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S U M M A R Y

Estimating the relief of the Moho from gravity data is a computationally intensive nonlinear

inverse problem. What is more, the modelling must take the Earths curvature into account

when the study area is of regional scale or greater. We present a regularized nonlinear gravity

inversion method that has a low computational footprint and employs a spherical Earth ap-

proximation. To achieve this, we combine the highly efficient Bott’s method with smoothness

regularization and a discretization of the anomalous Moho into tesseroids (spherical prisms).

The computational efficiency of our method is attained by harnessing the fact that all matrices

involved are sparse. The inversion results are controlled by three hyperparameters: the reg-

ularization parameter, the anomalous Moho density-contrast, and the reference Moho depth.

We estimate the regularization parameter using the method of hold-out cross-validation. Ad-

ditionally, we estimate the density-contrast and the reference depth using knowledge of the

Moho depth at certain points. We apply the proposed method to estimate the Moho depth for

the South American continent using satellite gravity data and seismological data. The final

Moho model is in accordance with previous gravity-derived models and seismological data.

The misfit to the gravity and seismological data is worse in the Andes and best in oceanic

areas, central Brazil and Patagonia, and along the Atlantic coast. Similarly to previous results,

the model suggests a thinner crust of 30–35 km under the Andean foreland basins. Discrepan-

cies with the seismological data are greatest in the Guyana Shield, the central Solimões and

Amazonas Basins, the Paraná Basin, and the Borborema province. These differences suggest

the existence of crustal or mantle density anomalies that were unaccounted for during gravity

data processing.

Key words: Inverse theory; Satellite gravity; Gravity anomalies and Earth structure; South

America.

1 I N T RO D U C T I O N

The Mohorovičić discontinuity (or Moho) that marks the transi-

tion from the crust to the mantle, is studied almost exclusively

through indirect geophysical methods. The two main geophysi-

cal methods used to estimate the depth of the Moho are seis-

mology, with both natural and controlled sources, and gravime-

try. With the advent of satellite gravimetry missions like GRACE

and GOCE, gravity-derived crustal models can be produced in re-

gional or global scales (e.g. Reguzzoni et al. 2013; van der Meijde

et al. 2013, 2015). New spherical harmonic gravity models that

use these satellite observation, like GOCO5S (Mayer-Guerr et al.

2015), provide almost homogeneous data coverage in difficult to

access regions traditionally poor in terrestrial data. An example

is South America, where seismological and terrestrial gravity data

are traditionally concentrated around urban centres and coastal ar-

eas, resulting in large areas (e.g. forests and mountains) devoid of

data.

Estimating Moho depth from gravity data is a nonlinear in-

verse problem. One can generalize this problem of estimating the

depths of an interface separating two media, such as the sediment-

basement interface of a sedimentary basin or the crust-mantle inter-

face (Moho). Several methods have been developed over the years to

solve this inverse problem, for example, Bott (1960); Barbosa et al.

(1997, 1999a,b); Barnes & Barraud (2012); Leão et al. (1996);

Martins et al. (2010, 2011); Oldenburg (1974); Reguzzoni et al.

(2013); Santos et al. (2015); Silva et al. (2006, 2014), to name a few.

Solving the inverse problem is computationally demanding because

it requires the construction of large dense matrices and the solution

of large linear systems. As a result, some authors search for ways to

increase the computational efficiency of this class of inverse prob-

lem. Bott (1960) proposed a method based on iteratively applying
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corrections to a starting estimate based on the inversion residu-

als. The algorithm is fast because it bypasses the construction and

solution of linear systems and only involves forward modelling.

Oldenburg (1974) showed that the fast FFT-based forward mod-

elling of Parker (1973) could be rearranged to estimate the relief.

Barnes & Barraud (2012) use a form of adaptive discretization to

compute the Jacobian, or sensitivity, matrix. For each data point, the

discretization will be progressively coarser the further way from the

point. This reduces the matrix and, consequently, the linear systems

to a sparse form that can be solved efficiently. Recently, Silva et al.

(2014) extended and generalized the original method of Bott (1960)

and Santos et al. (2015) used this extension to estimate a basement

relief with sharp boundaries.

A spherical Earth approximation is preferred when estimating the

Moho depth from gravity data in continental and global scale stud-

ies. Wieczorek & Phillips (1998) developed a spherical harmonic

equivalent of the Parker-Oldenburg FFT algorithm and applied it to

estimate the crustal structure of the Moon. Reguzzoni et al. (2013)

use a spherical Earth approximation to estimate the global Moho re-

lief using data from the GOCE satellite mission. Another approach

is to use non-spectral (space domain) gravity inversion methods.

Many such methods were developed for estimating the basement

relief of a sedimentary basin (e.g. Barbosa et al. 1997, 1999a,b;

Martins et al. 2010, 2011; Sun & Li 2014). These methods approx-

imate the sedimentary pack by a set of juxtaposed right-rectangular

prisms. The top of the prisms coincide with the Earth’s surface

and the prisms’ thicknesses represent the depths to the basement

and are the parameters to be estimated in the inversion. The use

of rectangular prisms implies a planar Earth approximation and

may not be adequate for depth-to-Moho estimates in continental-

or global-scale study. A straightforward way to circumvent this hin-

drance is to adapt one of the methods developed for rectangular

prisms to use tesseroids (spherical prisms). One of the difficul-

ties of this approach is that the forward problem for a tesseroid

must be solved numerically. Two alternatives proposed in the litera-

ture to the numerical solution are Taylor series expansion (Heck &

Seitz 2007; Grombein et al. 2013) and the Gauss-Legendre Quadra-

ture (Asgharzadeh et al. 2007). Numerical experiments by Wild-

Pfeiffer (2008) suggest that the Gauss-Legendre Quadrature (GLQ)

offers superior results. However, the GLQ suffers from numeri-

cal instability when the computation point is close to the tesseroid

(Asgharzadeh et al. 2007). To overcome the numerical instability,

Li et al. (2011) proposed an adaptive discretization algorithm which

was later improved upon by Uieda et al. (2016).

In any gravity inversion for estimating the relief of an inter-

face, two hyperparameters control the inversion results: the density-

contrast between the two media and the reference level around which

the interface undulates. The reference level is the constant depth of

the Normal Earth Moho in the case of the anomalous Moho. For

regularized inversions, an additional hyperparameter is the regular-

ization parameter that balances the relative importance between the

data-misfit measure and the regularizing function. The two most

commonly used methods for estimating the regularization param-

eter are the L-curve criterion and Generalized Cross Validation

(GCV). Farquharson & Oldenburg (2004) provide for a thorough

comparison of both methods. Estimating the density-contrast in a

sedimentary basin context has been tackled by Silva et al. (2006)

and Martins et al. (2010) when the basement depth is known at a

few points. To the authors’ knowledge no attempt has been made to

estimate the reference level.

