
and upper bound each term in the sum. For j ≤ k S[j] denote the subset {s1, ..., sj} of S. Also let
G \ S[j] denote a graph where we have made each of the nodes in S[j] a sink. S[0] is the empty
set and G \ S[0] = G. Since we do not change the outgoing neighbors of any node when make a
node into a sink, we have G \ S[j] = (G \ S[j − 1]) \ sj . Which leads to:

PPV G\S[k−1](r, i)− PPV G\S[k](r, i)

≤ PPV G\S[k−1](sk, i)PPV
G\S[k−1](r, sk)

PPV (sk, sk)
≤ PPV G\S[k−1](sk, i)

The last step can be obtained by combining linearity of personalized pagerank with lemma 3.2.
Now, using a telescoping sum:

PPV G(r, i)− PPV G\S[k](r, i) ≤
∑k

j=1 PPV
G\S[j−1](sj, i)

The above equation also shows that by making a number of nodes sink the personalized pagerank
value w.r.t any start distribution at a node can only decrease, which intuitively makes sense. Thus
each term PPV G\S[k−1](sk, i) can be upper bounded by PPV G(sk, i), and PPV G\S[k−1](r, sk) by
PPV G(r, sk). This gives us the following sum, which can be simplified using (6) as,

k∑
j=1

PPV (sj, i) =
k∑
j=1

diPPV (i, sj)

d(sj)
≤ di

mins∈S ds

The last step follows from the fact that PPV (i, sj), summed over j has to be smaller than one.
This leads to the final result in lemma 3.4.

22

	1 Introduction
	2 Background and Related Work
	3 Proposed Work
	3.1 Effect of High Degree Nodes
	3.2 Nearest-neighbors on clustered graphs
	3.3 Clustered Representation on Disk
	3.4 Algorithm RWDISK-simple
	3.5 Algorithm RWDISK
	3.6 Approximation Error

	4 Results
	4.1 Effect of High Degree Nodes
	4.2 Deterministic vs. Simulations
	4.3 RWDISK vs. METIS

	5 Conclusion
	6 Appendix

