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Abstract: 

Purpose: Quantitative susceptibility mapping (QSM) can be performed through the minimization

of  a  functional  consisting  of  data  fidelity  and  regularization  terms.  For  data  consistency,  a

Gaussian phase-noise distribution is often assumed, which breaks down when SNR is low. A

previously proposed alternative is to use a nonlinear data fidelity term, which reduces streaking

artifacts, mitigates noise amplification and results in more accurate susceptibility estimates. We

hereby  present  a  novel  algorithm  that  solves  the  nonlinear  functional  while  achieving

computation speeds comparable to those for a linear formulation. 

Methods: We developed a nonlinear QSM algorithm (FAst Nonlinear Susceptibility Inversion,

FANSI) based on the variable splitting and alternating direction method of multipliers (ADMM),

where the problem is split into simpler sub-problems with closed-form solutions and a decoupled

nonlinear  inversion  hereby  solved  with  a  Newton-Raphson  iterative  procedure.  FANSI

performance was assessed using numerical phantom and in vivo experiments, and was compared

against the nonlinear morphology-enabled dipole inversion (NMEDI) method. 

Results:  FANSI  achieves  similar  accuracy  to  NMEDI  but  with  significantly  improved

computational efficiency.

Conclusion:  The proposed method enables accurate reconstructions in a fraction of the time

required by state-of-the-art QSM methods.

Keywords: nonlinear inversion, quantitative susceptibility mapping, total variation, augmented 

Lagrangian, 



Introduction

Quantitative susceptibility mapping (QSM) involves estimating tissue susceptibilities from the

phase of a gradient-recalled echo (GRE) acquisition. The GRE signal phase is proportional to the

local  reaction  field  emanating  from  magnetic  susceptibility  differences  between  tissues.

However, solving the field-to-source (i.e. inverse) QSM problem is often challenging because the

dipole kernel approximation has zero-valued coefficients across a double-conical surface in k-

space,  the  so-called  “magic  cone”  (1,2).  The  direct  dipole  kernel  inversion,  thus,  leads  to

divisions by zero for such frequency coefficients, which contaminates the reconstruction with

streaking artifacts.  Truncated approximations of the inverse dipole kernel can reduce but not

eliminate streaking (3), and are prone to noise amplification (4). Consequently, in an effort to

improve  reconstruction  quality,  susceptibility  inversions  have  been  reformulated  as  an

optimization problem usually comprising two terms: one ensuring data fidelity and a regularizer.

From a Bayesian standpoint, the data fidelity term minimizes the discrepancy between a forward

model and the MRI measurement while accounting for a given phase-noise distribution.  The

regularization term, conversely, constrains the impact of the zero-valued kernel coefficients by

enforcing some level of prior knowledge about the solution. Typically, regularization promotes

smoothness or sparsity in some domain, e.g. for the solution’s first derivative (5-11), which leads

to improved artifact and noise-amplification control (12). The total generalized variation (TGV)

penalty, for example, promotes piece-wise smoothness (13,14), hence mitigating the often piece-

wise patchy appearance resulting from total variation (TV) regularization (15-17).

Only a few studies, however, have focused on improving the formulation of the data fidelity term

– a key aspect to improve QSM. In conventional approaches, data fidelity consists of a linear

susceptibility-to-field  relationship  that  assumes  Gaussian  noise;  however,  the  phase-noise

distribution deviates from a Gaussian density function for low signal-to-noise ratio (SNR) (18).

In  order  to  address  this  shortcoming,  Liu  et  al.  (19)  proposed  a  nonlinear  data  fidelity

formulation  in  which  the  measurement  noise  is  modeled  as  a  complex-valued  Gaussian.  A

subsequent study demonstrated that this results in reduced streaking artifacts, noise mitigation,

and hence, overall improvements in reconstruction accuracy (12). While effective, the previously

proposed  nonlinear  morphology-enabled  dipole  inversion  (NMEDI)  algorithm  (19)  is

computationally slow, obstructing online image calculation on standard vendor software,  and

making  automated  parameter  selection  (e.g.  via  L-curve  analysis)  unfeasible  for  the  clinical



routine. In this paper, we present a novel fast QSM algorithm with nonlinear consistency and

variational regularization using variable splitting (20) and the alternating direction of multipliers

method (ADMM) (17,20-23). We compared the accuracy and computational efficiency of this

new algorithm against NMEDI, and demonstrated more than an order of magnitude speed-up

with comparable reconstruction results. 