We present a nonlinear gravity inversion to estimate the Moho

depth in a spherical Earth approximation. Our method is based on

Figure 1. Sketch of the stages in gravity data correction and the discretiza-

tion of the anomalous Moho relief using tesseroids. (a) The Earth and the

measured gravity at point P (g(P)). (b) The Normal Earth and the calculated

normal gravity at point P (γ (P)). zref is the depth of the Normal Earth Moho.

(c) The gravity disturbance (δ(P)) and the corresponding density anomalies

after removal of the normal gravity: topography, oceans, crustal and man-

tle heterogeneities, and the anomalous Moho. (d) The Bouguer disturbance

(δbg(P)) after topographic correction and the remaining density anomalies.

(e) All density anomalies save the anomalous Moho are assumed to have

been removed before inversion. (f) The discretization of the anomalous

Moho in tesseroids. Grey tesseroids will have a negative density contrast

while red tesseroids will have a positive one.

the Silva et al. (2014) Gauss-Newton formulation of the method of

Bott (1960). We use tesseroids to discretize the anomalous Moho

and the adaptive discretization algorithm of Uieda et al. (2016) for

the forward modelling. The stability of the inversion is achieved

through smoothness regularization. In order to maintain the com-

putational efficiency of Bott’s method, we exploit the sparse nature

of all matrices involved in the computations. We employ a variant

of GCV known as hold-out cross-validation (Kim 2009) to estimate

the regularization parameter. Additionally, we estimate the density-

contrast and reference level simultaneously in a second validation

step using knowledge of the Moho depth at a few points, similarly

to Silva et al. (2006) and Martins et al. (2010). Finally, we apply the

proposed method to estimate the Moho depth for South America

using gravity data from the GOCO5S model (Mayer-Guerr et al.

2015) and the seismological data of Assumpção et al. (2013).

2 M E T H O D O L O G Y

In potential field methods, we must isolate the target anomalous

density distribution before modelling and inversion. In our case, the

target is the relief of the real Moho undulating around a reference

Moho. We do this by removing all other effects from the gravity

observations. The first correction is to remove the scalar gravity of

an ellipsoidal reference Earth (the Normal Earth), hereafter denoted

as γ . This effect is calculated on the same point P where the gravity

observation was made (Figs 1a and b). γ (P) is calculated using the

closed-form solution presented by Li & Götze (2001). The differ-

ence between the observed gravity at point P (g(P)) and Normal

gravity at the same point is known as the gravity disturbance,

δ(P) = g(P) − γ (P). (1)

The disturbance contains only the gravitational effects of density

distributions that are anomalous with respect to the Normal Earth
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Figure 2. Sketch of a tesseroid (spherical prism) in a geocentric coordinate

system (X, Y, Z). Observations are made at point P with respect to its local

north-oriented coordinate system (x, y, z). After Uieda (2015).

(see Fig. 1c). This includes all masses above the surface of the

ellipsoid (the topography), the mass deficiency of the oceans, the

mass deficiency of sedimentary basins, crustal sources (e.g. igneous

intrusions, lateral density changes, etc.), heterogeneities below the

upper mantle, and the effect of the difference between the real Moho

topography and the Moho of the Normal Earth.

To estimate the anomalous Moho relief from gravity data, we

must first isolate its gravitational attraction. Thus, all other gravita-

tional effects must be either removed or assumed negligible. Here,

we will remove the gravitational effect produced by the known to-

pography and ocean masses to obtain the full Bouguer disturbance

(Fig. 1d),

δbg(P) = δ(P) − gtopo(P). (2)

We will also remove the gravitational effect of know sedimentary

basins but assume that the effects of other crustal and mantle sources

are negligible. Thus, the only effect left will be that of the anomalous

Moho relief (Fig. 1e). The gravitational attraction of the topography,

oceans, and basins are calculated in a spherical Earth approximation

by forward modelling using tesseroids (Fig. 2). The tesseroid effects

are calculated numerically using GLQ integration (Asgharzadeh

et al. 2007). The accuracy of the GLQ integration is improved by

the adaptive discretization scheme of Uieda et al. (2016).

2.1 Parametrization and the forward problem

We parameterize the forward problem by discretizing the anomalous

Moho into a grid of Mlon × Mlat = M juxtaposed tesseroids (Fig. 1f).

The true (real Earth) Moho varies in depth with respect to the Moho

of the Normal Earth. Hereafter we will refer to the depth of the

Normal Earth Moho as zref (see Fig. 1b). If the true Moho is above

zref, the top of the kth tesseroid is the Moho depth zk, the bottom

is zref, and the density-contrast (�ρ) is positive (red tesseroids in

Fig. 1f). If the Moho is below zref, the top of the tesseroid is zref, the

bottom is zk, and �ρ is negative (grey tesseroids in Fig. 1f).

Considering that the absolute value of the density-contrasts of

the tesseroids is a fixed parameter, the predicted gravity anomaly of

the Moho is a nonlinear function of the parameters zk, k = 1, . . . ,

M,

di = fi (p), (3)

in which di is the ith element of the N-dimensional predicted data

vector d, p is the M-dimensional parameter vector containing the M

Moho depths (zk), and fi is the ith nonlinear function that maps the

parameters onto the data. The functions fi are the radial component

of the gravitational attraction of the tesseroid Moho model.

2.2 Inverse problem

We wish to estimate the parameter vector p from a set of observed

gravity data do. The least-squares estimate is the one that minimizes

the data-misfit function

φ(p) = [do − d(p)]T [do − d(p)]. (4)

Function φ(p) is nonlinear with respect to p. Thus, we can de-

termine its minimum using gradient-based iterative optimization

methods like Gauss–Newton or Steepest Descent. Such methods

start from an initial approximation to the model parameter vector

p0 and estimate a parameter perturbation vector �p0. The perturba-

tion vector is used to update p0 to p1 = p0 + �p0. This procedure

is repeated until a minimum of function φ(p) (eq. 4) is reached.

For the Gauss-Newton method, the parameter perturbation vector

at the kth iteration �pk is obtained by solving the linear system

Hk�pk = −∇φk, (5)

in which ∇φk and Hk are, respectively, the gradient vector and the

Hessian matrix of φ(p).

The gradient vector and the Gauss-Newton approximation of the

Hessian matrix of φ(p) are, respectively,

∇φk = −2Ak T
[do − d(pk)], (6)

and

Hk ≈ 2Ak T
Ak, (7)

in which Ak is the N × M Jacobian or sensitivity matrix whose

elements are

Ak
i j =

∂ fi

∂p j

(pk). (8)

2.3 Regularization

Nonlinear gravity inversions for estimating the relief of an interface

separating two media (like the Moho) are ill-posed and require addi-

tional constraints in the form of regularization (Silva et al. 2001). A

common approach is to use the first-order Tikhonov regularization

(Tikhonov & Arsenin 1977) to impose smoothness on the solution.

