
Fast Neural Network Emulation and Control of Dynamical Systems

Radek Grzeszczuk 1 Demetri Terzopoulos 2 Geoffrey Hinton 2

1 Intel Corporation
Microcomputer Research Lab
2200 Mission College Blvd.
Santa Clara, CA 95052, USA

2 University of Toronto
Department of Computer Science

10 King’s College Road
Toronto, ON M5S 3H5, Canada

Abstract

Computer animation through the numerical simulation
of physics-based graphics models offers unsurpassed
realism, but it can be computationally demanding. This
paper demonstrates the possibility of replacing the nu-
merical simulation of nontrivial dynamic models with
a dramatically more efficient "NeuroAnimator" that ex-
ploits neural networks. NeuroAnimators are automat-
ically trained off-line to emulate physical dynamics
through the observation of physics-based models in ac-
tion. Depending on the model, its neural network emu-
lator can yield physically realistic animation one or two
orders of magnitude faster than conventional numeri-
cal simulation. We demonstrate NeuroAnimators for a
variety of physics-based models. By exploiting the net-
work structure of the NeuroAnimator, we also introduce
a remarkably fast algorithm for learning controllers that
enables either complex physics-based models or their
neural network emulators to synthesize motions satisfy-
ing prescribed animation goals.

Introduction
Animation based on physical principles has been an influ-
ential trend in computer graphics for over a decade (see,
e.g., (1; 2; 3)). This is not only due to the unsurpassed
realism that physics-based techniques offer. In conjunc-
tion with suitable control and constraint mechanisms, phys-
ical models also facilitate the production of copious quan-
tities of realistic animation in a highly automated fash-
ion. Physics-based animation techniques are beginning to
find their way into high-end commercial systems. How-
ever, a well-known drawback has retarded their broader
penetration--compared to geometric models, physical mod-
els typically entail formidable numerical simulation costs.
Furthermore, a hurdle, known as the "physics-based anima-
tion control problem", is that of computing the control forces
such that the physical model produces motions that satisfy
the goals specified by the animator.

This paper proposes a new approach to creating physically
realistic animation that differs radically from the conven-
tional approach of numerically simulating the equations of
motion of physics-based models. We replace physics-based
models by fast emulators which automatically learn to pro-
duce similar motions by observing the models in action. Our
emulators have a neural network structure, hence we dub

them NeuroAnimators. Exploiting the network structure of
the NeuroAnimator, we also introduce a remarkably fast al-
gorithm for learning controllers that enables either complex
physics-based models or their neural network emulators to
synthesize motions satisfying prescribed animation goals.

A popular approach to the animation control problem
is controller synthesis (4; 5; 6). Controller synthesis is
generate-and-test strategy. Through repeated forward simu-
lation of the physics-based model, controller synthesis opti-
mizes a control objective function that measures the degree
to which the animation generated by the controlled physical
model achieves the desired goals. Each simulation is fol-
lowed by an evaluation of the motion through the function,
thus guiding the search. While the controller synthesis tech-
nique readily handles the complex optimal control problems
characteristic of physics-based animation, it is computation-
ally very costly.

We demonstrate that the NeuroAnimator enables a novel,
highly efficient approach to controller synthesis. Outstand-
ing efficiency results not only because of fast controller eval-
uation through NeuroAnimator emulation of the dynamics
of the physical model. To a large degree it also stems from
the fact that we can exploit the neural network approxima-
tion in the trained NeuroAnimator to compute partial deriva-
tives of output states with respect to control inputs. This en-
ables the computation of a gradient, hence the use of fast
gradient-based optimization for controller synthesis. Neu-
roAnimator controllers are equally applicable to controlling
the original physics-based models.

Our work is inspired in part by that of Nguyen and
Widrow (7). Their "truck backer-upper" demonstrated the
neural network based approximation and control of a nonlin-
ear kinematic system. We introduce several generalizations
that enable us to tackle a variety of complex, fully dynamic
models in the context of computer animation. Connection-
ist approximations of dynamical systems have been also ap-
plied to robot control (see, e.g., (8; 9)).