Theory

Previously,  Liu  et  al.  (19)  proposed the  following optimization  problem for  nonlinear  QSM

inversion: 

argmin χ
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where  D  is the magnetic dipole kernel in the frequency domain,  χ  is the susceptibility

distribution,  ϕ  is the tissue phase and F  is the Fourier operator with inverse,  F
H .  W

denotes  a  spatially-variable  weight  estimated  from  the  normalized  magnitude  image,  and

R ( χ )  is the regularization term. NMEDI is an iterative reconstruction approach consisting of

two nested  loops.  In  the  inner  loop,  NMEDI applies  a  Taylor  expansion around the  current

susceptibility estimate and solves the ensuing linear system via conjugate gradients. In the outer

loop, it introduces a quasi-Newton fixed-point solver to help improve the convergence.

ADMM solvers, however, constitute a faster alternative with potential for higher convergence

rates  via  fewer iterations  (17).  In this  work,  we extend the ADMM framework to  solve the

nonlinear QSM  inversion  problem with  a  novel  variable-splitting  scheme.  To  this  end,  we

introduced an auxiliary variable, z=F
H

DFχ , and decoupled the equation system, leading to

the following augmented Lagrangian functional:

argmin χ , z
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where s  is the Lagrangian multiplier (a relaxation term), and μ  is the penalty parameter.

With the proposed variable splitting strategy, the optimization involving regularization and data

fidelity terms can be treated as two separate sub-problems. The sub-problem for  χ  can be

written as follows: 



argmin χ

μ
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which has a closed-form solution as previously shown in (17).

The sub-problem for z  can be written as:

argminz
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Applying the Euler formula, the above equation can be re-written as:

argminz −∑ [W 2
cos ( z−ϕ) ]+ μ
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Eq. 5.

In  such  form,  the  gradient  of  the  functional  can  be  expressed  as  a  voxel-wise  decoupled

structure: 

∂ f z=W
2
sin ( z−ϕ)+μz− μ ( F H

DFχ+s ) , Eq. 6.

for which a first order approximation (z ≈ ϕ) yields: 

z=
W

2
ϕ+μ ( FH

DFχ+s)
W

2+μ
Eq. 7

The  above  equation  provides  a  solution  that  is  consistent  with  a  spatially-weighted  linear

problem. Eq. 7 may be applicable to a wide range of SNR regimes, with the caveat that it is

markedly vulnerable to phase-wrap errors.

A more robust solution was found solving for the roots of the nonlinear function using a Newton-

Raphson (NR) voxel-wise approach (24).

zn=zn−1−
W

2
sin ( z−ϕ)+μ zn− 1− μ ( F H

DFχ+s )
W

2
cos (z −ϕ)+μ

Eq. 8.

NR solvers are fast (converge quadratically) but are highly dependent on initial conditions, i.e.

they might return local minima or become unstable when the denominator approaches zero. In

order to stabilize the solver, we propose using the minimum of the consistency term between χ

and z as the starting point, i.e.:

z0=F
H

DFχ +s Eq. 9.



As such, the consistency between z and ϕ is considered as a perturbation term. If W≤1, and μ≥1,

then no other local minima exist, and the global minimum is within π relative to this point.

Finally, we need to update s:

s=s+z − F
H

DFχ Eq. 10.

We iterate the solutions for each subproblem (χ and z) until convergence.

The source code for the proposed reconstruction is publicly available as part of the FANSI (Fast 

Nonlinear Susceptibility Inversion) toolbox http://gitlab.com/cmilovic/FANSI-toolbox.git.

Methods

The proposed nonlinear solver was compared both with NMEDI (19)  and with a simpler (linear

data fidelity) ADMM (17) formulation (Eq. 7 using W = 1). We assessed both TV and TGV (17)

penalties  with  the  ADMM  solver,  with  results  for  TV  regularization  shown  in  the  main

manuscript and for TGV as supplementary material (Figs S7, S8, S9, S10, S11 and S12, and

Table S1). It should be highlighted that NMEDI’s regularizing penalty consists of a spatially-

weighted TV norm that incorporates magnitude-edge information. In the forthcoming sections,

linear-fidelity solutions with ADMM will be referred to as “TV” and nonlinear solutions as “TV-

FANSI”. 