The cost function for smoothness regularization is given by

θ (p) = pT RT Rp, (9)

where R is an L × M finite-difference matrix representing L first-

order differences between the depths of adjacent tesseroids.

To transform the ill-posed inverse problem into a well-posed one

via Tikhonov regularization, we adopted the well-established pro-

cedure of formulating a constrained inverse problem that is solved

by minimizing an unconstrained goal function

Ŵ(p) = φ(p) + μθ (p), (10)
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in which μ is the regularization parameter that controls the bal-

ance between fitting the observed data and obeying the smoothness

constraint imposed by the regularizing function θ (p) (eq. 9).

The goal function Ŵ(p) is also nonlinear with respect to p and

can be minimized using the Gauss-Newton method. The gradient

vector and Hessian matrix of the goal function are, respectively,

∇Ŵk = −2Ak T
[do − d(pk)] + 2μRT Rpk, (11)

and

Hk = 2Ak T
Ak + 2μRT R. (12)

At the kth iteration, the parameter perturbation vector �pk is

obtained by solving the linear equation system
[

Ak T
Ak + μRT R

]

�pk = Ak T
[do − d(pk)] − μRT Rpk . (13)

Estimating the Moho depths using the above equations is compu-

tationally costly because of two main factors: (1) the evaluation and

storage of the dense N × M Jacobian matrix Ak and (2) the solution

of the resulting M × M equation system. In practice, the derivatives

in the Jacobian (eq. 8) are often calculated through a first-order

finite-difference approximation. Thus, evaluating Ak requires 2 ×

M × N forward modelling operations for each iteration of the gradi-

ent descent algorithm. These computations are performed for each

iteration of the optimization of the goal function Ŵ(p).

2.4 Bott’s method

Bott (1960) developed an efficient method to determine the depth of

the basement of a sedimentary basin from gravity observations. The

method requires data on a regular grid of Nx × Ny = N observations.

The basement relief is then discretized into an equal grid of Mx ×

My = M elements with Mx = Nx and My = Ny. Bott’s iterative

method starts with an initial approximation of the basement depths

p0 equal to the null vector. The method updates the approximation by

calculating a parameter perturbation vector �pk using the formula

�pk =
do − d(pk)

2πG�ρ
, (14)

in which G is the gravitational constant and �ρ is the contrast

between the density of the sediments and the reference density. The

iterative process stops when the inversion residuals rk = do − d(pk)

fall below the assumed noise level of the data.

Silva et al. (2014) showed that Bott’s method can be formulated

as a special case of the Gauss–Newton method (eq. 5) by setting the

Jacobian matrix (eq. 8) to

A = 2πG�ρI, (15)

where I is the identity matrix. In this framework, Bott’s method

uses a Bouguer plate approximation of the gravitational effect of

the relief, di = 2πG�ρ pi. The derivative of di with respect to

the parameter pi is 2πG�ρ, thus linearizing the Jacobian matrix.

However, the nonlinearity of the predicted data d(pk) is preserved.

One of the advantages of Bott’s method over the traditional

Gauss–Newton or Steepest Descent is the elimination of the com-

putation and storage of the dense Jacobian matrix Ak . Furthermore,

Bott’s method also does not require the solution of equation sys-

tems. However, a disadvantage of Bott’s method is that it suffers

from instability (Silva et al. 2014). A common approach to counter

this issue is to apply a smoothing filter after the inversion to the

unstable estimate, as in Silva et al. (2014).

2.5 Combining Bott’s method, regularization

and tesseroids

We propose a regularized version of Bott’s method to invert gravity

data for estimating the depth of the Moho in spherical coordinates.

To adapt Bott’s method to spherical coordinates, we replace the

right-rectangular prisms in the forward modelling (d(pk) in eq. 14)

with tesseroids. The tesseroid forward modelling uses the adaptive

discretization algorithm of Uieda et al. (2016) to achieve accurate

results. Furthermore, our formulation maintains the regularized so-

lution for the Gauss-Newton method (eq. 13) but replaces the full

Jacobian matrix with the Bouguer plate approximation. Here, the

Jacobian matrix is replaced by a diagonal matrix (eq. 15) whose

elements are invariant along successive iterations. Using this ap-

proximation eliminates the cost of computing and storing the full

N × M-dimensional Jacobian matrix Ak at each iteration (eq. 8).

Traditionally, the full Jacobian matrix is computed using a first-

order finite difference scheme, which requires 2 × N × M for-

ward modelling operations per iteration. Using eq. (15) requires N

multiplications that need only be performed once. This provides a

considerable speed gain.

Matrix arithmetic operations can be performed efficiently by

taking advantage of the sparse nature of matrices A and R (re-

spectively, eqs 15 and 9). The same is true for solving the equa-

tion system in the Gauss–Newton method (eq. 13). However, the

computational cost of forward modelling is still present. Particu-

larly, forward modelling using tesseroids is more computationally

intensive than using right-rectangular prisms because of the nu-

merical integration and adaptive discretization (Uieda et al. 2016).

We show later in this article that sparse matrix multiplications

and solving the sparse linear system in eq. (13) account for less

than 0.1 per cent of the computation time required for a single

inversion.

The main advantage of our formulation is that it retains the effi-

ciency of Bott’s method while stabilizing the solution through the

well-established formalism of Tikhonov regularization. For exam-

ple, the total variation approach used by Martins et al. (2011) could

potentially be implemented in a more straight forward manner than

done by Santos et al. (2015).

2.6 Estimating the inversion hyperparameters

Parameters that influence the inversion result but are not estimated

directly in the inversion are known as hyperparameters. In the case

of our regularized Moho depth inversion, the hyperparameters are

the regularization parameter μ (eq. 10), the Moho density-contrast

�ρ (eq. 15), and the depth of the Normal Earth Moho, or reference

level, zref (Fig. 1b).

We estimate these hyperparameters in two steps. First, we as-

sume fixed values for zref and �ρ and perform a hold-out cross-

validation procedure (Hansen 1992) to estimate an optimal value

for μ. Our investigations suggest that the optimal value of μ does

not depend on the particular values of zref and �ρ used. Second,

we use the estimated μ to perform a validation procedure to es-

timate zref and �ρ. The final outcomes of both steps are the val-

ues of the three hyperparameters and the final estimated Moho

depths.

2.6.1 Estimating the regularization parameter

The regularization parameter μ controls how much smoothness

is applied to the inversion result. An optimal value of μ will
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stabilize and smooth the solution while not compromising the fit

to the observed data. Two widely used methods to estimate an opti-

mal μ are the L-curve criterion and cross-validation (Hansen 1992).