The NeuroAnimator Approach
Our approach is motivated by the following considerations:
Whether we are dealing with rigid (2), articulated (3),
nonrigid (1) dynamic animation models, the numerical sim-
ulation of the associated equations of motion leads to the
computation of a discrete-time dynamical system of the

83

From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

form st+st = tb[st,ut,ft]. These (generally nonlinear)
equations express the vector 8t+6t of state variables of the
system (values of the system’s degrees of freedom and their
velocities) at time t + 6t in the future as a function ̄ of the
state vector st, the vector ut of control inputs, and the vector
ft of external forces acting on the system at time t.

Physics-based animation through the numerical simula-
tion of a dynamical system requires the evaluation of the
map ff at every timestep, which usually involves a non-
trivial computation. Evaluating ̄ using explicit time inte-
gration methods incurs a computational cost of O(N) op-
erations, where N is proportional to the dimensionality of
the state space. Unfortunately, for many dynamic models
of interest, explicit methods are plagued by instability, ne-
cessitating numerous tiny timesteps ~t per unit simulation
time. Alternatively, implicit time-integration methods usu-
ally permit larger timesteps, but they compute ff by solving
a system of N algebraic equations, generally incurring a cost
of O(Na) per timestep.

Is it possible to replace the conventional numerical simu-
lator by a significantly cheaper alternative? A crucial real-
ization is that the substitute, or emulator, need not compute
the map ̄ exactly, but merely approximate it to a degree
of precision that preserves the perceived faithfulness of the
resulting animation to the simulated dynamics of the physi-
cal model. Neural networks offer a general mechanism for
approximating complex maps in higher dimensional spaces
(10).1 Our premise is that, to a sufficient degree of accu-
racy and at significant computational savings, trained neu-
ral networks can approximate maps ff not just for simple
dynamical systems, but also for those associated with dy-
namic models that are among the most complex reported in
the graphics literature to date.

The NeuroAnimator, which uses neural networks to em-
ulate physics-based animation, learns an approximation to
the dynamic model by observing instances of state transi-
tions, as well as control inputs and/or external forces that
cause these transitions. By generalizing from the sparse ex-
amples presented to it, a trained NeuroAnimator can emu-
late an infinite variety of continuous animations that it has
never actually seen. Each emulation step costs only O(N2)

operations, but it is possible to gain additional efficiency rel-
ative to a numerical simulator by training neural networks to
approximate a lengthy chain of evaluations of the discrete-
time dynamical system. Thus, the emulator network can per-
form "super timesteps" At = n~t, typically one or two or-
ders of magnitude larger than 6t for the competing implicit
time-integration scheme, thereby achieving outstanding ef-
ficiency without serious loss of accuracy.

From Physics-Based Models to
NeuroAnimators

Our task is to construct neural networks that approximate
in the dynamical system. We propose to employ backpropa-
gation to train feedforward networks N~, with a single layer

1Note that cI, is in general a high-dimensional map from
~Rs+~,+f ~ ~s, where s, u, and f denote the dimensionalities
of the state, control, and external force vectors.

of sigmoidal hidden units, to predict future states using su-
per timesteps At = n~t while containing the approxima-
tion error so as not to appreciably degrade the physical real-
ism of the resulting animation. The basic emulation step is
st+zxt = N,~ [st, ut, It]- The trained emulator network N4
takes as input the state of the model, its control inputs, and
the external forces acting on it at time t, and produces as
output the state of the model at time t + At by evaluating
the network. The emulation process is a sequence of these
evaluations. After each evaluation, the network control and
force inputs receive new values, and the network state inputs
receive the emulator outputs from the previous evaluation.
Since the emulation step is large compared with the numeri-
cal simulation step, we resample the motion trajectory at the
animation frame rate, computing intermediate states through
linear interpolation of states obtained from the emulation.

