
FAST NONNEGATIVE MATRIX FACTORIZATION: AN

ACTIVE-SET-LIKE METHOD AND COMPARISONS∗

JINGU KIM† AND HAESUN PARK†

Abstract. Nonnegative matrix factorization (NMF) is a dimension reduction method that has
been widely used for numerous applications including text mining, computer vision, pattern discovery,
and bioinformatics. A mathematical formulation for NMF appears as a non-convex optimization
problem, and various types of algorithms have been devised to solve the problem. The alternating
nonnegative least squares (ANLS) framework is a block coordinate descent approach for solving NMF,
which was recently shown to be theoretically sound and empirically efficient. In this paper, we present
a novel algorithm for NMF based on the ANLS framework. Our new algorithm builds upon the block
principal pivoting method for the nonnegativity-constrained least squares problem that overcomes a
limitation of the active set method. We introduce ideas that efficiently extend the block principal
pivoting method within the context of NMF computation. Our algorithm inherits the convergence
property of the ANLS framework and can easily be extended to other constrained NMF formulations.
Extensive computational comparisons using data sets that are from real life applications as well as
those artificially generated show that the proposed algorithm provides state-of-the-art performance
in terms of computational speed.

Key words. nonnegative matrix factorization, nonnegativity-constrained least squares, block
principal pivoting method, active set method, lower rank approximation, dimension reduction

AMS subject classifications. 15A23, 62H25, 65F30, 65K05

1. Introduction. Nonnegative matrix factorization (NMF) [28, 22] has attracted
much attention during the past decade as a dimension reduction method in machine
learning and data mining. NMF is considered for high-dimensional data in which each
element has a nonnegative value, and it provides a low rank approximation formed
by factors whose elements are also nonnegative. Due to the nonnegativity, the factors
of low rank approximation give a natural interpretation: Each data item can be ex-
plained by an additive linear combination of physically-meaningful basis components
[22]. Numerous successful applications of NMF were reported in areas including text
mining [30, 35], computer vision [25], and bioinformatics [3, 16, 8] among others.

NMF can be mathematically formulated in the following way. Given an input ma-
trix A ∈ R

m×n, in which each element is nonnegative, and an integer k < min {m,n},
NMF aims to find two factors W ∈ R

m×k and H ∈ R
k×n with nonnegative elements

such that

A ≈ WH. (1.1)

The goodness of the approximation in Eqn. (1.1) can be measured in various ways
including Frobenius norm, Kullback-Leibler divergence [23], and Bregman divergence
[9, 24]. In this paper, we focus on the most common choice, which is Frobenius norm.
Factors W and H are then found by solving the optimization problem:

min
W≥0,H≥0

f(W,H) =
1

2
‖A−WH‖2F , (1.2)

∗An earlier version of this paper appeared in a conference proceeding: Jingu Kim and Haesun
Park. Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons. In
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining (ICDM’08), Pisa,
Italy, Dec. 2008. [19]

†School of Computational Science and Engineering, College of Computing, Georgia Institute of
Technology, Atlanta, GA, 30332. E-mail: {jingu,hpark}@cc.gatech.edu

1

2 JINGU KIM AND HAESUN PARK

where the inequalities W ≥ 0 and H ≥ 0 mean that all the elements of W and H are
nonnegative. The problem in Eqn. (1.2) is a non-convex optimization with respect to
variables W and H , and it is shown that solving NMF is NP-hard [34]. Hence, one
only hopes to find a local minimum in practice.

Many algorithms have been developed for solving Eqn. (1.2). More than a decade
ago, Paatero and Tapper [28] initially proposed NMF (to be precise, positive matrix
factorization in their terms), but their algorithms [28, 27] did not rigorously deal with
the nonnegativity constraints. Lee and Seung popularized NMF with their seminal
work [22]. Their multiplicative updating algorithm [23] has been one of the most
commonly used for NMF, but some issues related to its performance [26, 15, 17] and
problems with convergence [11] were reported. In [1], a simple algorithm that solves
an unconstrained least squares problem at every iteration was devised, but it also
has difficulty with convergence. Recently, several algorithms based on the alternating
nonnegative least squares (ANLS) framework [26, 15, 17] were introduced with good
performance. These algorithms possess a good convergence property because every
limit point produced by the ANLS framework is a stationary point [26]. An algorithm
that updates each column ofW and each row ofH per iteration, called the hierarchical
alternating least squares (HALS) algorithm, was also introduced recently [6, 5]. The
HALS algorithm was independently studied in [13], and a convergence property of
HALS with a modification to stabilize the algorithm was proved in [10].

In this paper, we introduce a new and fast algorithm for NMF using the block prin-
cipal pivoting method in the ANLS framework. Previous NMF algorithms using the
ANLS framework include the active set method [17], the projected gradient method
[26], and the projected quasi-Newton method [15]. The names tell how each algo-
rithm solves the nonnegativity-constrained least squares (NNLS) subproblem. The
projected gradient and the projected quasi-Newton methods apply techniques from
unconstrained optimization with modifications for nonnegativity constraints. The
active set method searches for the optimal active and passive sets of variables by
maintaining working sets as candidates. At each iteration, an unconstrained least
squares problem is solved, and the working sets are updated based on its result. The
block principal pivoting method [31, 14], which we call an active-set-like method due
to its similarity with the active set method, also follows this framework, but it over-
comes a limitation of the active set method. Unlike the active set method, in which
typically only one variable is exchanged between working sets, the block principal
pivoting method allows the exchanges of multiple variables with a goal of finding the
optimal active and passive sets faster. In this paper, we adopt the block principal
pivoting method in NMF computation. We introduce ideas that improve the block
principal pivoting method in the context of NMF and then build a new algorithm for
NMF.

Thorough experimental comparisons among several NMF algorithms, including
the one proposed in this paper, will follow the introduction of the new algorithm.
The ANLS-based algorithms [26, 15, 17] and the HALS algorithm [5] appeared re-
cently, and there has not been other papers with substantial comparisons such as the
ones we offer in this paper. The comparisons were performed on text, image, and
synthetic data sets, and the results are demonstrated showing the relative computa-
tional efficiency of various NMF algorithms. The proposed new algorithm exhibits
state-of-the-art performance allowing only HALS to be comparable. We also show a
condition under which the proposed method outperforms the HALS algorithm. This
paper extends a previous conference version in [19]: The presentation of our algo-

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 3

rithm is substantially improved, and more importantly, all the experimental results
are updated with much more extensive comparisons and their interpretations.

The rest of this paper is organized as follows. In Section 2, the ANLS framework
for NMF and related background materials are introduced. In Section 3, our new
algorithm for NMF as well as its extensions are described. Implementation details
and experimentation settings are shown in Section 4, and comparison results are
demonstrated in Section 5. We conclude the paper in Section 6 with discussion.

2. Alternating Nonnegative Least Squares Framework for NMF. We
begin by reviewing the ANLS framework for solving Eqn. (1.2). In the ANLS frame-
work, the variables are divided into two groups in a straightforward manner, and then
the two groups are updated in turn. The framework is summarized as follows.

1. Initialize H ∈ R
m×k with nonnegative elements.

2. Repeat solving the following problems until a stopping criterion is satisfied:

min
W≥0

∥

∥HTWT −AT
∥

∥

2

F
(2.1a)

where H is fixed, and

min
H≥0

‖WH −A‖2F (2.1b)

where W is fixed.
3. The columns of W are normalized to unit L2-norm and the rows of H are

scaled accordingly.
Alternatively, one may initializeW first and iterate Eqn. (2.1b) then Eqn. (2.1a). Note
that each subproblem is an instance of the nonnegativity-constrained least squares
(NNLS) problem. Although the original problem in Eqn. (1.2) is non-convex, the
subproblems in Eqns. (2.1) are convex problems, for which optimal solutions can be
found.

