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Linear and unsupervised dimensionality reduction via matrix factorization with nonnegativity constraints is studied. Because of
these constraints, it stands apart from other linear dimensionality reduction methods. Here we explore nonnegative matrix fac-
torization in combination with three nearest-neighbor classifiers for protein fold recognition. Since typically matrix factorization
is iteratively done, convergence, can be slow. To speed up convergence, we perform feature scaling (normalization) prior to the
beginning of iterations. This results in a significantly (more than 11 times) faster algorithm. Justification of why it happens is pro-
vided. Another modification of the standard nonnegative matrix factorization algorithm is concerned with combining two known
techniques for mapping unseen data. This operation is typically necessary before classifying the data in low-dimensional space.
Combining two mapping techniques can yield better accuracy than using either technique alone. The gains, however, depend on
the state of the random number generator used for initialization of iterations, a classifier, and its parameters. In particular, when
employing the best out of three classifiers and reducing the original dimensionality by around 30%, these gains can reach more
than 4%, compared to the classification in the original, high-dimensional space.
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1. INTRODUCTION

It is not uncommon that for certain data sets, their dimen-
sionality n is higher than the number of attributes or features
m (here and further it is assumed that the data are accumu-
lated in an n×mmatrix accomodatingm n-dimensional fea-
ture vectors). In such cases, the effect, referred to as curse
of dimensionality, occurs that negatively influences the clus-
tering and classification of a given data set. Dimensionality
reduction is typically used to cure or at least to mitigate this
effect and can be done by means of feature extraction (FE)
or feature selection (FS). FS selects a subset of the original
features based on a certain criterion of feature importance
or relevance whereas FE produces a set of transformed (i.e.,
new) features from the original ones. Features chosen by FS
are easy to interpret while those found by FE may be not. In
addition, FS often assumes knowledge of class membership
information, that is, it is often supervised, in contrast to FE
that is usually unsupervised. Thus, FS looks naturally more
attractive than FE from the classification viewpoint, that is,
when FS is followed by classification of a data set. However,
there can be the cases where all or almost all original features
turn out, to be important (relevant) so that FS becomes inad-
equate. If this happens, the alternative is FE, and such a case
is considered in this paper.

The simplest way to reduce dimensionality is to lin-
early transform the original data. Given the original, high-
dimensional data gathered in an n × m matrix V, a trans-
formed or reduced matrix H, composed of m r-dimensional
vectors (r < n and often r � n), is obtained from V ac-
cording to the following linear transformation:W: V ≈WH
(symbol ≈ indicates that an exact reconstruction of the orig-
inal data is unlikely to happen in general), where W is an
n× r (basis) matrix. It is said thatW andH are the factorized
matrices and WH is a factorization of V. Principal compo-
nent analysis (PCA) [1] and independent component analy-
sis (ICA) [2] are well-known techniques performing this op-
eration.

Nonnegative matrix factorization (NMF) also belongs to
this class of methods. Unlike the others, it is based on non-
negativity constraints on all matrices involved. Thanks to this
fact, it can generate a part-based representation since no sub-
tractions are allowed. Lee and Seung [3] proposed a sim-
ple iterative algorithm for NMF and proved its convergence.
The factorized matrices are initialized with positive random
numbers before starting matrix updates.

It is well known that initialization is of importance for
any iterative algorithm: properly initialized, an algorithm
converges faster. However, this issue was not yet investigated
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in case of NMF. In order to speed up convergence, we pro-
pose to perform feature scaling (normalization) before itera-
tions begin so as to bring values of all three matrices involved
in factorization within the same range (in our case, between
0 and 1). Justification of why this change leads to faster con-
vergence is provided.

Since dimensionality reduction is typically followed by
classification in low-dimensional space, it is important to
know when the error rate in this space is lower than that
in the original space. Regarding classification, we propose
to combine two known techniques for mapping unseen data
prior to classification in low-dimensional space. For certain
values of the state of the random number generator used
to initialize matrices W and H, this combination results in
higher accuracy in the low-dimensional space than in the
original space. The gains depend not only on the state of the
random number generator, but also on a classifier and its pa-
rameters.