Network Input/Output Structure
Fig. l(a) illustrates different emulator input/output struc-
tures. The emulator network has a single set of output vari-
ables specifying St+At. In general, for a so-called active
model, which includes control inputs, under the influence
of unpredictable applied forces, we employ a full network
with three sets of input variables: st, ut, and It, as shown
in the figure. For passive models, the control ut = 0 and
the network simplifies to one with two sets of inputs, st and
ft. In the special case when the forces ft are completely de-
termined by the state of the system st, we can suppress the
ft inputs, allowing the network to learn the effects of these
forces from the state transition training data, thus yielding
a simpler emulator with two input sets st and ut. The sim-
plest type of emulator has only a single set of inputs st. This
emulator suffices to approximate passive models acted upon
by deterministic external forces.

Input and Output Transformations
The accurate approximation of complex functional map-
pings using neural networks can be challenging. We have
observed that a simple feedforward neural network with a
single layer of sigmoid units has difficulty producing an ac-
curate approximation to the dynamics of physical models.
In practice, we often must transform the emulator to ensure
a good approximation of the map ~.

A fundamental problem is that the state variables of a dy-
namical system can have a large dynamic range (in princi-
ple, from -c~ to +c~). To approximate a nonlinear map

accurately over a large domain, we would need to use a
neural network with many sigmoid units, each shifted and
scaled so that their nonlinear segments cover different parts
of the domain. The direct approximation of ff is therefore
impractical. A successful strategy is to train networks to
emulate changes in state variables rather than their actual
values, since state changes over small timesteps will have
a significantly smaller dynamic range. Hence, in Fig. l(b)
(top) we restructure our simple network N,~ as a network
N@ which is trained to emulate the change in the state vector
Ast for given state, external force, and control inputs, fol-
lowed by an operator T~ that computes St+At : St -}- Ast
to recover the next state.

84

i

[. ... _~_¢_]

.(a) (b)

Figure l : (a) Different types of emulators. (b) Transform-
ing a simple feedforward neural network N,~ into a practi-
cal emulator network N~ that is easily trained to emulate
physics-based models. The following operators perform the
appropriate pre- and post-processing: T~ transforms inputs
to local coordinates, T~ normalizes inputs, T~ unnormal-
izes outputs, T~ transforms outputs to global coordinates,
TA converts from a state change to the next state (see text
an~l (1 l) for the details).

We can further improve the approximation power of the
emulator network by exploiting natural invariances. In par-
ticular, since the map cI, is invariant under rotation and trans-
lation, we replace N~a with an operator T~ that converts the
inputs from the world coordinate system to the local coor-
dinate system of the model, a network N~ that is trained
to emulate state changes represented in the local coordinate
system, and an operator T~ that converts the output of N~
back to world coordinates (Fig. l(b) (center)).

Since the values of state, force, and control variables can
deviate significantly, their effect on the network outputs is
uneven, causing problems when large inputs must have a
small influence on outputs. To make inputs contribute more
evenly to the network outputs, we normalize groups of vari-
ables so that they have zero means and unit variances. With
normalization, we can furthermore expect the weights of the
trained network to be of order unity and they can be given
a simple random initialization prior to training. Hence, in
Fig. l(b)) (bottom) we replace N~ with an operator
that normalizes its inputs, a network N~, that assumes zero
mean, unit variance inputs and outputs, and an operator T~
that unnormalizes the outputs to recover their original distri-
butions.

Although the final emulator in Fig. l(b) is structurally
more complex than the standard feedforward neural network
N,~ that it replaces, the operators denoted by T are com-
pletely determined by the state of the model and the distri-
bution of the training data, and the emulator network N~ is
much easier to train.