It is important to observe that the NNLS problems in Eqns. (2.1) have special
characteristics. NMF is a dimension reduction algorithm, which is applied to high-
dimensional data. The original dimension is very large, e.g., several thousands or
more, and the reduced dimension is small, e.g., on the order of tens. Therefore, the
coefficient matrix W ∈ R

m×k in Eqn. (2.1b) is typically very long and thin (m ≫ k),
and the coefficient matrix HT ∈ R

n×k in Eqn. (2.1a) is also long and thin (n ≫ k)
in general. At the same time, the matrices WT and H of unknown variables in
Eqns. (2.1a) and (2.1b), respectively, are flat and wide for the same reason. Figure 2.1
illustrates these characteristics. These observations are critical in designing an efficient
algorithm for the subproblems in Eqns. (2.1), and we will revisit this point in later
sections.

For the convergence of any NMF algorithm based on the ANLS framework, it is
important to find the optimal solutions of Eqns. (2.1) at each iteration. The ANLS
framework is a two-block coordinate-descent algorithm, and a result by Grippo and
Sciandrone [12] states that any limit point of the sequence of optimal solutions of
two-block subproblems is a stationary point. Thus, the ANLS framework has a good
optimization property that every limit point generated from the framework is a sta-
tionary point for the problem in Eq. (1.2). In non-convex optimization, most algo-
rithms only guarantee the stationarity of the limit point. In the alternating least
squares (ALS) algorithm [1], in contrast, the subproblems are solved as an uncon-
strained least squares problem, and then every negative element is set to zero. In

4 JINGU KIM AND HAESUN PARK

(a) (b)

Fig. 2.1: Typical structure of the NNLS problems arising in NMF computation.

this case, it is difficult to analyze convergence because the algorithm updates, at each
iteration, with a solution that is not optimal for the subproblem.

In order to design an NMF algorithm based on the ANLS framework, one has to
devise a specific method to solve the subproblems in Eqns. (2.1). A classic algorithm
for the NNLS problem is the active set method by Lawson and Hanson [21]. The
active set method searches for the optimal active and passive sets by exchanging a
variable between two working sets. Note that if we know the passive (i.e., strictly
positive) variables of the solution in advance, then an NNLS problem can be easily
solved by a simple unconstrained least squares procedure on the passive variables.
Although the Lawson and Hanson’s algorithm has been a standard for the NNLS
problems 1, it is extremely slow when used for NMF in a straightforward way. Faster
versions of the algorithm were recently developed by Bro and De Jong [2] and Van
Benthem and Keenan [33], and Kim and Park utilized them in their NMF algorithm
[17].

A major limitation of the active set method is that the variables of working sets are
exchanged satisfying the nonnegativity of the solution vector while making sure that
the objective function decreases after each iteration. As a result, typically only one
variable is exchanged between working sets per iteration, slowing down the algorithm
when the number of unknowns is large. Methods based on iterative optimization
schemes such as the projected gradient method due to Lin [26] and the projected
quasi-Newton method due to Kim et al. [15] are free of the above limitation. These
algorithms are modified from techniques in unconstrained optimization by providing
specialized rules to choose step length and projecting the solution to the feasible
nonnegative orthant at every iteration.

The block principal pivoting method overcomes the limitation of the active set
method in a different fashion. We now describe this method in detail.

3. Block Principal Pivoting Method. In this section, we present the block
principal pivoting method for the NNLS problems and the NMF algorithm based
on the method. We will first review the block principal pivoting method that was
developed for the NNLS problems with a single right-hand side [14] and then introduce
methods that improve upon this to handle multiple right-hand sides efficiently.

1Lawson and Hanson’s algorithm is adopted as a MATLAB function lsqnonneg.

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 5

3.1. NNLS with a single right-hand side vector. For the moment, let us
focus on the NNLS problem with a single right-hand side vector formulated as

min
x≥0

‖Cx− b‖22 , (3.1)

where C ∈ R
p×q, b ∈ R

p×1, x ∈ R
q×1, and p ≥ q. The subproblems in Eqns. (2.1) can

be decomposed into several independent instances of Eqn. (3.1) with respect to each
right-hand side vector. Thus, an algorithm for Eqn. (3.1) is a basic building block for
an algorithm for Eqns. (2.1).

The Karush-Kuhn-Tucker optimality condition for Eqn. (3.1) is written as follows:

y = CTCx− CT b (3.2a)

y ≥ 0 (3.2b)

x ≥ 0 (3.2c)

xiyi = 0, i = 1, · · · , q. (3.2d)

We assume that matrix C has full column rank. In this case, matrix CTC is positive
definite, and the problem in Eqn. (3.1) is strictly convex. Then, a solution x that
satisfies the conditions in Eqns. (3.2) is the optimal solution of Eqn. (3.1). Problems
in the form of Eqns. (3.2) are known as linear complementarity problems.

We divide the index set {1, · · · , q} into two groups F and G such that F ∪ G =
{1, · · · , q} and F ∩ G = ∅. Let xF , xG, yF , and yG denote the subsets of variables
with corresponding indices, and let CF and CG denote the submatrices of C with
corresponding column indices. Initially, we assign

xG = 0 and yF = 0.

That is, all the elements of xG and yF are set as zero. Then, x and y always sat-
isfy Eqn. (3.2d) for any values of xF and yG. Now, we compute xF and yG using
Eqn. (3.2a) and check whether the computed values of xF and yG satisfy Eqns. (3.2b)
and (3.2c). The computation of xF and yG is done as follows:

xF = argmin
xF

‖CFxF − b‖22 (3.3a)

yG = CT
G(CFxF − b). (3.3b)

One can first solve for xF in Eqn. (3.3a) and substitute the result into Eqn. (3.3b). We
call the pair (xF , yG) a complementary basic solution if it is obtained by Eqns. (3.3).

If a complementary basic solution (xF , yG) satisfies xF ≥ 0 and yG ≥ 0, then
it is called feasible. In this case, current x is the optimal solution of Eqn. (3.1),
and the algorithm terminates. Otherwise, a complementary basic solution (xF , yG)
is infeasible, and we need to update F and G by exchanging variables for which
Eqn. (3.2b) or Eqn. (3.2c) does not hold. Formally, we define the following index set

V = {i ∈ F : xi < 0} ∪ {i ∈ G : yi < 0} , (3.4a)

and then a variable xi with i ∈ V is called an infeasible variable. Now, choose a
non-empty subset V̂ ⊂ V . Then, F and G are updated by the following rules:

F = (F − V̂) ∪ (V̂ ∩G) (3.5a)

G = (G− V̂) ∪ (V̂ ∩ F). (3.5b)

6 JINGU KIM AND HAESUN PARK

Algorithm 1 Block principal pivoting method for the NNLS problem with a single
right-hand side vector

Input: C ∈ R
p×q and b ∈ R

p

Output: x(∈ R
q×1) = argminx≥0 ‖Cx− b‖22

1: Initialize F = ∅, G = {1, · · · , q}, x = 0, y = −CT b, α = 3, and β = q + 1
2: Compute xF and yG by Eqns. (3.3).
3: while (xF , yG) is infeasible do

4: Compute V by Eqns. (3.4).
5: If |V | < β, set β = |V |, α = 3, and V̂ = V .
6: If |V | ≥ β and α ≥ 1, set α = α− 1 and V̂ = V .
7: If |V | ≥ β and α = 0, set V̂ by Eqn. (3.6).
8: Update F and G by Eqns. (3.5).
9: Update xF and yG by Eqns. (3.3).