The following experiments were carried out to evaluate the performance of the proposed method:

Synthetic-brain phantom  (25):  This experiment  aimed at  evaluating algorithm responses  to

different  sources  of  error  and  SNR  dependencies.  Base  susceptibility  values  were  used  to

synthesize the magnetic field map, which in turn was expressed as a signal-phase distribution.

Magnitudes, normalized to the [0,1] range, were set proportional to susceptibility values. Real

and imaginary parts of the simulated signal were corrupted independently with Gaussian noise

(SD: 1/345), and new magnitude and phase data were calculated. Such procedure generated an

SNR gradient in the simulated thalamus. Additionally, four spheres were added (13 voxels in

diameter) to simulate different lesions (Fig. S2). Each lesion was of constant susceptibility (-0.5,

-0.3, 0.6 and 1.2 ppm, respectively) and zero magnitude to simulate an extreme T2* dephasing

regime (e.g. using excessively long TE). Residual errors (e.g. from imperfect unwrapping, coil or

http://gitlab.com/cmilovic/FANSI-toolbox.git


multi-echo  combinations)  were  also  simulated  by  degrading  the  resulting  phase  with  the

introduction of five spatially-separate 2π jumps (positive or negative). Global (and local within-

sphere) RMSE scores were used as accuracy measures to evaluate algorithm performance.  It

should be noted that  this  phantom is intrinsically piece-wise constant,  thus we only provide

RMSE scores for the new approach in contrast to NMEDI without gradient-weighting,  since

gradient-weighting constitutes a major advantage in this particular scenario. Local RMSE scores

were normalized by the mean ground-truth susceptibility for each sphere.

COSMOS-brain  (26)  forward simulation: A COSMOS reconstruction (27) – from fast  3D

gradient-echo scans, 15-fold acceleration, acquired at twelve different head orientations on a 3T

Siemens  Trio  scanner  (Siemens,  Erlangen,  Germany)  with  a  32-channel  head-coil,

1.06×1.06×1.06-mm3 isotropic  voxels,  240×196×120  matrix  size,  flip  angle=15°  and

TE/TR=25/35ms – was used as a susceptibility ground truth from which a local field map was

synthesized. The magnitude from a single acquisition, normalized to unity, was used to simulate

complex image data,  which was then corrupted by complex-valued Gaussian noise with 2%

amplitude  (peak-SNR=50).  Resulting  susceptibility  distributions  were  compared  with  the

COSMOS ground-truth using RMSE scores (low value=high consistency), high-frequency error

norm  (HFEN,  low  value=high  consistency)  (28),  structure  similarity  index  (SSIM,  high

value=high similarity) (29), mutual information (MI, high value=high similarity) and the non-

diagonal terms of the correlation matrix (cross-correlation, CC, high value=high correlation). In

addition, eleven regions of interest (ROI) were evaluated locally, as described in (26), using ROI

means, standard deviations, and RMSEs with respect to COSMOS as outcome measures.

In  vivo  3T data:  From  a  3T MRI  system –  Siemens  Trio,  32-channel  head-array,  1-mm3

isotropic resolution, fully-sampled acquisition (no parallel-imaging acceleration), 240×192×120

matrix,  flip  angle=25°,  TE/TR=24.8/35  ms,  bandwidth=100 Hz/pixel,  Tacq=13:30 min.  Phase

unwrapping and background  subtraction  were  performed with  Laplacian  (30)  and Laplacian

boundary value (31) (LBV) methods, respectively. 

In vivo 7T data: From a 7T MRI system – Siemens MAGNETOM, 32-channel Nova head-array,

TE/TR=9/20ms,  flip  angle=10°, bandwidth=120  Hz/pixel,  fully-sampled  504×608×88  matrix

and 0.33x0.33x1.25-mm3 voxel size (Tacq=17:30 min). Phase unwrapping and  harmonic phase



removal were performed using HARPERELLA (32) and VSHARP (33) (R0=25mm) algorithms,

respectively.

Results were evaluated qualitatively in terms of artifact reduction and noise management. 