Here, we will adopt the hold-out method of cross-validation (Kim

2009). The hold-out method consists of splitting the observed data

set into two independent parts: a training set do
inv and a testing set

do
test. The training set is used in the inversion while the testing set is

kept back and used to judge the quality of the chosen value of μ. For

a value of the regularization parameter μn, the training set is inverted

using μn to obtain an estimate p̂n . This estimate is used to calculate

predicted data on the same points as the testing set via forward

modelling

dn
test = f(p̂n). (16)

The metric chosen to evaluate μn is the mean square error (MSE)

of the misfit between the observed and predicted testing data sets,

MSEn =
‖do

test − dn
test‖

2

Ntest

, (17)

in which Ntest is the number of data in the testing set. The optimal

value of μ will be the one that minimizes the MSE, that is, the one

that best predicts the testing data. We emphasize that the inversion

is performed on the training data set only.

The algorithm for the hold-out cross-validation is summarized as

follows:

(i) Divide the observed data into the training (do
inv) and testing

(do
test) sets.

(ii) For each μn ∈ [μ1, μ2, . . . , μNμ
]:

(a) Estimate p̂n by inverting the training set do
inv.

(b) Use p̂n to calculate the predicted testing set dn
test using

eq. (16).

(c) Calculate the mean square error MSEn using eq. (17).

(iii) The final solution is the p̂n corresponding to the smallest

MSEn.

The separation of the training and testing data sets is commonly

done by taking random samples from the full data set. However, we

cannot perform the separation in this way because Bott’s method

requires data on a regular grid as well as having model elements

directly below each data point. Thus, we take as our training set the

points from the observed data grid that fall on a similar grid but

with twice the grid spacing (open circles in Fig. 3). All other points

from the original data grid make up the testing data set (black dots

in Fig. 3). This separation will lead to a testing data set with more

points than the training data set. A way to balance this loss of data in

the inversion is to generate a data grid with half of the desired grid

spacing, either through interpolation or from a spherical harmonic

model.

2.6.2 Estimating zref and �ρ

The depth of the Normal Earth Moho (zref) and the density-contrast

of the anomalous Moho (�ρ) are other hyperparameters of the

inversion. That is, their value influences the final solution but they

are not estimated during the inversion. Both hyperparameters cannot

be determined from the gravity data alone. Estimating zref and �ρ

requires information that is independent of the gravity data, such

as knowledge of the parameters (Moho depths) at certain points.

This information can be used in a manner similar to the cross-

validation described in the previous section. In this study, we use

Figure 3. Sketch of a data grid separated into the training (open circles)

and testing (black dots) data sets. The training data set is still displayed on

a regular grid but with twice the grid spacing of the original data grid.

point estimates of the Moho depth to determine the optimal values

of zref and �ρ. These points will generally come from seismologic

studies, like receiver functions, surface wave dispersion, and deep

refraction experiments.

Let zo
s be a vector of Ns known Moho depths. We use the MSE as

a measure of how well a given inversion output p̂l,m fits the know

depths. The optimal values of zref and �ρ are the ones that best

fit the independent known Moho depths (i.e. produce the smallest

MSE). However, the points do not necessarily coincide with the

model elements of the inversion. Before computing the MSE, we

interpolate p̂l,m on the known points to obtain the predicted depths

zl,m
s . The MSE is defined as

MSE =
‖zo

s − zl,m
s ‖2

Ns

. (18)

The algorithm for estimating zref and �ρ is:

(i) For every combination of zref ,l ∈ [zref ,1, zref ,2, . . . , zref ,Nz ] and

�ρm ∈ [�ρ1, �ρ2, . . . , �ρNρ
]:

(a) Perform the inversion on the training data set do
inv using zref, l,

�ρm, and the previously estimated value of μ. The inversion output

is the vector p̂l,m .

(b) Interpolate p̂l,m on the known points to obtain the predicted

depths zl,m
s .

(c) Calculate the MSE between zo
s and zl,m

s using eq. (18).

(ii) The final solution is the p̂l,m corresponding to the smallest

MSE.

A similar approach was used by Silva et al. (2006) and Martins

et al. (2010) to estimate the parameters defining the density-contrast

variation with depth of a sedimentary basin. van der Meijde et al.

(2013) also had a similar methodology for dealing with the hyper-

parameters, though in a less formalized way.

2.7 Software implementation

The inversion method proposed here is implemented in the

Python programming language. The software is freely avail-

able under the terms of the BSD 3-clause open-source soft-

ware license. Our implementation relies on the open-source li-

braries scipy and numpy (Jones et al. 2001, http://scipy.org)
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for array-based computations, matplotlib (Hunter 2007, http://

matplotlib.org) and seaborn (Waskom et al. 2015, http://stanford.

edu/∼mwaskom/software/seaborn) for plots and maps, and Fa-

tiando a Terra (Uieda et al. 2013, http://www.fatiando.org) for

geophysics specific tasks, particularly for forward modelling us-

ing tesseroids. We use the scipy.sparse package for sparse ma-

trix arithmetic and linear algebra. The sparse linear system in

eq. (13) is solved using the conjugate gradient method implemented

in scipy.sparse.

The computational experiments (e.g. data processing, synthetic

tests, real data application) were performed in Jupyter (formerly

IPython) notebooks (Pérez & Granger 2007, http://jupyter.org/). The

notebook files combine the source code used to run the experiments,

the results and figures generated by the code, and rich text to explain

and document the analysis.

All source code, Jupyter notebooks, data, and model re-

sults are made available through an online repository (Uieda

& Barbosa 2016, http://dx.doi.org/10.6084/m9.figshare.3987267

or https://github.com/pinga-lab/paper-moho-inversion-tesseroids).

The repository also contains instructions for replicating all results

presented here.

3 A P P L I C AT I O N T O S Y N T H E T I C DATA

We test and illustrate the proposed inversion method by applying it

to two noise-corrupted synthetic data sets. The first one is generated

by a simple Moho model simulating the transition from a thicker

continental crust to a thinner oceanic crust. This application uses

cross-validation to estimate the regularizing parameter (μ) while

assuming that the anomalous Moho density-contrast (�ρ) and the

Normal Earth Moho depth (zref) are known quantities. This first

test is simplified in order to investigate solely the efficiency of the

inversion and the cross-validation procedure to estimate μ. The sec-

ond data set is generated by a more complex model derived from

the South American portion of the global CRUST1.0 model (Laske

et al. 2013). This second application uses cross-validation to esti-

mate μ and the validation procedure using synthetic seismological

data to estimate �ρ and zref. The model and corresponding syn-

thetic data are meant to simulate with more fidelity the real data

application.

3.1 Simple model

We simulate the transition from a continental-type Moho to an

oceanic-type Moho using a model composed of Mlat × Mlon =

40 × 50 grid of juxtaposed tesseroids (a total of M = 2000 model

elements). The anomalous Moho density-contrast is �ρ = 400 kg

m−3 and the Normal Earth Moho depth is zref = 30 km. Fig. 4(a)

shows the model Moho depths where we can clearly see an eastward

crustal thinning. In Fig. 4(a), each pixel in the pseudo-colour image

corresponds to a tesseroid of the model.