10: end while

The size |V̂ | represents how many variables are exchanged per iteration. If |V̂ | > 1,
then the algorithm is called a block principal pivoting algorithm; if |V̂ | = 1, then the
algorithm is called a single principal pivoting algorithm. The active set method can
be understood as an instance of single principal pivoting algorithms. The algorithm
repeats this procedure until the number of infeasible variables (i.e., |V̂ |) becomes zero.

In order to speed up the search procedure, one usually uses V̂ = V , which we call
the full exchange rule. The full exchange rule means that we exchange all variables
of F and G that do not satisfy Eqns. (3.2), and the rule accelerates computation by
reducing the number of iterations required until termination. However, contrary to
the active set method in which the variable to exchange is carefully selected to reduce
the objective function, the full exchange rule may lead to a cycle and fail to find an
optimal solution although it occurs rarely. To ensure finite termination, we need to
employ a backup rule, which uses the following exchange set for Eqns. (3.5):

V̂ = {i : i = max {i ∈ V }} . (3.6)

The backup rule, where only the infeasible variable with the largest index is exchanged,
is a single principal pivoting rule. This simple exchange rule guarantees a finite
termination: Assuming that matrix C has full column rank, the exchange rule in Eq.
(3.6) returns the solution of (3.2) in a finite number of iterations [14].

Combining the full exchange rule and the backup rule, the block principal pivoting
method for the NNLS problem with a single right-hand side is obtained as summarized
in Algorithm 1. Because the backup rule is much slower than the full exchange rule,
it is used only if the full exchange rule does not work well. Finite termination of
Algorithm 1 is achieved by controlling the number of infeasible variables. In Algorithm
1, variable α is used as a buffer on the number of the full exchange rules that may
be tried. If the full exchange rule increases the number of infeasible variables, then α
is reduced by one. Once α becomes zero, the backup rule is used until it makes the
number of infeasible variables smaller than the lowest value achieved so far, which is
stored in β. This has to occur in a finite number of steps because the backup rule
has a finite termination property. As soon as the backup rule achieves a new lowest
number of infeasible variables, we return to the full exchange rule. We used three
as the default value of α, which means that we can try the full exchange rule up
to three times until it reduces the number of infeasible variables. Since the number

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 7

Fig. 3.1: An example of the grouping of right-hand side vectors when q = 10 and
r = 6. Dark cells indicate variables with indices in F , which need to be computed
by Eqn. (3.8). By grouping the columns that have a common F set, i.e., columns
{1, 3, 5},{2, 6} and {4}, we can avoid redundant computation for Cholesky factoriza-
tion in solving Eqn. (3.8).

of infeasible variables is systematically reduced, the algorithm terminates in a finite
number of steps.

The block principal pivoting method was shown very efficient for the NNLS prob-
lems [31, 4]. In principle, the computational cost of the block principal pivoting
method would depend on how often the full exchange rule fails so that the backup
rule has to be activated. In our extensive tests in this paper, the backup rule appear-
ance was not observed, suggesting that the full exchange rule works well in practice.
Since the full exchange rule allows the exchanges of multiple variables between F
and G, the block principal pivoting method becomes much faster than the active set
algorithm, as we report in Section 5.

One might relate the two sets, F and G, of the block principal pivoting method to
the passive and active sets in the active set method. However, they are not necessarily
identical. In the active set method, the solution is sought while satisfying the condition
x ≥ 0, so a variable xi in which i is in the passive set is required to satisfy xi ≥ 0 in
every iteration. In the block principal pivoting method, on the other hand, a variable
xi with i ∈ F can be of any sign except for the final iteration. Therefore, the block
principal pivoting method does not require an initial solution with x ≥ 0 while the
active set method does.

3.2. NNLS with multiple right-hand side vectors. Now suppose we need
to solve the following NNLS problem:

min
x≥0

‖CX −B‖2F , (3.7)

where C ∈ R
p×q, B ∈ R

p×r, and X ∈ R
q×r. It is possible to simply run Algorithm

1 for each right-hand side vector b1, · · · , br where B = [b1, · · · , br] since the columns
of X do not depend on each other. However, this approach is not computationally
efficient, and we will explain how we obtain an efficient algorithm for the multiple
right-hand side case using the ideas from [2] and [33] in the context of the block
principal pivoting method.

In Algorithm 1, the major computational burden is from the need to compute xF

and yG as shown in Eqns. (3.3). We can solve Eqn. (3.3a) by a normal equation

CT
FCFxF = CT

F b, (3.8)

8 JINGU KIM AND HAESUN PARK

Algorithm 2 Block principal pivoting method for the NNLS with multiple right-
hand side vectors. XFj

and YGj
represents the subsets of j-th column of X and Y

indexed by Fj and Gj , respectively.

Input: C ∈ R
p×q,B ∈ R

p×r

Output: X(∈ R
q×r) = argminx≥0 ‖CX −B‖2F

1: Compute CTC and CTB.
2: Initialize Fj = ∅ and Gj = {1, · · · , q} for all j ∈ {1, · · · , r}. Set X = 0, Y =

−CTB, α(∈ R
r) = 3, and β(∈ R

r) = q + 1.
3: ComputeXFj

and YGj
for all j ∈ {1, · · · , r} by Eqns. (3.3) using column grouping.

4: while any (XFj
, YGj

) is infeasible do

5: Find the indices of columns in which the solution is infeasible: I =
{

j : (XFj
, YGj

) is infeasible
}

.
6: Compute Vj for all j ∈ I by Eqns. (3.4).

7: For all j ∈ I with |Vj | < βj , set βj = |Vj |, αj = 3 and V̂j = Vj .

8: For all j ∈ I with |Vj | ≥ βj and αj ≥ 1, set αj = αj − 1 and V̂j = Vj .

9: For all j ∈ I with |Vj | ≥ βj and αj = 0, set V̂j by Eqn. (3.6).
10: Update Fj and Gj for all j ∈ I by Eqns. (3.5).
11: Update XFj

and YGj
for all j ∈ I by Eqns. (3.3) using column grouping.

12: end while

and Eqn. (3.3b) can be rewritten as

yG = CT
GCFxF − CT

Gb. (3.9)

We need CT
FCF , C

T
F b, C

T
GCF , and CT

Gb for solving Eqns. (3.8) and (3.9), and these
matrices and vectors vary throughout iterations because F and G are updated in each
iteration.

The improvements are closely related with the observations mentioned in Section
2. First, note that for the NNLS problems arising from NMF, matrix C is typically
very long and thin, and computing CT

FCF , C
T
F b, C

T
GCF , and CT

Gb is computationally
expensive. However, we can compute CTC and CTB in the beginning and reuse them
in later iterations. As CT

FCF , C
T
F b, C

T
GCF , and CT

Gb can be retrieved as submatrices
of CTC and CTB for any F and G, we can avoid expensive matrix-matrix multiplica-
tions. Since the column size of C is small for the NNLS problems arising from NMF,
storage needed for CTC and CTB will also be small. This idea is also applicable
to the single right-hand side case, but its impact is more dramatic in the multiple
right-hand side case.