Hierarchical Networks
As a universal function approximator, a neural network
should in principle be able to approximate the map ,I, for
any dynamical system, given enough sigmoid hidden units
and training data. In practice, however, the number of hid-
den layer neurons needed and the training data requirements
grow quickly with the size of the network, often making
the training of large networks impractical. To overcome

the "curse of dimensionality," we have found it prudent to
structure NeuroAnimators for all but the simplest physics-
based models as hierarchies of smaller networks rather than
as large, monolithic networks. The strategy behind a hier-
archical representation is to group state variables according
to their dependencies and approximate each tightly coupled
group with a subnet that takes part of its input from a parent
network.

Training NeuroAnimators
To arrive at a NeuroAnimator for a given physics-based
model, we train the constituent neural network(s) through
backpropagation on training examples generated by simu-
lating the model. Training requires the generation and pro-
cessing of many examples, hence it is typically slow, often
requiring several CPU hours. However, once a NeuroAni-
mator is trained offline, it can be reused online to produce
an infinite variety of fast animations. The important point
is that by generalizing from the sparse training examples,
a trained NeuroAnimator will produce an infinite variety of
extended, continuous animations that it has never "seen".

More specifically, each training example consists of an
input vector x and an output vector y. In the general case,
the input vector x = [s~, f0T, uff] ~r comprises the state of
the model, the external forces, and the control inputs at time
t -- 0. The output vector y = sat is the state of the model at
time t = At, where At is the duration of the super timestep.
To generate each training example, we could start the nu-
merical simulator of the physics-based model with the ini-
tial conditions so, f0, and u0, and run the dynamic simu-
lation for n numerical time steps ~t such that At = n~t.
In principle, we could generate an arbitrarily large set of
training examples {x~-; yr}, ~_ = 1, 2,..., by repeating this
process with different initial conditions. To learn a good
neural network approximation N,~ of the map if, we would
like ideally to sample ̄ as uniformly as possible over its
domain, with randomly chosen initial conditions among all
valid state, external force, and control combinations. How-
ever, we can make better use of computational resources by
sampling those state, force, and control inputs that typically
occur as a physics-based model is used in practice.

We employ a neural network simulator called Xerion
which was developed at the University of Toronto. We be-
gin the off-line training process by initializing the weights
of N~, to random values from a uniform distribution in the
range [0, 1] (due to the normalization of inputs and outputs).
Xerion automatically terminates the backpropagation learn-
ing algorithm when it can no longer reduce the network ap-
proximation error significantly. We use the conjugate gra-
dient method to train networks of small and moderate size.
For large networks, we use gradient descent with momen-
tum. We divide the training examples into mini-batches,
each consisting of approximately 30 uncorrelated examples,
and update the network weights after processing each mini-
batch.

Emulation Results
We have successfully constructed and trained several Neu-
roAnimators to emulate a variety of physics-based models:

85

(1) a physics-based model of a planar multi-link pendulum
suspended in gravity, subject to joint friction forces, external
forces applied on the links, and controlled by independent
motor torques at each of the three joints, (2) a physics-based
model of a truck implemented as a rigid body, subject to fric-
tion forces where the tires contact the ground, controlled by
rear-wheel drive (forward and reverse) and steerable front
wheels, (3) a physics-based model of a lunar lander, imple-
mented as a rigid body subject to gravitational forces and
controlled by a main rocket thruster and three independent
attitude jets, and (4) a biomechanical (mass-spring-damper)
model of a dolphin capable of swimming in simulated wa-
ter via the coordinated contraction of 6 independently con-
trolled muscle actuators which deform its body, producing
hydrodynamic propulsion forces.

We used SD/FAST (a rigid body dynamics simulator mar-
keted by Symbolic Dynamics, Inc.) to simulate the dynam-
ics of the rigid body and articulated models, and we employ
the simulator developed in (13) to simulate the deformable-
body dynamics of the dolphin.

In our experiments we have not attempted to minimize the
number of network weights required for successful training.
We have also not tried to minimize the number of sigmoidal
hidden units, but rather used enough units to obtain networks
that generalize well while not overfitting the training data.
We can always expect to be able to satisfy these guidelines
in view of our ability to generate suff~cient training data.