Because of its straightforward implementation, NMF has
been applied to solvemany tasks: information retrieval [4, 5],
object classification (faces, handwritten digits, documents)
[6–15], sparse coding [16–18], speech and audio analysis
and recognition [19–22], mining web logs [23], estimation
of network distances between arbitrary Internet hosts [24],
video summarization [25], image rendering [26], and inde-
pendent component analysis [27]. Here we extend the appli-
cation of NMF to bioinformatics: NMF coupled with three
nearest-neighbor classifiers is applied for protein fold recog-
nition. Experiments demonstrate that it is possible to achieve
higher accuracy in the low-dimensional space of NMF, com-
pared to the classification in the original space. For instance,
when employing the best out of three classifiers and reducing
the original dimensionality by around 30%, the accuracy rate
can grow by more than 4%.

2. METHODS

2.1. Original nonnegativematrix factorization

Given the nonnegative matrices V,W, andH whose sizes are
n×m, n×r, and r×m, respectively, we aim at such factoriza-
tion that V ≈WH. The value of r is selected according to the
rule r < (nm)/(n +m) in order to obtain data compression.1

Each column of W is a basis vector while each column of H
is a reduced representation of the corresponding column of
V. In other words,W can be seen as a basis that is optimized
for linear approximation of the data in V.

NMF provides the following simple learning rule guaran-
teeing monotonical convergence to a local maximum with-
out the need for setting any adjustable parameters [3]:

Wia ←−Wia

∑

μ

Viμ

(WH)iμ
Haμ, (1)

Wia ←− Wia∑
j Wja

, (2)

1 For dimensionality reduction, it is, however, sufficient if r < n.

Haμ ←− Haμ

∑

i

Wia
Viμ

(WH)iμ
. (3)

The matrices W and H are initialized with positive ran-
dom values. Equations (1)–(3) iterate until convergence to a
local maximum of the following objective function:2

F =
n∑

i=1

m∑

μ=1

(
Viμ log(WH)iμ − (WH)iμ

)
. (4)

In its original form, NMF can be slow to converge to a lo-
cal maximum for largematrices and/or high data dimension-
ality. On the other hand, stopping after a predefined num-
ber of iterations, as sometimes is done, can be too prema-
ture to get a good approximation. Introducing a parameter
tol (0 < tol � 1) to decide when to stop iterations signifi-
cantly speeds up the convergence without negatively affecting
the mean-square error (MSE), measuring the approximation
quality3. That is, iterations stop when Fnew − Fold < tol.

After learning the NMF basis functions, that is, the ma-
trix W, new (previously unseen) data in the matrix Vnew are
mapped to r-dimensional space by fixing W and using one
of the following techniques:

(1) randomly initializing H as described above and iterat-
ing (3) until convergence [9];

(2) as a least-squares solution of Vnew = WHnew, that is,
(WTW)−1WTVnew [8].

Further we will call the first technique iterative while the sec-
ond direct, because the latter provides a straightforward non-
iterative solution. The direct technique can produce nega-
tive entries ofHnew, thus violating nonnegativity constraints.
There are two possible remedies of this problem: (1) enforc-
ing nonnegativity by setting negative values to zero and (2)
using nonnegative least squares. Each solution has its own
pros and cons. For instance, setting negative values to zero
is much more computationally simpler than solving least
squares with nonnegativity constraints, but some informa-
tion is lost after zeroing. On the other hand, the nonnegative
least-squares solution has no negative components, but it is
known that it may not fit as well as the least-squares solution
without nonnegativity constraints. Since our goal is to accel-
erate convergence, we prefer the first (zeroing) solution when
employing the direct technique.

2.2. Modified nonnegativematrix factorization

We propose two modifications of the original iterative NMF
algorithm.