Processing times were recorded for all experiments noting that, for the first phantom and second

in vivo datasets, reconstructions were performed with Matlab 2016a (The Mathworks Inc., USA)

on a laptop computer running an Intel I7 6700HQ processor at 2.6GHz (3.5GHz Turbo) with

16GB RAM, whereas for all other experiments, Matlab 2014a was used on a desktop computer

with an Intel i7-2600 processor at 3.40GHz and 32GB RAM. We used the MEDI toolbox for all

NMEDI-related  reconstructions  (34),  and  we  extended  the  fast  TGV-QSM  toolbox  (35)  to

include the hereby-proposed formulation.

In phantom experiments, NMEDI’s regularization parameter (λ) was chosen to minimize RMSE.

For in vivo reconstructions, free parameters were empirically selected. Default parameter values

were  used  otherwise,  including  stopping  criteria.  For  ADMM  formulations,  regularization

parameters (α1 and μ1, see Fig. S1) were optimized using the same criteria as in NMEDI. We also

set a stopping change-rate threshold of 1% and a maximum of 50 iterations.

Results

Synthetic brain phantom: In low (or zero) magnitude regions, phase noise was approximately

uniformly distributed. The linear solver handled such phase noise distributions poorly, yielding

severe streaking artifacts  (Fig.  1D).  Nonlinear solvers,  in contrast,  resulted in two-orders-of-

magnitude RMSE improvements (Fig. 1E-G). Resulting global RMSE scores were: 834% for

TV, 25% for  TV-FANSI and 27% for  NMEDI. Regionally,  focusing first  on low-to-medium

magnitude areas, e.g. the thalamic susceptibility gradient, nonlinear solvers showed improved

noise  management.  Since  simulated  lesions  were  added  to  native  susceptibility  values,  they

overlapped  with  true  structures  (Fig.  1  and  S3).  TV-FANSI  resolved  such  overlaps  more

accurately than NMEDI, i.e. it returned lower RMSE scores, though notably sphere-2 returned

large error values for both reconstructions due to the larger relative influence of local structures.

As expected, NMEDI with gradient-weighting returned a highly consistent piece-wise constant



solution  (Figure  1F),  though  as  a  consequence  of  edge-masking  it  also  returned  several

inconsistencies  at  the  tissue/lesion  interface  that  were  not  present  with  conventional

(unweighted) regularization (Figure 1E and 1G). Overall, all nonlinear algorithms were robust to

2π phase jumps (Fig. 1E-G), whereas the linear solution was corrupted by strong streaking (Fig.

1D). In terms of computational speed, TV-FANSI (12s) was approximately 8.5 times faster than

NMEDI (104s).

Fig. 1: Close-up detail of simulated data and reconstructions for sphere 2. Two 2π phase jumps

are also present in the simulated phase. a) Simulated magnitude, b) ground-truth susceptibility,

c) simulated corrupted phase, d) TV,  α1=2e-4,  μ1  =100α1, e) TV-FANSI,  α1=2e-4,  μ1  =100α1, f)

NMEDI (with gradient-weighting), and g) NMEDI (without gradient weighting) results, λ=1750.

h) RMSE scores for each simulated (spherical) lesion.

COSMOS-brain simulation: The experiments (results summarized in Table 1) revealed that all

algorithms  performed  similarly  on  all  local  measurements  and  global  quality  metrics.  From

visual inspection, we noted greater noise amplification on linear solutions and slight degradation

across outer cortical regions (red arrows in Figure 2). RMSE between TV and TV-FANSI was

23%, whereas between TV-FANSI and NMEDI the computed RMSE was 33%. The sharpest

features  in  such regions  were  obtained with  NMEDI (putatively due to  gradient-weighting),

particularly venous structures (blue arrows), though staircase effects were also present. RMSE

between TV-FANSI and NMEDI without gradient-weighting was 13% (Fig. S4). In terms of



computational time, ADMM-based formulations were notably faster than NMEDI; TV-FANSI,

for  example,  was 35 times  faster.  Both linear  and nonlinear  ADMM solvers  yielded similar

(within 10%) processing times per iteration.

Table 1. Local measurements (mean value, standard deviation and local RMSE, in ppb), quality

metric performances and computation times (in seconds) for the COSMOS-based phantom. 