An important advantage of using neural networks to em-
ulate dynamical systems is the speed at which they can be
iterated to produce animation. Since the emulator for a dy-
namical system with the state vector of size N never uses
more than O(N) hidden units, it can be evaluated using
only O(N2) operations. By comparison, a single simulation
timestep using an implicit time integration scheme requires
O(N3) operations. Moreover, a forward pass through the
neural network is often equivalent to as many as 50 phys-
ical simulation steps, so the efficiency is even more dra-
matic, yielding performance improvements up to two orders
of magnitude faster than the physical simulator. A NeuroAn-
imator that predicts 100 physical simulation steps offers a
speedup of anywhere between 50 and 100 times depending
on the type of physical model.

Control Learning
An additional benefit of the NeuroAnimator is that it en-
ables a novel, highly efficient approach to the difficult prob-
lem of controlling physics-based models to synthesize mo-
tions that satisfy prescribed animation goals. The neural
network approximation to the physical model is differen-
tiable; hence, it can be used to discover the causal effects
that control force inputs have on the actions of the mod-
els. Outstanding efficiency stems from exploiting the trained
NeuroAnimator to compute partial derivatives of output
states with respect to control inputs. The efficient compu-
tation of the approximate gradient enables the utilization
of fast gradient-based optimization for controller synthe-
sis. Nguyen and Widrow’s (7) "truck backer-upper" demon-
strated the neural network based approximation and control
of a nonlinear kinematic system. Our technique offers a new

controller synthesis algorithm that works well in dynamic
environments with changing control objectives. See (11;
12) for the details.

In the following sections, we first describe the objective
function and its discrete approximation. We then propose
an efficient gradient based optimization procedure that com-
putes derivatives of the objective function with respect to the
control inputs through a backpropagation algorithm.

Objective Function and Optimization
We write a sequence of emulation steps as

si+l = N,~[si, ul, f/]; 1 < i < M, (1)

where i indexes the emulation step, and si, ui and fi denote,
respectively, the state, control inputs and external forces in
the ith step.

Following the control learning formulation in (6), we de-
fine a discrete objective function

J(u) = #,,Ju(u) + #sJs(s), (2)

a weighted sum (with scalar weights #u and #s) of a term
Ju that evaluates the controller u = [ul, u2,..., UM] and
a term ,Is that evaluates the motion s = [sl, s2,..., SM+I]
produced by the NeuroAnimator using u, according to (l).
Via the controller evaluation term Ju, we may wish to pro-
mote a preference for controllers with certain desirable qual-
ities, such as smooth lower amplitude controllers. The dis-
tinction between good and bad control functions also de-
pends on the goals that the animation must satisfy. In our
applications, we used trajectory criteria J~ such as the final
distance to the goal, the deviation from a desired speed, etc.
The objective function provides a quantitative measure of
the progress of the controller learning process, with larger
values of J indicating better controllers.

A typical objective function used in our experiments seeks
an efficient controller that leaves the model in some desired
state Sd at the end of simulation. Mathematically, this is
expressed as

M

i=1

where the first term maximizes the efficiency of the con-
troller and the second term constrains the final state of the
model at the end of the animation.

Backpropagation Through Time
Assuming a trained NeuroAnimator with a set of fixed
weights, the essence of our control learning algorithm is to
iteratively update the control parameters u so as to maxi-
mize the objective function J in (2). As mentioned earlier,
we exploit the NeuroAnimator structure to arrive at an effi-
cient gradient descent optimizer:

uTM = ut + r/~VuJ(ut), (4)

where I denotes the iteration of the minimization step, and
the constant Oz is the learning rate parameter.