The first modification is concerned with feature scaling
(normalization) linked to the initialization of the factorized
matrices. Typically, these matrices are initialized with pos-
itive random numbers, say uniformly distributed between

2 See the appendix for its derivation.
3 It was observed in numerous experiments that MSE quickly decreases af-
ter not verymany iterations and after that, its rate of decrease dramatically
slows down.
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0 and 1, in order to satisfy the nonnegativity constraints.
Hence, elements of V (matrix of the original data) also
need to be within the same range. Given that Vj is an n-
dimensional-feature vector, where j = 1, . . . ,m, its com-
ponents Vij are normalized as follows: Vij/Vk j , where k =
argmaxl Vl j . In other words, components of each feature
vector are divided by the maximal value among them. As a
result, feature vectors are composed of components whose
nonnegative values do not exceed 1. Since all three matrices
(V, W, H) have now entries between 0 and 1, it takes much
less time to perform matrix factorization V ≈ WH (values
of the entries in the factorized matrices do not have to grow
much in order to satisfy the stopping criterion for the ob-
jection function F in (4)) than if V had the original (unnor-
malized) values. As additional benefit, MSE becomes much
smaller too.

Though this modification is simple, it brings significant
speed of convergence. The following theorem helps to under-
stand why it happens.

Theorem 1. Assume that Fdirect and F iter are values of the ob-
jective function in (4) when mapping the data with the direct
and iterative techniques, respectively. Then Fdirect − F iter ≥ 0
always holds at the start of iterations.

Proof. By definition,

F iter =
n∑

i=1

m∑

j=1

(
Vij log(WH)i j − (WH)i j

)
,

Fdirect =
n∑

i=1

m∑

j=1
(Vij logVij −Vij).

(5)

The difference Fdirect − F iter is equal to

n∑

i=1

m∑

j=1

(
Vij logVij −Vij −Vij log(WH)i j + (WH)i j

)

=
n∑

i=1

m∑

j=1

(
Vij

(
log

Vij

(WH)i j
− 1
)
+ (WH)i j

)

=
n∑

i=1

m∑

j=1
(WH)i j

(
Vij

(WH)i j

(
log

Vij

(WH)i j
− 1
)
+ 1
)
.

(6)

Let us introduce a new variable, x : x = Vij/(WH)i j .
Since (WH)i j is always nonnegative, the following condition
must hold: x(log x − 1) + 1 ≥ 0. The plot of x(log x − 1) + 1
versus x is shown in Figure 1. It can be seen that this function
is always nonnegative.

The higher x, that is, the bigger the ratio of Vij to WHij

(the case of unnormalized V), the larger the difference be-
tween Fdirect and F iter. In other words, if no normalization of
V occurs, the direct mapping technique moves the beginning
of iterations far away from the point where the conventional
iterative technique starts since the objective function in (4) is
increasing [3]. This, in turn, implies that normalization can
significantly speed up convergence.
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Figure 1: Function x(log x − 1) + 1 for several values of x.

On the other hand, as follows from Figure 1, the only
minimum occurs at x = 1, which means V = WH and
Fdirect = F iter. In practice, the strict equalities do not hold
because of zeroing some entries in H. This means that both
direct and iterative techniques start from approximately the
same point if V is normalized as described above. To remedy
the effect of zeroing, we propose to add a small random num-
ber, uniformly distributed between 0 and 1, to each entry of
Hnew obtained after applying the direct technique. After that,
the iterative technique is used for mapping unseen data. In
this way, we combine both mapping techniques. This is our
second modification and the proposed technique is called it-
erative2.

2.3. Summary of our algorithm

Suppose that the whole data set is divided into training and
test (unseen) sets. Our algorithm is summarized as follows.

(1) Scale both training and test data and randomly initial-
ize the factorized matrices as described in Section 2.1.
Set parameters tol and r.

(2) Iterate (1)–(3) until convergence to obtain the NMF
basis matrix W and to map training data to the NMF
(reduced) space.