Another improvement comes from the fact that matrix X is typically flat and
wide in the NNLS problems for NMF. Suppose we simultaneously run Algorithm 1
for many right-hand side vectors. In each iteration, we have index sets Fj and Gj for
each column j ∈ {1, · · · , r}, and we must compute xFj

and yGj
using Eqns. (3.8) and

(3.9). The idea is to find groups of columns that share the same index sets Fj and
Gj and solve Eqn. (3.8) for the columns in the same group. By doing so, we avoid
repeated computation for Cholesky factorization in solving Eqn. (3.8). Figure 3.1
illustrates this grouping idea. Note that if X is flat and wide, which is the case for
the NNLS problems in NMF, more columns are likely to share their index sets Fj

and Gj , allowing us to obtain bigger speed-up. We summarize the improved block
principal pivoting method for multiple right-hand sides in Algorithm 2.

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 9

3.3. NMF based on ANLS with block principal pivoting. The block prin-
cipal pivoting method combined with the improvements is quite efficient for the NNLS
problems with multiple right-hand sides. To compute NMF, we use Algorithm 2 to
solve the subproblems in Eqns. (2.1). Implementation issues such as a stopping cri-
terion are discussed in Section 4.

3.4. Block principal pivoting method for sparse and regularized NMF.

Our new algorithm, which we described so far for the NMF formulation in Eqn. (1.2),
can easily be extended to other variations of NMF. In some applications, it is im-
portant to obtain sparse factors in NMF. For example, when sparsity is imposed on
factor H , the resulting NMF can be used as a clustering algorithm [16, 18]. NMF
that imposes sparsity on factor H [16] can be formulated as

min
W≥0,H≥0







1

2
‖A−WH‖2F + η ‖W‖2F + β

n
∑

j=1

‖H(:, j)‖21







. (3.10)

We can solve Eqn. (3.10) by solving the following subproblems alternatingly:

min
W≥0

∥

∥

∥

∥

(

H√
2ηIk

)

WT −
(

AT

0k×m

)
∥

∥

∥

∥

2

F

where Ik is a k × k identity matrix and 0k×m is a zero matrix of size k ×m, and

min
H≥0

∥

∥

∥

∥

(

W√
2βe1×k

)

H −
(

A
01×n

)∥

∥

∥

∥

2

F

where e1×k is a row vector having every element as one and 01×n is a zero vector with
length n. Similarly, one can impose sparsity on factor W or on both factors. For more
details of promoting sparsity using Eqn. (3.10), see [16]. On the other hand, when
W and HT are not necessarily of full column rank, a regularized formulation may be
considered [17, 29]:

min
W≥0,H≥0

{

1

2
‖A−WH‖2F + α ‖W‖2F + β ‖H‖2F

}

. (3.11)

As shown in [17], Eqn. (3.11) can also be recast into the ANLS framework: One
iterates solving

min
W≥0

∥

∥

∥

∥

(

HT
√
2αIk

)

WT −
(

AT

0k×m

)∥

∥

∥

∥

2

F

and

min
H≥0

∥

∥

∥

∥

(

W√
2βIk

)

H −
(

A
0k×n

)∥

∥

∥

∥

2

F

where 0k×n is a zero matrix of size k × n until convergence. The proposed new block
principal pivoting method is applicable to the problems shown in Eqns. (3.10) and
(3.11) since both of them can be recast into the ANLS framework, whose subproblems
are the NNLS problems with multiple right-hand sides.

4. Implementation and Data Sets. We describe the details of our implemen-
tation and data sets used for comparisons.

10 JINGU KIM AND HAESUN PARK

4.1. NMF algorithms compared. We compared the following algorithms for
NMF. Due to space limitations, we do not present the details of other algorithms but
only refer to the papers in which they are presented.

1. (ANLS-BPP) ANLS with the block principal pivoting method proposed in
this paper

2. (ANLS-AS) ANLS with Kim and Park’s active set method [17]
3. (ANLS-PGRAD) ANLS with Lin’s projected gradient method [26]
4. (ANLS-PQN) ANLS with Kim et al.’s projected quasi-Newton method [15]
5. (HALS) Cichocki and Phan’s hierarchical alternating least squares algorithm

[6, 5]
6. (MU) Lee and Seung’s multiplicative updating algorithm [23]
7. (ALS) Berry et al.’s alternating least squares algorithm [1]

We implemented our ANLS-BPP method in MATLAB. For ANLS-AS, we imple-
mented two different versions. The first one is using a grouping idea for multiple
right-hand sides as described in [33, 17], and we refer to this implementation as
ANLS-AS-GROUP. Alternatively, the ANLS-AS method can be implemented by
solving the NNLS problems with a single right-hand side separately using the up-
dating of the Cholesky factor. We refer to this case as ANLS-AS-UPDATE. For the
ANLS-PGRAD method, we used the MATLAB code written by its author, and for
ANLS-PQN, we refined the code written by its authors since it was not carefully opti-
mized for high-dimensional data, in which NMF is typically used. Our refined version
of ANLS-PQN is much faster than the original one by the authors, and thus we used
the refined version in our experiments. In [5], two versions of the HALS algorithm
are introduced, and we used a faster version that updates all columns of W (rows
of H) before proceeding to update H (W). We implemented MU and ALS, which
are straightforward to implement. The implementations used in our experiments will
become available in the webpages of the first2 and the second3 authors.

In all the algorithms, once we obtain H(i) and W (i) as the result of the i-th
iteration, we used them as initial values of the (i + 1)-th iteration. As iteration
progress, the solutions H(i) and W (i) do not change much, and therefore starting
from the result of the previous iteration is a good warm start for the next iteration.
In particular, for the block principal pivoting method, warm starting means that only
the partitioning of the indices into sets F and G from the result of the previous
iteration is used instead of specific numerical values.

4.2. Stopping criterion. When an iterative algorithm is executed in practice,
one needs a criterion to stop iterations. In the case of NMF, a stopping criterion can
be designed to check whether a local minimum of the objective function has been
reached. In practice, one usually checks whether a point is stationary, which can be
checked by the following criterion suggested by Lin [26].

According to the KKT condition, (W,H) is a stationary point of Eqn. (1.2) if and
only if

W ≥ 0, H ≥ 0, (4.1a)

∇fW = ∂f(W,H)/∂W ≥ 0,∇fH = ∂f(W,H)/∂H ≥ 0, (4.1b)

W. ∗ ∇fW = 0, H. ∗ ∇fH = 0, (4.1c)

2http://www.cc.gatech.edu/~jingu
3http://www.cc.gatech.edu/~hpark

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 11

where .∗ represents element-wise multiplications. Defining the projected gradient
∇pfW as

(∇pfW)i ≡
{

(∇fW)i if (∇fW)i < 0 or Wi > 0

0 otherwise

and ∇pfH similarly, the conditions in Eqns. (4.1) can be rephrased as

∇pfW = 0 and ∇pfH = 0.

We use the norm of the projected gradients defined as

∆ =

√

‖∇pfW ‖2F + ‖∇pfH‖2F . (4.2)

Using this definition, the stopping criterion is

∆

∆0
≤ ǫ, (4.3)

where ∆0 is the value of ∆ using the initial values of W and H , and ǫ is a tolerance
value to choose. This criterion has been useful in determining when to stop iterations,
but we found some issues with it in our experiments. We explain them in Section. 5.2.