At each iteration l, the algorithm first emulates the for-
ward dynamics according to (1) using the control inputs

86

Ul l l= [ul, u2,..., ut] to yield the motion sequence st =
[stl,s~,...,st+l]. Next, it computes the components of
Vud in (4) in an efficient manner using backpropagation
through time (14). Instead of adjusting weights as in nor-
mal backpropagation, however, the algorithm adjusts neu-
ronal inputs, specifically, the control inputs. It thus proceeds
in reverse through the network cascade computing compo-
nents of the gradient. Fig. 1 (b) illustrates the backpropa-
gation through time process, showing the sequentially com-
puted controller updates ~UM tO ~Uo.

The forward emulation and control adjustment steps are
repeated for each iteration of (4), quickly yielding a good
controller. The efficiency stems from two factors. First,
each NeuroAnimator emulation of the physics-based model
consumes only a fraction of the time it would take to numer-
ically simulate the model. Second, quick gradient descent
towards an optimum is possible because the trained Neu-
roAnimator provides a gradient direction.

The control algorithm based on the differentiation of the
emulator of the forward model has important advantages.
First, the backpropagation through time can solve fairly
complex sequential decision problems where early decisions
can have substantial effects on the final results. Second,
the algorithm can be applied to dynamic environments with
changing control objectives since it re-learns very quickly.

An additional advantage of our approach is that once an
optimal controller has been computed, it can be applied to
control either the NeuroAnimator emulator or to the original
physical model, yielding animations that in most cases differ
only minimally.

Controller Learning Results

We have successfully applied our backpropagation through
time controller learning algorithm to the presented Neu-
roAnimators. We find the technique very effective--it rou-
tinely computes solutions to non-trivial control problems in
just a few iterations. The efficiency of the fast convergence
rate is further amplified by the replacement of costly physi-
cal simulation with much faster NeuroAnimator emulation.
These two factors yield outstanding speedups, as we report
below.

Fig. 2(a) shows the progress of the control learning algo-
rithm for the 3-1ink pendulum. The purple pendulum, ani-
mated by a NeuroAnimator, is given the goal to end the ani-
mation with zero velocity in the position indicated in green.
We make the learning problem very challenging by setting a
low upper limit on the internal motor torques of the pendu-
lum, so that it cannot reach its target in one shot, but must
swing back and forth to gain the momentum necessary to
reach the goal state. Our algorithm takes 20 backpropaga-
tion through time iterations to learn a successful controller.

Fig. 2(b) shows the truck NeuroAnimator learning to park.
The translucent truck in the background indicates the desired
position and orientation of the model at the end of the simu-
lation. The NeuroAnimator produces a parking controller in
15 learning iterations.

Fig. 2(c) shows the lunar lander NeuroAnimator learning
a soft landing maneuver. The translucent lander resting on

the surface indicates the desired position and orientation of
the model at the end of the animation. An additional con-
straint is that the descent velocity prior to landing should be
small in order to land softly. A successful landing controller
was computed in 15 learning iterations.

Fig. 2(d) shows the dolphin NeuroAnimator learning
swim forward. The simple objective of moving as far for-
ward as possible produces a natural, sinusoidal swimming
pattern.

All trained controllers have a duration of 20 seconds of
animation time; i.e., they take the equivalent of 2,000 phys-
ical simulation timesteps, or 40 emulator super-timesteps
using N~° emulator. The number of control variables (M
in u = [u:, u2,..., UM]) optimized varies: the pendulum
optimizes 60 variables, 20 for each actuator; the lunar lan-
der optimizes 80 variables, 20 for the main thruster, and 20
for each of the 3 attitude thrusters; the truck optimizes 40
variables--20 for acceleration/deceleration, and 20 for the
rate of turning; finally, the dolphin optimizes 60 variables--
one variable for every 2 emulator steps for each of the 6
muscle actuators.

To give an idea of actual running times, the synthesis of
the swimming controller which took more than 1 hour using
the technique in (6) now takes less than 10 seconds on the
same computer.