Fig. 2: Reconstruction results for the COSMOS phantom, in ppm. TV:  α1=4e-3,  μ1  =16α1,  TV-

FANSI: α1=4e-3, μ1 =16α1 and NMEDI: λ=60.

Since the parameters for each algorithm were optimized for minimum RMSE, we also performed

a stability test (Table 2) by modifying the regularization weight by ±10%. 



Table 2. Stability test results (±10% variation in regularization parameter). Results provided

are relative percentage changes, compared to the chosen optimal parameters.

In vivo data: Figure 3 shows representative cuts for difference maps across solutions obtained

by empirically fine-tuning the free parameters. For 3T data, the optimal linear reconstruction was

severely impaired by streaking artifacts (see arrows in Figure 3, and extended results in Fig. S5),

which were greatly mitigated with nonlinear approaches. These observations were supported by

the difference maps – streaking artifacts were most apparent in the TV-FANSI–TV differential

(RMSE: 56.9%), whereas TV-FANSI–NMEDI differences were relatively small (RMSE: 45.3%).

For 7T data, greater differences were identified in cortical areas where e.g. the linear algorithm

yielded much larger errors. TV-FANSI and NMEDI, in contrast, generated similar results in deep

brain structures although notably, NMEDI was more effective in constraining artifacts emanating

from boundary regions (Fig. S6).

In terms of processing time, ADMM-based methods were more than an order of magnitude faster

than NMEDI. TV-FANSI, for example, was 31 times faster than NMEDI (54 s versus 1666 s) for

3T data, and 79 times faster (224 s versus 17786 s) for 7T data.



Fig.  3:  Difference  maps,  in  ppm,  for  the  in-vivo  data.  3T data  (a  and b)  parameters:  TV:

α1=3.2e-2,  μ1  =100α1,  TV-FANSI: α1=2e-3, μ1  =5α1 and NMEDI: λ=260. 7T data (c and d) pa-

rameters: TV: α1=6.3e-3, μ1 =25α1, TV-FANSI: α1=1.6e-4, μ1 =25α1 and NMEDI: λ=211.

Discussion

Liu et al.  (19) previously proposed a nonlinear model for QSM inversion known as NMEDI

(nonlinear morphology-enabled dipole inversion) that included a data fidelity term in the image

domain and a spatially-constrained total variation regularizer that overall promoted piece-wise

constant solutions while sharing edges with the magnitude image. Liu et al.’s implementation

included a relatively fast quasi-Newton fixed-point method, though to calculate solution updates

the algorithm relies on linear matrix inversions with a slow-converging conjugate gradient solver.

While effective, this approach is time-consuming. We hereby propose an ADMM algorithm that

provides a framework to substantially accelerate QSM reconstructions without loss of accuracy

with respect to the high-performance NMEDI approach. This was enabled through conversion of

the nonlinear data-fidelity constraint into a simple, voxel-wise decoupled problem that can be

solved rapidly. Regarding the additional variable introduced by the ADMM formalism, it should

be highlighted that the penalty parameter in the nonlinear subproblem, μ, was set to unity in all

the experiments. Regularization parameters are discussed in the supplementary material. 

Compared to NMEDI, the proposed nonlinear algorithm with TV regularization was 8.5 to 79

times  faster  depending  on  data  type.  Processing  times  were  similar  to  those  using  a  linear

formulation (less than 20% time increase per iteration). 

In terms of image quality, the proposed nonlinear solver represents an improvement over linear

formulations in terms of noise modeling and in preventing streaking artifacts emanating from



zero or low SNR regions. Relative to NMEDI, TV-FANSI yielded similar reconstructions with a

small  systematic  advantage  for  TV-FANSI in  our  analytic  experiments  and possibly slightly

better  artifact  management  for  NMEDI  in  the  high-resolution  in  vivo  experiment  (Fig.  3).

Overall, however, differences between nonlinear methods were small, only slightly more marked

in  small-scale  features  with  strong  susceptibility  gradients  and  low  SNR,  e.g.  the  venous

vasculature.  This  can  be  explained  by the  spatially-varying  weighting  scheme  that  NMEDI

applies  to  preserve  anatomical  edges  (aided  by  edge  information  in  magnitude  data).