The synthetic data were forward modelled on a regular grid of

Nlat × Nlon = 79 × 99 points (a total of N = 7821 observations)

at a constant height of 50 km. The data were contaminated with

pseudo-random noise sampled from a normal distribution with zero

mean and 5 mGal standard deviation. Fig. 4(b) shows the noise-

corrupted full synthetic data set exhibiting an eastward increase

due to the simulated eastward crustal thinning shown in Fig. 4(a).

The data grid spacing is half the grid spacing of the tesseroid model

so that, when separating the training and testing data sets (Fig. 3), the

training data set points will fall directly above each model element.

Figure 4. A simple Moho model made of tesseroids for synthetic data

application. (a) The Moho depth of the model in kilometres. The model

transitions from a deep Moho in the right to a shallow Moho in left, sim-

ulating the transition between a continental and an oceanic Moho. Each

pixel in the pseudo-colour image corresponds to a tesseroid of the model.

(b) Noise-corrupted synthetic gravity data generated from the model shown

in (a).

We separated the synthetic data into training and testing data sets

following Fig. 3. The training data set is a regular grid of Nlat ×

Nlon = 40 × 50 points (a total of Ntrain = 2000). The testing data set

is composed of Ntest = 5821 observations. We used cross-validation

to estimate an optimal regularization parameter (μ) from a set of

Nμ = 16 values equally spaced on a logarithmic scale between

10−6 and 10−1. We ran our regularized inversion on the training

data set for each value of μ, obtaining 16 Moho depth estimates.

For all inversions, the initial Moho depth estimate used to start the

Gauss-Newton optimization was set to 60 km depth for all inversion

parameters. Furthermore, zref and �ρ are set to their respective true

values. Finally, we computed the MSE (eq. 17) for each estimate

and chose as the final estimated Moho model the one that minimizes

the MSE.

Fig. 5(a) shows the final estimated Moho depth after the cross-

validation. The recovered model is smooth, indicating that the cross-

validation procedure was effective in estimating an optimal regu-

larization parameter. Fig. 5(b) shows difference between the true

Moho depth (Fig. 4a) and the estimated Moho depth. The differ-

ences appear to be semi-randomly distributed with a maximum

coinciding with a short-wavelength feature in the true model. The

maximum and minimum differences are approximately 2.19 and

−2.13 km, respectively. Fig. 5(c) shows inversion residuals, de-

fined as the difference between the observed and predicted data (in

mGal). The largest residual (in absolute value) coincides with the

largest difference between the true model and the estimate. The

inversion residuals are normally distributed, as shown in Fig. 5(d),

with 0.02 mGal mean and a standard deviation of 3.63 mGal. The

cross-validation curve in Fig. 5(e) shows a clear minimum MSE
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Figure 5. Results from the inversion of the simple synthetic data. (a) The estimated Moho depth. (b) The Moho depth residuals (difference between the true

and estimated Moho depths). (c) The gravity residuals (difference between the observed and predicted gravity data). (d) Histogram of the gravity residuals

shown in panel (c), with the calculated mean and standard deviation (std) of the residuals in mGal. (e) Cross-validation curve used to determine the optimal

regularization parameter (eq. 10). Both axes are in logarithmic scale. The minimum mean square error (eq. 17) is found at μ = 0.00046 (red triangle). (f) Goal

function value (eq. 10) per Gauss–Newton iteration showing the convergence of the gradient descent. The y-axis is in logarithmic scale.

Table 1. Time spent on each function during a single inversion of simple

synthetic data. The inversion was performed on a laptop computer with an

Intel(R) Core(TM) i7-3612QM CPU @ 2.10 GHz processor. The total time

for the inversion was 42.133 s.

Time Percentage of total

Function description (s) time (per cent)

Sparse conjugate gradient 0.021 0.050

Sparse dot product 0.007 0.017

Tesseroid forward modelling 42.059 99.824

at μ = 0.00046 (indicated by the red triangle). Fig. 5(f) shows the

convergence of the Gauss-Newton optimization in eight iterations.

We also investigated the computation time spent in each section

of the inversion process using a source code profiler. The profiler

measures how much time is spent inside each function during the

execution of a program. We ran the profiler on a single inversion of

the training data set using the estimated regularization parameter.

We tracked the total time spent inside each of the three functions

that represent the potential bottlenecks of the inversion: solving

the linear system in eq. (13) using the conjugate gradient method,

performing the dot products required to compute the Hessian matrix

(eq. 12) and the gradient vector (eq. 11), and forward modelling to

calculate the predicted data (eq. 3). The profiling results presented

in Table 1 show that the time spent on forward modelling accounts

for approximately 99.8 per cent of the total computation time.

3.2 Model based on CRUST1.0

In this test, we simulate the anomalous Moho of South America us-

ing Moho depth information extracted from the CRUST1.0 model

(Laske et al. 2013). We construct a tesseroid model with Mlat ×

Mlon = 80 × 60 juxtaposed elements, 4800 in total, using the Moho

depths shown in Fig. 6(a). In our model, the Normal Earth Moho

is zref = 30 km and the density-contrast is �ρ = 350 kg m−3. We

produce the synthetic data at a constant height of 50 km and on a

regular grid of Nlat × Nlon = 159 × 119 points (a total of 18 921

observations). We contaminate the synthetic data with normally dis-

tributed pseudo-random noise with zero mean and 5 mGal standard

deviation (Fig. 6b).

The validation procedure to determine �ρ and zref requires

knowledge of the Moho depth at certain points (zo
s in eq. 18), usually

from seismic experiments. Thus, we must also generate synthetic

seismic data about the Moho depth. We produce such data by inter-

polating the Moho depth shown in Fig. 6(a) on the same 937 geo-

graphic coordinates pinpointed in the data set of Assumpção et al.

(2013). The resulting synthetic seismic data is shown in Fig. 6(c).

We estimate the three hyperparameters in two parts. First, we run

the cross-validation to estimate an optimal regularization parameter

(μ). The starting estimate for all inversions is 60 km depth for

all model parameters. For this cross-validation, we keep zref and

�ρ fixed to 20 km and 500 kg m−3, respectively. Second, we use

the estimated μ to run the validation procedure with the synthetic

seismological data to estimate zref and �ρ, thus obtaining the final

estimated Moho depths. Fig. 7 summarizes the results.

For the cross-validation, we separate the synthetic data (Fig. 3)

into a training set with twice the grid spacing of the original data

(Nlat × Nlon = 80 × 60) and a testing set with 14 121 observations.

We run the inversion for 16 different values of μ equally spaced

in a logarithmic scale between 10−7 and 10−2. For each of the 16

estimates we compute the MSE (eq. 17), shown in Fig. 7(a) as

function of μ. The optimal regularization parameter that minimizes

the MSE is μ = 10−4 (red triangle in Fig. 7a).