4.3. Data sets. We have used four real-world data sets for our comparison,
and their information is shown in Table 5.1. Among them, two text data sets are in
sparse format. The Topic Detection and Tracking 2 (TDT2) text corpus4 contains
news articles from various sources such as NYT, CNN, and VOA in 1998. The corpus
is manually labeled across 100 different topics, and it has been widely used for text
mining research. From the corpus, we randomly selected 40 topics in which the
number of articles in each topic is greater than 10. By counting the term frequency
of each term in each document, we obtained a matrix of size 19, 009× 3, 087. The 20
Newsgroups data set5 is a collection of newsgroup documents in 20 different topics.
We used a term-document matrix of size 26, 214× 11, 3146.

Two image data sets in Table 5.1 are in dense format. The facial image database
by AT&T Laboratories Cambridge7 contains 400 facial images of 40 different people
with 10 images per person. Each facial image has 92×112 pixels in 8-bit gray level.
The resulting matrix was of size 10, 304×400. The CMU PIE database8 is collection of
human face under different poses, illumination conditions, and expressions. A matrix
of size 4, 096 × 11, 554, from a resized version in 64 × 64 pixels9, was used for our
executions.

We also employed synthetic data sets for additional observations. The details of
synthetic data sets are described in Section 5.3.

5. Comparison Results . All experiments were executed in MATLAB on a
Linux machine with a 2.66GHz Intel Quad-core processor and 6GB memory. The
multi-threading option of MATLAB was disabled. In all the executions, all the algo-
rithms were provided with the same initial values.

4http://projects.ldc.upenn.edu/TDT2/
5http://people.csail.mit.edu/jrennie/20Newsgroups/
6http://www.zjucadcg.cn/dengcai/Data/TextData.html
7http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
8http://www.ri.cmu.edu/projects/project_418.html
9http://www.zjucadcg.cn/dengcai/Data/FaceData.html

12 JINGU KIM AND HAESUN PARK

Table 5.1: Data sets, their sizes, the sparsity of solutions, and the grouping effects of
the ANLS-AS-GROUP and the ANLS-BPP methods. Sparsities are calculated as the
proportions of zero elements in each factor. See text for the description of grouping
effects.

Data set
Size and
Format

k
Sparsity

(%)
Grouping effect (%)
BPP AS-GROUP

W H W H W H

TDT2

10 53.1 46.4 94.3 76.2 94.4 76.2
19,009×3,087 20 70.6 60.2 54.1 12.4 53.6 13.6

Sparse (99.58% sparsity) 80 85.4 77.7 40.7 3.1 28.6 3.2
160 89.4 84 39.4 2.8 21.3 2.7

20
Newsgroups

10 58.3 44.6 97.1 95.8 97 95.7
26,214×11,314 20 67.5 53.3 48.0 19.4 53.3 48.5

Sparse (99.66% sparsity) 80 80.5 73.1 9.6 0.9 7.6 1.2
160 86.8 78.8 7.4 0.7 4.6 0.8

ATNT

10 14.1 9.6 97.6 87.1 97.6 87.1
10,304×400 20 20.8 18.8 66.4 20.3 66.4 21.8

Dense 80 33.9 41.1 0.6 0.7 1.6 1.7
160 32.7 61.3 0.5 0.5 0.6 0.7

PIE 64

10 27.4 14.5 91.7 96.6 91.8 96.8
4,096×11,554 20 38.8 17.3 44.2 68.9 46.6 71.1

Dense 80 58.7 21.3 0.8 1.5 1.4 3.3
160 63.4 28.1 0.5 0.5 0.5 1.3

5.1. Comparison of the active set and the block principal pivoting

methods. We first report observations about the ANLS-AS and the ANLS-BPP
methods. As mentioned before, we implemented two versions of ANLS-AS: ANLS-
AS-GROUP is based on a column grouping strategy, as used in Kim and Park [17],
and ANLS-AS-UPDATE solves each right-hand side vector separately using the up-
dating of the Cholesky factor. We compared the performance of the two versions, and
we are also interested in how they perform compared to ANLS-BPP.

In Table 5.1, we present the results from the execution of ANLS-AS-GROUP and
ANLS-BPP. Both methods were executed with 5 different random initializations for
100 iterations, and average results are shown in the table. Sparsities are calculated
as the proportions of zero elements in each factor after 100 iterations. The grouping
effect (GE) is calculated as

GE =
of Cholesky factorizations that are omitted thanks to column grouping

of systems of equations needed to be solved
.

Both the numerator and the denominator are summed over the 100 iterations. When
GE is close to 100%, it means that significant savings are achieved; when GE is close
to zero, there are only little savings. In Table 5.1, it can be seen that significant
savings from grouping were observed when k = 10 and k = 20 whereas only limited
savings were observed when k = 80 and k = 160.

Now let us see Figures 5.1 and 5.2 where we present the average execution time
of each iteration and their accumulation. Unlike the ANLS-PGRAD and the ANLS-
PQN methods, both the ANLS-AS and the ANLS-BPP methods solve the NNLS
subproblems in each iteration exactly. Hence, when the same initial values are pro-
vided, solutions after each iteration from these methods are the same up to numerical
rounding errors. It is therefore enough to observe the amount of time spent in each
iteration for the purpose of comparing these methods. In Figure 5.1, which shows

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 13

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

iter

el
ap

se
d

TDT2, k=10

ANLS−BPP
ANLS−AS−UPDATE
ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

iter

el
ap

se
d

TDT2, k=10

ANLS−BPP

ANLS−AS−UPDATE

ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

iter

el
ap

se
d

TDT2, k=80

ANLS−BPP
ANLS−AS−UPDATE
ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

iter

el
ap

se
d

TDT2, k=80

ANLS−BPP

ANLS−AS−UPDATE

ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

iter

el
ap

se
d

TDT2, k=160

ANLS−BPP
ANLS−AS−UPDATE
ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

iter

el
ap

se
d

TDT2, k=160

ANLS−BPP
ANLS−AS−UPDATE
ANLS−AS−GROUP

Fig. 5.1: Comparison of the active set (ANLS-AS) and the block principal pivoting
(ANLS-BPP) methods on the TDT2 text data set. The left column shows the exe-
cution time of each iteration, and the right column shows cumulative execution time.
Average of 5 different random initializations are shown. Top row: k = 10, middle
row: k = 80, bottom row: k = 160.

results on the TDT2 text data set, it can be seen that ANLS-AS-UPDATE remains
slower than ANLS-AS-GROUP for various k values. On the other hand, in Figure 5.2,
which shows results on the ATNT image data set, the trend is a little different: While
ANLS-AS-UPDATE performed slower than ANLS-AS-GROUP for small k values,
ANLS-AS-UPDATE became faster than ANLS-AS-GROUP for large k values. Par-
tial explanations of this difference are as follows.