Incorporating  such  prior  knowledge  from  magnitude  data  would  also  help  the  proposed

formulation better preserve such features, which warrants a future systematic investigation, as it

would be studying in greater detail sources of error resulting from e.g. coil-combination, multi-

echo fitting or unwrapping errors. The high-resolution 7T experiment in this study explicitly

highlighted  that  the  present  formulation  must  be  extended  to  attenuate  streaking  artifacts

emanating  from  boundary  voxels  –  artifacts  possibly  generated  by  high-contrast  dipole

truncations, background filtering or other localized errors.

In addition to the benefits of faster convergence, the ADMM framework provides a solution to

the  nonlinear  functional  that  is  largely  independent  of  the  choice  of  regularizer.  The  same

algorithm  structure  could  thus  be  used  for  other  variational  penalties  (as  shown  in  the

supplementary material with the TGV regularizer). 

Finally, it is worth highlighting that the proposed algorithm, hereby initialized with background

filtered  field  maps,  could  be  extended to  enable  highly desirable  single-step  reconstructions

directly from raw gradient-echo phase data (16,36), which also warrants a future investigation.

Conclusions

The proposed FANSI algorithm provides a substantial gain in computational efficiency compared

to NMEDI (up to 79 times faster) with similar performance in selected ROIs. Importantly, since

morphological constraints are clearly beneficial for streaking control, the assessment of spatial

weights for TV-FANSI warrants a subsequent investigation. Future directions also include single-

step formulations through incorporation of phase unwrapping and background removal into the

functional and suitable preconditioning.
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ADMM solver for TV regularization (17)

Let's take the χ subproblem of the augmented functional (Eq. 2), defined using the TV 

regularization term:

argmin χ

μ

2
∙‖F

H
DFχ − z+s‖2

2
+α1|∇ χ|1

 Eq. S1.1

Here we introduce additional variables following the ADMM formalism:

argmin χ , z1

μ

2
∙‖F

H
DFχ − z+s‖2

2

+α1|z1|1+
μ1

2
|∇ χ − z1+s1|2

2

 Eq. S1.2

Firstly, we can solve the subproblem for χ:

argmin χ

μ

2
∙‖F

H
DFχ − z+s‖2

2

+
μ1

2
|∇ χ − z1+s1|2

2
Eq. S1.3

If we rewrite the gradient operators as linear operator in the Fourier domain by ∂x = FHExF, ∂y = 

FHEyF, ∂z = FHEzF and take the derivative w.r.t χ:

μF
H

D
H

F ( Fh
DFχ − z+s )+μ1 F

h
E

H
F (F H

EFχ − z1+s1 )=0 Eq. S1.4

μ F
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DFχ − μ F
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D
H

F ( z− s )+μ1 F
H

E
H

EFχ=μ1 F
H

E
H

F ( z1− s1 ) Eq. S1.5

Here we apply the Fourier Transform to decouple terms, and then achieve:

χ=F
H [ μ D

H
F ( z− s )+μ1 E

H
F ( z1 − s1 )

μ D
H

D+μ1 E
H

E ] Eq. S1.6

With Fχ known, we now solve the outer functional, for z1 and any other variable introduced by 



the ADMM formalism (for solving the data fidelity term).

The solution for z1 comes from the soft thresholding operation:

z1=max (|∇ χ+s1|− α1/μ1,0 ) ⋅ sign (∇ χ+s1 ) Eq. S1.7

And the update rule for s1 is given by:

s1=s1+∇ χ − z1 Eq. S1.8

We iterate solving for Fχ and all the ADMM introduced variables until convergence is achieved, 

measured by the norm of the changes in χ between iterations.

The choice of  μ1 used by the regularization subproblem is closely related to the regularization

parameter, α1. A preliminary analysis revealed that optimal μ1/α1 ratios might be restricted to the

[1, 100] range, which effectively narrows the search for optimal regularization parameters.

Figure S1. RMSE map for the μ1 and α1 parameters, using the COSMOS-brain data. The vertical 

axis represents α1 values (from 10-2 to 10-6, top-bottom) and the horizontal axis represents μ1 

values (from 1 to 10-5, left-right). Step size is 10-0.1. The red line indicates  μ1/α1 = 1. The yellow 

line indicates  μ1/α1 = 100. The green cross indicates the location of the global minimum error.