In the validation using seismological data, we use the esti-

mated value of μ in all inversions. We test seven values of zref

from 20 to 35 km with 2.5 km intervals and seven values of �ρ

from 200 to 500 kg m−3 with 50 kg m−3 intervals. We run the
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Figure 6. Synthetic data of a model derived from CRUST1.0. The model is made of tesseroids with an constant density-contrast of �ρ = 350 kg m−3 and

assuming a reference level of zref = 30 km. (a) The Moho depth of the model in kilometres. Each pixel in the pseudo-colour image corresponds to a tesseroid

of the model. (b) Noise-corrupted synthetic gravity data generated from the model. (c) Simulated points where the Moho depths are known from seismological

estimates (colour dots). Here, these point were obtained by interpolating the Moho depth in (a).

inversion for every combination of zref and �ρ, totalling 49 in-

versions. Finally, we calculate the MSE (eq. 18) for each of the

49 estimates and choose the values of zref and �ρ that mini-

mize the MSE. Fig. 7(b) shows a pseudo-colour map of the MSE

with a minimum (marked by the red triangle) at zref = 30 km and

�ρ = 350 kg m−3.

Fig. 7(c) shows the final solution after cross-validation and val-

idation using seismological data. The recovered model is smooth,

indicating that the cross-validation procedure was effective in es-

timating an optimal regularization parameter. Fig. 7(d) shows the

difference between the true Moho depths (Fig. 6a) and the esti-

mated depths (Fig. 7c). The maximum and minimum differences

are, respectively, 9.8 and −8.2 km. The largest absolute differences

are located along the central and northern Andes, where there is

a sharp increase in the true Moho depth (Fig. 6a). Positive differ-

ences (indicating a too shallow estimate) appear along the central

portion of the Andes, flanked by regions of negative differences (in-

dicating a too deep estimate) on the continental and Pacific sides.

Figs 7(e) and (g) show the gravity residuals, defined as the differ-

ence between the observed and predicted gravity data. The residuals

appear normally distributed, with 0.03 mGal mean and a standard

deviation of 4.10 mGal. The gravity residuals follow a similar,

though reversed, pattern to the differences shown in Fig. 7(d). The

largest residuals (in absolute value) are along the Andes, with the

central portion being dominated by negative residuals and flanked

by positive residuals on both sides. Figs 7(f) and (h) show the

differences between the synthetic seismic data (Fig. 6c) and the

estimated Moho depths. Once more, the largest differences are con-

centrated along the Andes, particularly in the central Andes and

near Ecuador and Colombia. The differences are smaller along the

Atlantic coast of South America, with notable larger differences in

a few points of northeastern Brazil and along the Amazon river. In

general, large residuals are associated with sharp increases in Moho

depth.

4 A P P L I C AT I O N T O T H E S O U T H

A M E R I C A N M O H O

We apply the inversion method proposed here to invert for the

Moho depth of the South American continent. We follow the appli-

cation of van der Meijde et al. (2013) but with some differences,

mainly using a different data set and performing all modelling in

spherical coordinates using tesseroids. The data are corrected of

the effects of topography and sedimentary basins. Crust and mantle

heterogeneities cannot be properly accounted for in regions where

information coverage is sparse and readily accessible models are

not available, like in South America and Africa. Hence, for the pur-

poses of this study, we will assume to be negligible all other crustal

and mantle sources, including lateral variations in density along the

Moho. All tesseroid models are defined with respect to a spherical

Earth of radius 6378.137 km.

4.1 Gravity and seismological data

The raw gravity data are generated from the satellite only

spherical harmonic model GOCO5S (Mayer-Guerr et al. 2015).

The GOCO5S model combines data from 15 satellites, includ-

ing the complete mission data from the GOCE satellite. The

data were downloaded from the International Centre for Global

Earth Models (ICGEM) web-service (Barthelmes & Köhler 2012,

http://icgem.gfz-potsdam.de/ICGEM/) in the form of the complete

gravity field on a regular grid with 0.2◦ grid spacing at ellipsoidal

height 50 km. We calculate the gravity disturbance (δ(P) in eq. 1)

by subtracting from the raw data the normal gravity of the WGS84

reference ellipsoid (γ (P)) using the formula of Li & Götze (2001).

Fig. 8(a) show the calculated gravity disturbance of South America.

We remove the gravitational effect of the topography from the

gravity disturbance by modelling the ETOPO1 digital terrain model

(Amante & Eakins 2009, http://dx.doi.org/10.7289/V5C8276M)
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Figure 7. Inversion results from the CRUST1.0 synthetic data. (a) Cross-validation curve used to determine the regularization parameter (eq. 10). The minimum

MSE (eq. 17) is found at μ = 0.0001 (red triangle). (b) Validation results used to determine the reference level (zref) and the density-contrast (�ρ). The

colours represent the MSE (eq. 18) in km2. The minimum (red triangle) is found at zref = 30 km and �ρ = 350 kg m−3. (c) The estimated Moho depth. (d)

Difference between the CRUST1.0 model depths (Fig. 6a) and the estimated depths. (e) Histogram of the inversion residuals (observed minus predicted data).

(f) Histogram of the differences between the synthetic seismic observations (Fig. 6c) and the estimated depths. (g) The inversion residuals. (h) Difference

between the seismic and the estimated depths.

using tesseroids (Fig. 8b). We used the standard densities of 2670 kg

m−3 for continents and −1630 kg m−3 for the oceans. Fig. 8(c)

shows the calculated gravitational attraction of the topographic

masses at 50 km height. Fig. 8(d) shows the Bouguer disturbance

(eq. 2) obtained after subtracting the topographic effect from the

gravity disturbance.

The effect of sedimentary basins is removed using tesseroid

models of the three sedimentary layers present in the CRUST1.0

model (Laske et al. 2013, http://igppweb.ucsd.edu/˜gabi/rem.html).

Each sedimentary layer model includes the density of each 1◦ × 1◦

model cell. Figs 8(e)–(g) show the thickness of the upper, middle,

and lower sedimentary layers, respectively. The density-contrasts of

the tesseroid model are obtained by subtracting 2670 kg m−3 from

the density of each model element. Fig. 8(h) shows the combined

gravitational attraction of the sedimentary basin tesseroid model.

We subtract the total effect of sediments from the Bouguer distur-

bance in Fig. 8(d) to obtain the sediment-free Bouguer disturbance

(Fig. 9a), which will be used as input for the inversion.

Fig. 9(b) shows the 937 known Moho depths (coloured dots)

which were estimated from seismological data by Assumpção et al.

(2013). This data set is used in the validation procedure.