For small k values, ANLS-AS-GROUP and ANLS-BPP achieved significant sav-

14 JINGU KIM AND HAESUN PARK

0 10 20 30 40 50 60 70 80 90 100

10
0

iter

el
ap

se
d

ATNT, k=10

ANLS−BPP
ANLS−AS−UPDATE
ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

iter

el
ap

se
d

ATNT, k=10

ANLS−BPP

ANLS−AS−UPDATE

ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

iter

el
ap

se
d

ATNT, k=80

ANLS−BPP
ANLS−AS−UPDATE
ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

iter

el
ap

se
d

ATNT, k=80

ANLS−BPP

ANLS−AS−UPDATE

ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

iter

el
ap

se
d

ATNT, k=160

ANLS−BPP
ANLS−AS−UPDATE
ANLS−AS−GROUP

0 10 20 30 40 50 60 70 80 90 100
10

1

10
2

10
3

10
4

iter

el
ap

se
d

ATNT, k=160

ANLS−BPP
ANLS−AS−UPDATE
ANLS−AS−GROUP

Fig. 5.2: Comparison of the active set (ANLS-AS) and the block principal pivoting
(ANLS-BPP) methods on the ATNT image data set. The left column shows the
execution time of each iteration, and the right column shows cumulative execution
time. Average of 5 different random initializations are shown. Top row: k = 10,
middle row: k = 80, bottom row: k = 160.

ings by grouping as can be seen from Table 5.1. Consequently, in the k = 10 cases
of Figures 5.1 and 5.2, ANLS-AS-GROUP was significantly faster than ANLS-AS-
UPDATE. For large k values, in contrast, it is generally expected that using the
updating of the Cholesky factor is beneficial. For the ATNT image data set, this was
the case as can be seen from the fact that ANLS-AS-UPDATE outperformed ANLS-
AS-GROUP for k = 160. For the TDT2 text data set, however, nontrivial savings
from grouping was observed even when k = 160. Hence, ANLS-AS-GROUP remained

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 15

faster than ANLS-AS-UPDATE for all k values.
It is important to note that ANLS-BPP is either as fast as ANLS-AS-GROUP or

is significantly faster than both the ANLS-AS methods. For the k = 160 case on the
ATNT data set, the iteration cost of ANLS-AS-UPDATE becomes smaller than that
of ANLS-BPP after many iterations; however, the cumulative cost of ANLS-BPP
is still much smaller than that of ANLS-AS-UPDATE. This observation suggests
that a hybrid method can be potentially investigated, where we employ ANLS-BPP
but replace ANLS-BPP with ANLS-AS-UPDATE in later iterations only for large k
values. On the other hand, since the ANLS-AS and the ANLS-BPP methods typically
converge within 20 to 30 iterations, the benefit of the hybrid method is not expected
to be significant in practice.

Results on the 20 Newsgroups and the PIE 64 data sets showed similar trends,
and we do not present them here.

5.2. Comparison with other algorithms. We now show comparison results of
ANLS-BPP with all other methods that are listed in Section 4.1. The computational
cost of each iteration and the objective function reduced after each iteration in those
algorithms are generally different, so a fair way to compare them would be observing
“how well an algorithm minimizes the objective function in how much computation
time.” Figures 5.3 and 5.4 show the average execution results of 5 different random ini-
tializations. We have recorded the relative objective value

(∥

∥A−W (i)H(i)
∥

∥

F
/ ‖A‖F

)

at the end of each iteration, and the time spent to compute the objective value is ex-
cluded from the execution time. One execution result with relative objective values
measured at discrete time points gives us a piecewise-linear function, and we averaged
piecewise-linear functions for different random initializations to plot in the figures.
Because the first several iterations of ANLS-AS took too much time, the results of
ANLS-AS are not shown.

The results on the TDT2 and the 20 Newsgroups data sets are shown in Fig-
ure 5.3. When k = 10, most algorithms except ANLS-PQN tended to quickly con-
verge. When k = 80 or k = 160, it becomes clear that ANLS-BPP and HALS are
the best performing algorithms among the ones we tested. The ANLS-PGRAD, the
ANLS-PQN, and the MU algorithms showed a trend of convergence although the con-
vergence was slow, but the ALS algorithm showed difficulty in convergence. Among
ANLS-BPP and HALS, while HALS generally appeared to converge faster in early
iterations, ANLS-BPP was the only algorithm with comparable performance.

In Figure 5.4, execution results on the ATNT and the PIE 64 data sets are
presented. Similarly to previous data sets, ANLS-PGRAD, ANLS-PQN, and MU
showed slow convergence, and ALS was unpredictable as the relative objective value
fluctuated up and down without converging to a small value. In the k = 160 cases,
the results of ALS are not shown because it was not able to reduce the objective
value in the range of the plot. Again, it can be seen that the ANLS-BPP and the
HALS algorithms are the best performing ones. Among the two, HALS showed faster
convergence in the ATNT data set whereas ANLS-BPP outperformed HALS in the
PIE 64 data set.

In Table 5.2, relative norms of the projected gradient defined in Eq. (4.3) after
executions for specified durations are shown. It can be seen that ANLS-BPP appeared
very successful in minimizing this criterion. A caveat here is that a smaller value of
∆
∆0

does not necessarily imply a smaller objective value or vice versa, as can be

seen from the fact that HALS sometimes produced high values of ∆
∆0

although it
often showed one of the best performance in terms of the objective value. A partial

16 JINGU KIM AND HAESUN PARK

0 10 20 30 40 50 60 70 80 90 100

0.84

0.85

0.86

0.87

0.88

0.89

0.9

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

TDT2, k=10

HALS
MU
ALS
ANLS−PGRAD
ANLS−PQN
ANLS−BPP

0 10 20 30 40 50 60 70 80 90 100

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

20 Newsgroups, k=10

HALS
MU
ALS
ANLS−PGRAD
ANLS−PQN
ANLS−BPP

0 50 100 150 200 250 300

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

TDT2, k=80

HALS
MU
ALS
ANLS−PGRAD
ANLS−PQN
ANLS−BPP

0 50 100 150 200 250 300

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

20 Newsgroups, k=80

HALS
MU
ALS
ANLS−PGRAD
ANLS−PQN
ANLS−BPP

0 100 200 300 400 500 600 700

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

TDT2, k=160

HALS

MU

ALS

ANLS−PGRAD

ANLS−PQN

ANLS−BPP

0 100 200 300 400 500 600 700

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

20 Newsgroups, k=160

HALS

MU

ALS

ANLS−PGRAD

ANLS−PQN

ANLS−BPP

Fig. 5.3: Relative objective value (
∥

∥A−W (i)H(i)
∥

∥

F
/ ‖A‖F) vs. execution time on

the TDT2 and the 20 Newsgroups text data sets. Average results of 5 different random
initializations are shown. Left column: TDT2, right column: 20 Newsgroups, top row:
k = 10, middle row: k = 80, bottom row: k = 160. See text for more details.

explanation about these results is given as follows10. Note that the diagonal scaling
of W and H does not affect the quality of approximation: For a diagonal matrix
D ∈ R

k×k with positive diagonal elements, WH = WD−1DH . However, the norm
of the projected gradients in Eq. (4.2) is affected by a diagonal scaling: It is easy to

check that
(

∂f
∂(WD−1) ,

∂f
∂(DH)

)

=
((

∂f
∂W

)

D,D−1
(

∂f
∂H

))

. Hence, two solutions that

are only different up to a diagonal scaling have the same objective function value,

10We are indebted to an anonymous reviewer for this explanation about the results in Table 5.2.