Similar results were found to those in Figure S1 with different levels of noise and other quality 

metrics.

Further investigations are warranted.



ADMM solver for TGV regularization (17)

Let's take the χ subproblem of the augmented functional (Eq. 2), defined using the TGV 

regularization term:

argmin χ , v

μ

2
∙‖F

H
DFχ − z+s‖2

2
+α 1|∇ χ −v|1+α0|ϵ(v )|1

 Eq. S2.1

where ε(v) is the symmetrized gradient of v.

Here we introduce additional variables following the ADMM formalism:

argmin χ , v, z1 , z0

μ

2
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H
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2
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2
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 Eq. 

S2.2

Firstly, we can solve the subproblem for χ and v:

argmin χ , v

μ
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2
Eq. S2.3

If we rewrite the gradient operators as linear operator in the Fourier domain by ∂x = FHExF, ∂y = 

FHEyF, ∂z = FHEzF and ε = FHSF, and take the derivative w.r.t χ:
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Here we apply the Fourier Transform to decouple terms:

(μ D
H

D+μ1 E
H

E ) Fχ − μ1 E
H

Fv=μ D
H

F (z − s )+μ1 E
H

F ( z1 −s1 ) Eq. S2.6

With the differentiation w.r.t. v, and following the same steps, we reach this system of equations:



[μ D
H

D+μ1 E
H

E − μ1 E
H

− μ1 E
H

μ1+μ0 S
H

S ][Fχ

Fv]=[μ D
H

F ( z − s)+μ1 E
H

F ( z1− s1 )
μ0 S

H
F ( z0− s0 )− μ1 F ( z1 − s1 ) ] Eq. S2.7

which may be solved pixel by pixel by inversion of the left-hand side matrix. We use Cramer's 

rule for this matrix inversion. Since all the elements in the matrix do not depend on the ADMM 

variables, it may be precomputed, and used without modification in all iterations.

With Fχ and Fv known, we now solve the outer functional, for z1, z0 and any other variable 

introduced by the ADMM formalism (for solving the data fidelity term).

The solution for z1 and z0 come from the soft thresholding operation:

z1=max (|∇ χ − v+s1|− α1/ μ1 ,0 )⋅sign (∇ χ − v+s1 ) Eq. S2.8

z0=max (|ϵ( v )+s0|−α 0/μ0 ,0 )⋅sign (ϵ(v )+s0 ) Eq. S2.9

And the update rule for s1 and s0 is given by:

s1=s1+∇ χ − v − z1 Eq. S2.10

s0=s0+ϵ( v )− z0 Eq. S2.11

We iterate solving for Fχ, Fv and all the ADMM introduced variables until convergence is 

achieved, measured by the norm of the changes in χ between iterations.



Extended TV-FANSI results

Synthetic brain phantom.  All the simulated lesions are displayed in axial cuts of the synthetic

phantom (Figure S2). Susceptibility values, from left to right, -0.5, -0.3, 0.6 and 1.2 ppm. 

Figure S2. Axial cuts that shows all four simulated lesions.



Figure S3 shows the results achieved for the synthetic phantom.

Figure S3. Synthetic brain phantom with simulated lesion and results. a) Ground truth

susceptibility. b) Simulated phase. c) TV result. d) TV-FANSI result. e) NMEDI result (without

gradient weighting).



COSMOS-brain. Additional results and difference maps are presented in Figure S4, to provide

further information about NMEDI´s gradient weighting impact.

Figure S4. COSMOS-brain additional results results. a) NMEDI result without gradient

weighting algorithm. b) Difference map between TV-FANSI and NMEDI without the gradient

prior. c) Difference map using the NMEDI algorithm with and withouth gradient weighting.



In vivo data. Reconstruction results are provided in Figure S5 and S6, along with the input local

field (in ppm).

Fig. S5: Results for the 3T in-vivo data. a) Local field used as input. b) TV, c) TV-FANSI and d)

NMEDI results.



Fig. S6: Results for the 7T in-vivo data. a) Local field used as input. b) TV, c) TV-FANSI and d)

NMEDI results.



Results using TGV regularization

As in the convention used in the main text, we referred to ADMM-based linear formulation as

“TGV”, and used “TGV-FANSI” to refer to the nonlinear counterpart. 