Conclusion

We have introduced an efficient alternative to the conven-
tional approach of producing physically realistic animation
through numerical simulation. Our approach involves the
learning of neural network emulators of physics-based mod-
els by observing the dynamic state transitions produced by
such models in action. The emulators approximate physi-
cal dynamics with dramatic efficiency, yet without serious
loss of apparent fidelity. Our performance benchmarks in-
dicate that the neural network emulators can yield physi-
cally realistic animation one or two orders of magnitude
faster than conventional numerical simulation of the associ-
ated physics-based models. Our new control learning algo-
rithm, which exploits fast emulation and the differentiability
of the network approximation, is orders of magnitude faster
than competing controller synthesis algorithms for computer
animation.

References
[1] D. Terzopoulos, J. Platt, A. Barr, K. Fleischer. Elastically

deformable models. In M.C. Stone, ed., Computer Graphics
(SIGGRAPH ’87 Proceedings), 21, 205-214, July 1987.

[2] J.K. Hahn. Realistic animation of rigid bodies. In J. Dill,
ed., Computer Graphics (SIGGRAPH ’88 Proceedings), 22,
299-308, August 1988.

[3] J.K. Hodgins, W.L. Wooten, D.C. Brogan, J.F. O’Brien. Ani-
mating human athletics. In R. Cook, ed., Proc. ofACM S1G-
GRAPH 95 Conf., 71-78, August, 1995.

[4] J.T. Ngo and J. Marks. Spacetime constraints revisited. Proc.
of ACM SIGGRAPH 93 Conf., 343-350, August 1993.

[5] M. van de Panne and E. Fiume. Sensor-actuator networks.
Proc. of ACM SIGGRAPH 93, 335-342, August 1993.

87

(a) (b) (c) (d)

Figure 2: Results of applying the control learning algorithm to four different NeuroAnimators. (a) The pendulum NeuroAnimator shown
purple needs to reach the state indicated by the green pendulum, with zero final velocity. (b) The truck NeuroAnimator learning to park
the position and orientation indicated by the translucent vehicle in the background. (c) The lunar lander NeuroAnimator learning to land
the position and orientation of the translucent vehicle sitting on the ground, with minimal descent velocity. (d) The dolphin NeuroAnimator
learning to swim. The objective of locomoting as far forward as possible produces a natural, periodic swimming pattern.

[6] R. Grzeszczuk and D. Terzopoulos. Automated learning
of muscle-actuated locomotion through control abstraction.
Proc. SIGGRAPH 95 Conf., 63-70, August 1995.

[7] D. Nguyen, B. Widrow. The truck backer-upper: An exam-
ple of self-learning in neural networks. In Proc. Inter Joint
Conf. Neural Networks, 357-363. IEEE Press, 1989.

[8] M.I. Jordan. Supervised learning and systems with excess
degrees of freedom. Technical Report 88-27, Univ. of Mas-
sachusetts, Comp.& Info. Sci., Amherst, MA, 1988.

[9] K.S. Narendra, K. Parthasarathy. Gradient methods for the
optimization of dynamical systems containing neural net-
works. IEEE Trans. on Neural Networks, 2(2):252-262,
1991.

[10] G. Cybenko. Approximation by superposition of sigmoidal
function. Math. of Control Signals & Systems, 2(4):303-314,
1989.

[11] R. Grzeszczuk. NeuroAnimator: Fast Neural Network Em-
ulation and Control of Physics-Based Models. PhD thesis,
Dept. of Comp. Sci., Univ. of Toronto, May 1998.

[12] R. Grzeszczuk, D. Terzopoulos, G. Hinton. NeuroAnimator:
Fast neural network emulation and control of physics-based
models. Proc. of ACM SIGGRAPH 98 Conf., 9-20, July 1998.

[13] X. Tu, D. Terzopoulos. Artificial fishes: Physics, locomo-
tion, perception, behavior. In A. Glassner, ed., Proc. of ACM
SIGGRAPH 94 Conf., 43-50. July 1994.

[14] D.E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error backpropagation. In D. E.
Rumelhart et al. (eds.), Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, vol. 1, pages
318-362. MIT Press, 1986.

88