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 17

0 10 20 30 40 50 60 70 80 90 100
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

ATNT, k=10

HALS
MU
ALS
ANLS−PGRAD
ANLS−PQN
ANLS−BPP

0 10 20 30 40 50 60 70 80 90 100

0.25

0.3

0.35

0.4

0.45

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

PIE 64, k=10

HALS
MU
ALS
ANLS−PGRAD
ANLS−PQN
ANLS−BPP

0 50 100 150 200 250 300

0.15

0.2

0.25

0.3

0.35

0.4

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

ATNT, k=80

HALS

MU

ALS

ANLS−PGRAD

ANLS−PQN

ANLS−BPP

0 50 100 150 200 250 300

0.15

0.2

0.25

0.3

0.35

0.4

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

PIE 64, k=80

HALS

MU

ALS

ANLS−PGRAD

ANLS−PQN

ANLS−BPP

0 100 200 300 400 500 600 700

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

ATNT, k=160

HALS
MU
ANLS−PGRAD
ANLS−PQN
ANLS−BPP

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

PIE 64, k=160

HALS
MU
ANLS−PGRAD
ANLS−PQN
ANLS−BPP

Fig. 5.4: Relative objective value (
∥

∥A−W (i)H(i)
∥

∥

F
/ ‖A‖F) vs. execution time on

the ATNT and the PIE 64 image data sets. Average results of 5 different random
initializations are shown. Left column: ATNT, right column: PIE 64, top row: k =
10, middle row: k = 80, bottom row: k = 160. See text for more details.

but they can be measured differently in terms of the norm of the projected gradients.
In particular, the solution from the HALS algorithm is typically unbalanced having
large elements in W and small elements in H . This can be a reason for the relatively
poor evaluation of the HALS algorithm in Table 5.2. Ho [13] considered including a
normalization step before computing Eq. (4.2) to avoid this issue.

Among the ANLS-based algorithms that have been actively studied recently, re-
sults in Figures 5.3 and 5.4 demonstrate that ANLS-BPP is clearly the best. Among
all the NMF algorithms, the HALS algorithm showed very promising behavior as

18 JINGU KIM AND HAESUN PARK

Table 5.2: The relative norm of the projected gradient (i.e., ∆/∆0) after executions
of specified amounts of time.

Data set k time
ANLS

HALS MU ALS
BPP PGRAD PQN

TDT2

10 100 2.64e-17 1.93e-05 3.82e-04 0.0015 0.0057 3.51e-04

80 300 1.35e-07 4.33e-05 8.29e-05 8.04e-05 0.0013 1.61e-04

160 700 2.40e-06 1.61e-05 9.03e-05 3.04e-05 7.47e-04 9.65e-05

20
Newsgroups

10 100 2.45e-08 8.71e-05 0.0020 0.0051 0.0058 0.0025

80 300 4.05e-05 1.09e-04 0.0013 1.54e-04 0.0012 2.34e-04

160 700 1.14e-05 8.40e-05 8.52e-04 5.28e-05 6.48e-04 1.33e-04

ATNT

10 100 4.12e-05 1.98e-04 0.0022 3.4601 0.0553 31.6

80 300 2.56e-04 0.0018 0.0065 0.865 0.0136 57.6

160 700 4.18e-04 0.0015 0.0059 0.533 0.0115 71.6

PIE 64

10 100 6.43e-04 7.42e-04 0.0065 19.3 0.437 114

80 300 7.46e-04 0.0034 0.0045 4.32 0.0584 140

160 700 0.0010 0.0043 0.0050 3.24 0.0369 180

it outperformed ANLS-BPP in some cases. In the following subsection, we further
investigated the two algorithms using synthetic data sets.

5.3. ANLS-BPP and HALS on synthetic data sets. In order to further
understand the behavior of the ANLS-BPP and the HALS algorithms, we performed
experiments using synthetic data sets. Using m = 10, 000, n = 2, 000, and k = 160,
we created factor matrices W ∈ R

m×k and H ∈ R
k×n having 50%, 90%, and 95%

sparsities. We then multiplied the factors to obtain A = WH upon which the ANLS-
BPP and the HALS algorithms were executed.

Figure 5.5 shows the results. Our expectation was that the sparser the factors are,
the better ANLS-BPP would perform compared to HALS: If the factors are sparse,
the ANLS-BPP method only needs to solve for a small number of nonzero elements in
W and H matrices whereas the HALS method still needs to update all the elements
of W and H in each iteration. In the top row of Figure 5.5, when the sparsity of the
original factors increases, ANLS-BPP method showed noticeably faster convergence
than HALS. Relevant information is shown in the bottom row: The sparsity pattern of
W and H obtained by ANLS-BPP quickly became close to that of the original factors
that were used to create data sets, and the pattern changed only little as iteration
progressed. When W and H are sparse, the cost of each iteration of ANLS-BPP
decreases since only the nonzero elements needs to be updated.

6. Conclusions and Discussion. In this paper, a new algorithm for computing
NMF based on the ANLS framework is proposed. The new algorithm is built upon the
block principal pivoting method for the NNLS problem. The method allows exchanges
of multiple variables between working sets with a goal to reach the final partitioning
into the active and passive sets quickly. We improved the method to handle the
multiple right-hand side case of the NNLS problems efficiently. The newly constructed
algorithm inherits the convergence theory of the ANLS framework, and it can easily be
extended to other constrained NMF formulations such as sparse or regularized NMF.
Thorough experimental comparisons with recently developed NMF algorithms were
performed using both real-world and synthetic data sets. The proposed algorithm
demonstrated state-of-the-art performance allowing only the hierarchical alternating

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 19

0 100 200 300
10

−2

10
−1

10
0

10
1

10
2

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

syn−50, k=160

HALS
ANLS−BPP

0 100 200 300
10

−20

10
−10

10
0

10
10

time(sec)
re

la
tiv

e
ob

j.
va

lu
e

syn−90, k=160

HALS
ANLS−BPP

0 100 200 300
10

−20

10
−10

10
0

10
10

time(sec)

re
la

tiv
e

ob
j.

va
lu

e

syn−95, k=160

HALS
ANLS−BPP

0 10 20 30
0

0.2

0.4

0.6

0.8

1

iter

pr
op

or
tio

n
of

 e
le

m
en

ts

syn−50, k=160

W sparsity
H sparsity
W change
H change

0 20 40 60
0

0.2

0.4

0.6

0.8

1

iter

pr
op

or
tio

n
of

 e
le

m
en

ts

syn−90, k=160

W sparsity

H sparsity

W change

H change

0 20 40 60
0

0.2

0.4

0.6

0.8

1

iter

pr
op

or
tio

n
of

 e
le

m
en

ts

syn−95, k=160

W sparsity

H sparsity

W change

H change

Fig. 5.5: Execution results on synthetic data sets with factors of different sparsities.
The top row shows relative objective values (

∥

∥A−W (i)H(i)
∥

∥

F
/ ‖A‖F) with respect

to execution time, and the bottom row shows sparsity patterns of W (i) and H(i) that
are obtained from ANLS-BPP. ‘W sparsity’ and ‘H sparsity’ show the proportions of
zero elements of W (i) and H(i), respectively, and ‘W change’ and ‘H change’ show the
proportions of elements that switched between zero and nonzero in W (i) and H(i),
respectively. Sparsity in original factors used to create data sets are 50% in the left
figures, 90% in the middle figures, and 95% in the right figures. Average results of 5
different random initializations are shown.

least squares (HALS) algorithm to be comparable. In a test using synthetic data sets,
the proposed algorithm clearly outperformed the HALS algorithm when the low-rank
factors are sparse.

Although we explored various values for k (from 10 to 160), it has to be understood
that all these values are much smaller than the original dimension. This trend is
generally expected for a dimension reduction method, as mentioned in Section 2.
We emphasize that the long-and-thin structure of the coefficient matrix and the flat-
and-wide structure of the matrix with unknowns are key features that enables us
to use speed-up techniques explained in Section 3.2 and thus obtain the successful
experimental results of our new algorithm.