Synthetic brain phantom. Solutions using TGV regularization are shown in Figure S7 (same

cuts than those shown in Figure S3). Magnified views (Figure 1 extension) are also shown in

Figure S8. TGV yielded RMSE of 830.58%, whereas TGV-FANSI scored 24.84%. As with TV-

FANSI, TGV-FANSI improved NMEDI’s performance in this experiment. Both, TV-FANSI and

TGV-FANSI returned similar errors (RMSE scores for TGV-FANSI were within 0.3% relative to

those for TV-FANSI, and signified an improvement of 1.7% with respect to NMEDI), with TV-

FANSI operating 2.5x per iteration faster than TGV-FANSI but TGV-FANSI, with 34.05s, was

3.1x  faster  than  NMEDI.  RMSE  values  for  each  simulated  lesion  are  within  0.0025%  of

variation compared to TV-FANSI.

Fig. S7: TGV results for the synthetic brain phantom with simulated lesions. 



Fig. S8: Magnified view of the reconstructions around sphere 2. Two 2π phase jumps are also

present in the simulated thalamus. a)  TGV result. b) TGV-FANSI result.



COSMOS-brain.  Quality  metrics  for  TGV-FANSI  slightly  improved  those  for  TV-FANSI

(RMSE: 39.0169, HFEN 34.3272, SSIM: 0.9038, MI: 0.5577, CC: 0.912). Results are displayed

in Figures S9 and S10. TGV-FANSI required a greater number of iterations than linear TGV (42

vs. 17) but was 6.7 times faster than NMEDI. Local measurements were largely equivalent to

those achieved by TV-FANSI, as shown in Table S1. Finally, an extended stability test revealed

consistent results to those achieved by TV-FANSI.

Fig. S9: Normalized quality scores for the COSMOS phantom results. In this graph, lower scores

indicate better performance.



Fig.  S10:  Reconstruction  results  for  the  COSMOS phantom,  using  the  TGV regularization.

Additional difference maps with NMEDI without edge information prior are displayed. 



Table S1. Complete local ROI measurements (mean value, standard deviation and local RMSE

compared to COSMOS [], in ppb). 

Abbreviations:

CC = Corpus Callosus

WM = White Matter

GM = Gray Matter



In vivo data. Results including the TGV-FANSI algorithm are shown in Figure S11 and S12. 

Fig. S11: Results for the 3T data and corresponding difference maps. Same ranges as Figure S12.



Fig. S12: Results for the 7T data and corresponding difference maps.

3T data: TGV-FANSI (running time: 138s) was 12.1 times faster than NMEDI.

7T data: TGV-FANSI (running time: 646s) was 27.5 times faster than NMEDI.

Regarding the choice of μ1 and μ0 parameters for the TGV regularization subproblems, as for TV,

they were closely related to the actual regularization parameters, α0 and α1. It should be noted

that although we set the relationship α0/α1 to 2 (as suggested in (13-17)), we found empirically

that  relationship  μ0/μ1 =  2  also  yielded  acceptable  results.  This  simplifies  the  problem  to

optimizing only α1  and  μ1. As with the TV implementation, preliminary analyses suggest that

optimal μ1/α1 might be restricted to the [1, 100] range.

TGV-FANSI was found to be 3 to 27 times faster than NMEDI and approximately 3 times slower

than TV-FANSI.  Thus,  given both  ADMM-based algorithms yielded similar  results  with  the



same α1 and μ1 parameters (α0/α1 and μ0/μ1 within the [0.5, 2] range), we propose TV-FANSI

could be used to fine-tune the regularization parameters – empirically via visual rating or using

the L-curve method.  Turning to  algorithm performance,  it  is  worth noting that  all  nonlinear

algorithms yielded similar results, though with a small systematic advantage in quality metrics

and accuracy for the newly proposed methods, for our synthetic experiments. Differences across

nonlinear methods can be explained by the type of regularization employed; whilst NMEDI and

TV-FANSI  formulations  promote  piece-wise  constant  QSM  reconstructions  (in  the  case  of

NMEDI also aided by edge information in magnitude data - the impact of which can be gauged

in Figure S5), TGV-FANSI promotes piece-wise smooth solutions.
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