4.2 Inversion, cross-validation, and validation

using seismological data

As in the CRUST1.0 synthetic data test (Section 3.2), we estimate

the hyperparameters in two steps. First, we run the cross-validation

to estimate an optimal regularization parameter (μ). The starting
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Figure 8. Gravity data for South America and the models used in the data corrections. (a) The gravity disturbance (eq. 1) calculated from the raw gravity

data. (b) Topography from ETOPO1. (c) Gravitational attraction of the topography calculated at the observation height using tesseroids. (d) The Bouguer

disturbance (eq. 2) obtained by subtracting (c) from (a). The upper (e), middle (f) and lower (g) sediment layer thicknesses from the CRUST1.0 model. (h) The

total gravitational attraction of the sediment layers shown in (e), (f) and (g), calculated using tesseroids.

estimate for all inversions is 60 km depth for all model parameters.

For this cross-validation, we keep zref and �ρ fixed to 20 km and

500 kg m−3, respectively. Second, we use the estimated μ to run the

validation using the seismological data of Assumpção et al. (2013)

to estimate zref and �ρ, thus obtaining the final estimated Moho

depth model.

We split the sediment-free gravity disturbance (Fig. 9a) into the

training and testing data sets. The training data set is a regular

grid with 0.4◦ grid spacing (twice the spacing of the original data

grid) and Nlat × Nlon = 201 × 151 grid points, a total of 30 351

observations. The remaining 90 350 points compose the testing

data set. We test 16 values of the regularization parameter (μ)

equally spaced on a logarithmic scale between 10−10 and 10−2.

Fig. 10(a) shows the Mean Square Error (MSE) as a function of μ.

The minimum MSE is found at μ = 10−10, the lowest value of μ

tested, suggesting that little or no regularization is required.

We proceed with the validation using seismological data using

μ = 10−10 in all inversions. We test all combinations of nine val-

ues of zref, from 20 to 40 km with 2.5 km intervals, and seven

values of �ρ, from 200 to 500 kg m−3 with 50 kg m−3 intervals.

Fig. 10(b) shows a pseudo-colour map of the MSE with respect to

the Assumpção et al. (2013) data set. The MSE has a minimum,

indicated by the red triangle, at zref = 35 km and �ρ = 400 kg m−3.

The minimum is not as well-defined as for the CRUST1.0 synthetic

(Fig. 7b), which is expected because in reality �ρ is not homoge-

neous across all of South America and the surrounding oceans.

4.3 Moho model for South America

The final Moho depth model for South America is shown as a

pseudo-colour map in Fig. 11. The model is available in the online

repository that accompanies this contribution (see Section 2.7).

Each model element is a 0.4◦ × 0.4◦ tesseroid, represented by the

pixels in the pseudo-colour map.

Our model differs significantly from CRUST1.0 (Fig. 6a) but

contains most of the large-scale features present in the GMSA12

gravity-derived model of van der Meijde et al. (2013). The deepest

Moho is along the central Andes, reaching depths upward of 70 km.

The oceanic areas present the shallowest Moho, ranging approxi-

mately from 7.5 to 20 km. The Brazilian and Guyana Shields have

a deeper Moho (greater than 35 km), with the deepest portions in

the area around the São Francisco Craton and the northern border

of the Parecis Basin. The Moho is shallower than 35 km along the

Guyana Basin, the Andean foreland basins, the Chaco Basin, and

along the centres of the Solimões, Amazonas and Paraná Basins.

Fig. 12(a) shows the gravity residuals, defined as the differ-

ence between the observed and predicted gravity data. Fig. 12(b)

shows the differences between the seismic-derived Moho depths of
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Figure 9. Input data for the South American Moho inversion. (a) Sediment-free Bouguer disturbance for South America. Obtained by subtracting the total

sediment gravitational effect (Fig. 8h) from the Bouguer disturbance (Fig. 8d). (b) Seismological Moho depth estimates from Assumpção et al. (2013).

Assumpção et al. (2013; Fig. 9b) and the depths of our gravity-

derived model (Fig. 11). The differences shown in Fig. 12(b) range

from approximately −23 to 23 km and have a mean of 1.18 km and

a standard deviation of 6.84 km. The gravity residuals and Moho

depth differences from seismic are smallest in the oceanic areas,

southern Patagonia, and the eastern coast of the continent. The

largest gravity residuals are located along the Andes and correlate

with the deepest Moho depths. These large residuals follow a pattern

of a negative value in the centre flanked by positive values to the east

and west. This same pattern is observed in the CRUST1.0 synthetic

test results (Fig. 7). In general, larger gravity residuals appear to

be associated with sharp variations in the estimated Moho depth.

Along the Andes, large differences with seismic data are corre-

lated with the larger gravity residuals. Conversely, this correlation

is absent from the large differences seen in the Guyana, Paraná,

and the Solimões Basins. In the Borborema province, northeastern

Brazil, our model slightly overestimates the Moho depth. On the

other hand, our model underestimates the Moho depths in the Ama-

zonas, Solimões, and Paraná Basins. Particularly in the Amazonas

and Solimões Basins, where our model predicts a Moho depth of ap-

proximately 30 km, the differences with the seismological estimates

can reach 10 km or more.

4.4 Discussion

Differences between our Moho depth model and the seismological

data (Fig. 12b) may indicate regions where our initial assumptions

(summarized in Fig. 1) are inadequate or where we have failed to

correct for all crustal and mantle sources. The largest differences

are seen along the Andean Province and are likely caused by the

fact that our model does not include the subducting Nazca plate.

Furthermore, the CRUST1.0 synthetic data test (Fig. 7) suggests that

our inversion method is not able to fully recover deep Moho depths

in the Andes, even without the effect of the subducting plate. In the

Guyana Basin, our model is able to fit the gravity data but differs

from the seismological data by up to ±10 km with no clear pattern

for the distribution of the differences. A possible explanation is an

inaccuracy in the CRUST1.0 sediment model (Laske et al. 2013)

used to correct our gravity data. The inversion results will be biased

if the input data includes effects other than the anomalous Moho.

In the Amazon and Paraná Basins, our model fits the gravity data

but underestimates the seismological data by up to 15 km. This

indicates that a mass excess may be present in the crust or in the

upper mantle. A body with positive density contrast whose grav-

itational effect was not removed from the data during processing

will make the observed gravity disturbance greater than it would

be otherwise. This will cause the inversion to produce a shallower

Moho estimate. These discrepancies between gravity and seismo-

logical estimates have been noted before by Nunn & Aires (1988)

for the Amazon Basin and Mariani et al. (2013) for the Paraná

Basin. Both studies propose high density rocks in the lower crust as

probable causes for the discrepancies. Another possible cause for

the observed discrepancy in our model could be our failure to fully

remove from the data the effects of the igneous intrusions present

in both basins. Using a sediment model for South America more
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Figure 10. Cross-validation results for the South American Moho inversion.

(a) Cross-validation to determine the regularization parameter μ (eq. 10).

The minimum Mean Square Error (eq. 17), shown as a red triangle, corre-

sponds to μ = 10−10. (b) Validation to determine the reference level (zref)

and the density-contrast (�ρ). The colours represent the Mean Square Error

(eq. 18). The minimum (red triangle) is found at zref = 35 km and �ρ =

400 kg m−3.

detailed than CRUST1.0 might lead to more accurate results for

these basins.