Different limitations of different algorithms can be noted. A limitation of a NMF
algorithm based on the active set or the block principal pivoting method is that it may
break down if matrix C in Eqn. (3.1) does not have full column rank. The regulariza-
tion method mentioned in Section 3.4 can be adopted to remedy this problem making
these algorithms generally applicable for the computation of NMF. Even without reg-
ularization, the algorithms behave well in practice as shown in our experiments. On
the other hand, the HALS algorithm breaks down when either a column of W or a
row of H becomes a zero vector in the process of iterations. As this problem indeed
happens quite often, typically a small number ǫ ≈ 1e−16 is used in places that are
supposed to be zero [7, 10]. Due to this modification, the factors obtained by the

20 JINGU KIM AND HAESUN PARK

HALS algorithm are not sparse unless explicitly thresholded afterwards.

The block principal pivoting method studied in this paper can also be utilized
in other classes of problems. The l1-regularized linear regression, also known as the
LASSO [32], is an important problem that has been widely studied and extended to
other sparse learning techniques. The KKT conditions of the l1-regularized linear
regression appear as a linear complementarity problem with bounds, whose form is
similar to Eqns. (3.2) except that the absolute values of the elements in y are bounded
and the elements in x can take a negative sign. Utilizing the block principal pivoting
method, we have proposed a fast algorithm for the l1-regularized linear regression in
[20].

Acknowledgments. We are very grateful to the editor and anonymous review-
ers for valuable comments and suggestions based on which we were able to improve
the manuscript substantially. We also thank Dr. Yuan (Alan) Qi of Purdue University
for helpful comments and suggestions. This work was supported in part by the Na-
tional Science Foundation grants CCF-0732318 and CCF-0808863 and the scholarship
awarded to Jingu Kim by the Samsung Foundation of Culture. Any opinions, find-
ings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plemmons, Algorithms and ap-

plications for approximate nonnegative matrix factorization, Computational Statistics and
Data Analysis, 52 (2007), pp. 155–173.

[2] R. Bro and S. De Jong, A fast non-negativity-constrained least squares algorithm, Journal of
Chemometrics, 11 (1997), pp. 393–401.

[3] J. Brunet, P. Tamayo, T. Golub, and J. Mesirov, Metagenes and molecular pattern dis-

covery using matrix factorization, Proceedings of the National Academy of Sciences, 101
(2004), pp. 4164–4169.

[4] J. Cantarella and M. Piatek, tsnnls: A solver for large sparse least squares problem with

non-negative variables, ArXiv Computer Science e-prints, (2004).
[5] A. Cichocki and A.-H. Phan, Fast local algorithms for large scale nonnegative matrix and ten-

sor factorizations, IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E92-A (2009), pp. 708–721.

[6] A. Cichocki, R. Zdunek, and S.-I. Amari, Hierarchical als algorithms for nonnegative matrix

and 3d tensor factorization, in Lecture Notes in Computer Science, vol. 4666, Springer,
2007, pp. 169–176.

[7] A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative matrix and tensor

factorizations: applications to exploratory multi-way data analysis and blind source sepa-

ration, Wiley, 2009.
[8] K. Devarajan, Nonnegative matrix factorization: An analytical and interpretive tool in com-

putational biology, PLoS Computational Biology, 4 (2008).
[9] I. Dhillon and S. Sra, Generalized nonnegative matrix approximations with bregman diver-

gences, in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf,
and J. Platt, eds., MIT Press, Cambridge, MA, 2006, pp. 283–290.

[10] N. Gillis and F. Glineur, Nonnegative factorization and the maximum edge biclique problem.
CORE Discussion Paper 2008/64, Universite catholique de Louvain, 2008.

[11] E. F. Gonzalez and Y. Zhang, Accelerating the Lee-Seung algorithm for non-negative ma-

trix factorization, tech. report, Tech Report, Department of Computational and Applied
Mathematics, Rice University, 2005.

[12] L. Grippo and M. Sciandrone, On the convergence of the block nonlinear gauss-seidel method

under convex constraints, Operations Research Letters, 26 (2000), pp. 127–136.
[13] N.-D. Ho, Nonnegative Matrix Factorization Algorithms and Applications, PhD thesis, Univ.

Catholique de Louvain, 2008.
[14] J. J. Júdice and F. M. Pires, A block principal pivoting algorithm for large-scale strictly

monotone linear complementarity problems, Computers and Operations Research, 21

FAST NMF: AN ACTIVE-SET-LIKE METHOD AND COMPARISONS 21

(1994), pp. 587–596.
[15] D. Kim, S. Sra, and I. S. Dhillon, Fast newton-type methods for the least squares nonnegative

matrix approximation problem, in Proceedings of the 2007 SIAM International Conference
on Data Mining, 2007.

[16] H. Kim and H. Park, Sparse non-negative matrix factorizations via alternating non-negativity-

constrained least squares for microarray data analysis, Bioinformatics, 23 (2007), pp. 1495–
1502.

[17] , Nonnegative matrix factorization based on alternating nonnegativity constrained least

squares and active set method, SIAM Journal on Matrix Analysis and Applications, 30
(2008), pp. 713–730.

[18] J. Kim and H. Park, Sparse nonnegative matrix factorization for clustering, tech. report,
Georgia Institute of Technology Technical Report GT-CSE-08-01, 2008.

[19] , Toward faster nonnegative matrix factorization: A new algorithm and comparisons, in
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining (ICDM),
2008, pp. 353–362.

[20] , Fast active-set-type algorithms for l1-regularized linear regression, in Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS)
2010, JMLR: W&CP 9:397-404, 2010.

[21] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Society for Industrial and
Applied Mathematics, 1995.

[22] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization,
Nature, 401 (1999), pp. 788–791.

[23] , Algorithms for non-negative matrix factorization, in Advances in Neural Information
Processing Systems 13, MIT Press, 2001, pp. 556–562.

[24] L. Li, G. Lebanon, and H. Park, Fast algorithm for non-negative matrix factorization with

Bregman divergences. Manuscript, 2011.
[25] S. Z. Li, X. Hou, H. Zhang, and Q. Cheng, Learning spatially localized, parts-based repre-

sentation, in Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 1, 2001.

[26] C.-J. Lin, Projected gradient methods for nonnegative matrix factorization, Neural Computa-
tion, 19 (2007), pp. 2756–2779.

[27] P. Paatero, Least squares formulation of robust non-negative factor analysis, Chemometrics
and Intelligent Laboratory Systems, 37 (1997), pp. 23–35.

[28] P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with

optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111–126.
[29] V. P. Pauca, J. Piper, and R. J. Plemmons, Nonnegative matrix factorization for spectral

data analysis, Linear Algebra and Its Applications, 416 (2006), pp. 29–47.
[30] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons, Text mining using non-

negative matrix factorizations, in Proceedings of the 2004 SIAM International Conference
on Data Mining, 2004.

[31] L. F. Portugal, J. J. Judice, and L. N. Vicente, A comparison of block pivoting and

interior-point algorithms for linear least squares problems with nonnegative variables,
Mathematics of Computation, 63 (1994), pp. 625–643.

[32] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical
Society. Series B (Methodological), 58 (1996), pp. 267–288.

[33] M. H. Van Benthem and M. R. Keenan, Fast algorithm for the solution of large-scale non-

negativity-constrained least squares problems, Journal of Chemometrics, 18 (2004), pp. 441–
450.

[34] S. A. Vavasis, On the complexity of nonnegative matrix factorization, SIAM Journal on Opti-
mization, 20 (2009), pp. 1364–1377.

[35] W. Xu, X. Liu, and Y. Gong, Document clustering based on non-negative matrix factorization,
in SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval, New York, NY, USA, 2003, ACM Press,
pp. 267–273.