Greater confidence in our Moho model can be had in areas where

it is able to fit both the gravity and the seismological data. In such

places, a gravity-derived model can serve as an interpolator for the

seismological point estimates. In general, our model fits both data

sets in the oceans, the Atlantic coast of the continent, and central

Brazil. In the Parnaı́ba Basin, our model has small differences with

the few seismological data points that fall inside and on the borders

of the basin. The Moho surrounding the basins continental borders

is deep, following inward with a shallower Moho, then a deeper step,

and finally a shallower part in the middle of the basin. Recent deep

seismic reflection studies by Daly et al. (2014) that cross the basin

from west to east agree with our model. The Northern border of the

Parecis Basin has a deep Moho in our model that is corroborated by

a single seismological data point.

5 C O N C LU S I O N S

We have developed a computationally efficient gravity inversion

method in spherical coordinates. Our method extends the Gauss-

Newton formulation of Bott’s method to use tesseroids as model el-

ements and Tikhonov regularization. The computational efficiency

of our method is due to using Bott’s approximation for the Jacobian

matrix and using sparse matrix algorithms for arithmetic operations

and the solution of linear systems. This approximation for the Ja-

cobian matrix is adequate and the method converges even when the

data are at higher altitudes and the model is not outcropping, as

shown by the applications to synthetic data. We employ hold-out

cross-validation to estimate the regularization parameter and a val-

idation procedure using seismological data to estimate the Moho

density-contrast and the Normal Earth Moho depth.

There are two main advantages of the proposed method over pre-

vious works. First, unlike the Parker-Oldenburg method or methods

using rectangular prisms, our inversion method does not require the

data to be projected onto a plane. Second, the Parker-Oldenburg

method and methods derived from Bott’s method cannot apply

the traditional methodology for constraining inverse problems. Our

method has no such restriction because we use the formalism of tra-

ditional Tikhonov inversion. However, the proposed method is not

without limitations. It requires data on a regular grid and restricts

the model to be a regular mesh tied to the data grid. Like Bott’s

method, our method only works for gravity disturbances and not for

the gravity gradients.

The test on simple synthetic data shows that our inversion method

is able to recover a smooth Moho relief with a homogeneous density-

contrast distribution. The inversion was not able to fully recover

the shortest wavelength feature in the model, possibly due to the

smoothness constraints which tend to soften high-frequency (sharp)

variations. The cross-validation Mean Square Error curve has a well-

defined minimum, indicating a value of the regularization parameter

(μ) whose corresponding estimate best predicts data that were not

included in the inversion. Using this value of μ in the inversion

leads to a stable solution characterized by a smooth Moho relief

with an acceptable data misfit.

The efficiency of the proposed method is because solving lin-

ear systems and performing matrix multiplications together ac-

count for a mere 0.067 per cent of the total computation time

required for a single inversion. The majority of the computation

time (99.824 per cent) is spent on forward modelling. Thus, we are

able to retain the high computational efficiency of Bott’s method and

use a classic Tikhonov regularization formulation. This approach

could, in theory, be extended to other types of regularization (e.g.

total variation) and misfit functions (e.g. re-weighted least squares)

already available in the literature.

The more complex synthetic data test based on CRUST1.0 shows

that the validation using pointwise Moho depth information is

able to correctly estimate the density-contrast (�ρ) and Normal

Earth Moho depth (zref). This test indicates that the inversion nei-

ther correctly estimates Moho depth nor adequately fits the grav-

ity and pointwise data when sharp variations in Moho depth oc-

cur. This phenomenon is particularly strong in the region below

the Andes. A likely explanation is that the smoothness regulariza-

tion is intrinsically unable to produce sharp variations in Moho

depth. These effects might be mitigated with the use of sharpness-

inducing regularization, like the weighted smoothness inversion,

Cauchy norm regularization, entropic regularization, total varia-

tion regularization, or an adaptive mixed smoothness-sharpness

regularization.

We applied the method proposed here to estimate the Moho depth

for South America. Our estimated Moho depth model is in accor-

dance with previous results. The model fits well the gravity and

seismic data in all oceanic regions, the central portion of the An-

dean foreland, Patagonia, and coastal and central parts of Brazil.

However, the model is unable to fit the gravity and seismic data in

places with sharp variations in Moho depth, particularly below the

Andes and in the boundaries of the main geotectonic provinces of

the South American Plate, like the Borborema province, the Par-

naiba Basin, and the São Francisco Craton. This might indicate that
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Figure 11. The estimated Moho depth of South America. Dotted lines represent the boundaries between major geologic provinces (after Assumpção et al.

2013; Goutorbe et al. 2015); AD: Andean Province, AFB: Andean foreland basins, AM: Amazonas Basin, BR: Brazilian Shield, BO: Borborema province, CH:

Chaco Basin, GB: Guyana Basin, GU: Guyana Shield, PB: Parnaı́ba Basin, PC: Parecis Basin, PR: Paraná Basin, PT: Patagonia province, SF: São Francisco

Craton, SM: Solimões Basin. Solid orange lines mark the limits of the main lithospheric plates (Bird 2003); AF: Africa Plate, AN: Antarctica Plate, CA:

Caribbean Plate, CO: Cocos Plate, SA: South America Plate, SC: Scotia Plate, NZ: Nazca Plate. The solid light grey line is the 35 km Moho depth contour.

smoothness regularization should not be applied indiscriminately

to the whole model, as suggested by the CRUST1.0 synthetic data

test. Another reason for the observed misfit might be the presence

of crustal or mantle density anomalies whose gravitational effects

were not removed during the data corrections. In the Guyana Basin

on the coastal region of Venezuela, along the central Amazonas and

Solimões Basins, and in the Paraná Basin, our Moho depth model is

able to fit the gravity data but differs significantly from the seismic

data. These discrepancies in the Paraná and Amazonas Basins are

interpreted in the literature as high density rocks in the lower crust.

In general, differences between a gravity and a seismically derived

Moho model may indicate the presence of crustal or mantle density

anomalies that were unaccounted for in the data processing. Such

locations warrant further detailed investigation.
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Figure 12. Residuals for the estimated South American Moho depth in Fig. 11. (a) Gravity residuals, defined as the difference between the observed data

in Fig. 9(a) and the data predicted by the estimate in Fig. 11. (b) Differences between the seismological depth estimates of Assumpção et al. (2013) and our

gravity-derived Moho depth estimate. The inset in b shows a histogram of the differences along with their calculated mean and standard deviation (std). Dotted

lines mark the limits of major geologic provinces and lithospheric plates.

Our gravity-derived Moho model for South America can

be downloaded from the online repository http://dx.doi.org/

10.6084/m9.figshare.3987267.
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