(3) Given W, map test data by using the direct technique.
Set negative values in the resulting matrix Hdirect

new to
zero.

(4) Fix the basis matrix and iterate (3) until convergence
by using our initialization in Section 2.2. The result-
ing matrix Hiterative2

new provides reduced representations
of the test data in the NMF space.

3. APPLICATION

3.1. Task

As a challenging task, we selected protein fold recognition
from bioinformatics. Protein is an amino acid sequence. In
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Table 1: Error rates when classifying protein folds in the original
space with different methods.

Source Classifier Error rate (%)

[28] DIMLP 61.8

[29] MLP 51.2

[29] GRNN 55.8

[29] RBFN 50.6

[29] SVM 48.6

[30] RBFN 48.8

[31] SVM 46.1

[32] HKNN 42.7

bioinformatics, one of the current trends is to understand
evolutionary relationships in terms of protein function. Two
common approaches to identify protein function are se-
quence analysis and structure analysis. Sequence analysis is
based on a comparison between unknown sequences and
those whose function is already known. However, some
closely related sequences may not share the same function.
On the other hand, proteins may have low sequence iden-
tity but their structure and, in many cases, function suggest a
common evolutionary origin.4

Protein fold recognition is structure analysis without re-
lying on sequence similarity. Proteins are said to have a com-
mon fold if they have the samemajor secondary structure5 in
the same arrangement and with the same topology, whether
or not they have a common evolutionary origin. The struc-
tural similarities of proteins in the same fold arise from the
physical and chemical properties favoring certain arrange-
ments and topologies, meaning that various physicochemical
features such as fold compactness or hydrophobicity are uti-
lized for recognition. As the gap widens between the number
of known sequences and the number of experimentally de-
termined protein structures (the ratio is more than 100 to 1,
and sequence databases are doubling in size every year), the
demand for automated fold recognition techniques rapidly
grows.

3.2. Data set

A challenging data set derived from the SCOP (structural
classification of proteins) database [33] was used in experi-
ments described below. It is available on line6 and its detailed
description can be found in [31]. The data set contains the 27
most populated folds represented by seven or more proteins.
Ding and Dubchak already split it into the training and test
sets, which we will use as other authors did.

Six-feature sets compose the data set: amino acids
composition, predicted secondary structure, hydrophobicity,
normalized van der Waals volume, polarity, and polarizabil-
ity. A feature vector combining six features has 125 dimen-
sions. The training set consists of 313 protein folds having

4 It is argued that sequence analysis is good at high levels of sequence iden-
tity, but below 50% identity it becomes less reliable.

5 Regions of local regularity within a fold.
6 http://crd.lbl.gov/∼cding/protein/

(for each two proteins) no more than 35% of the sequence
identity for aligned subsequences longer than 80 residues.
The test set of 385 folds is composed of protein sequences
of less than 40% identity with each other and less than 35%
identity with the proteins of the first set. In fact, 90% of the
proteins of the test set have less than 25% sequence identity
with the proteins of the training set. This, as well as multiple
classes many of which are sparsely represented in the training
set, render the task extremely difficult.

3.3. Previous work

All approaches, briefly mentioned below, use the data set de-
scribed in the previous section. Unless otherwise stated, a
125-dimensional feature vector is assumed for each protein
fold. In order to provide fair comparison, we concentrate
on single classifiers rather than ensembles of classifiers. All
but one papers below do not utilize dimensionality reduc-
tion prior to classification.

Ding and Dubchak [31] employed support vector ma-
chines (SVMs) (one-versus-all, unique one-versus-all, and
one-versus-one methods for building multiclass SVMs).
Bologna and Appel [28] used a 131-dimensional feature vec-
tor (protein sequence length was added to other features)
and a four-layer discretized interpretable multi layer percep-
tron (DIMLP). Chung et al.[29] selected different models
of neural networks (NNs) with a single hidden layer (MLP,
radial basis function network (RBFN), and general regres-
sion neural network (GRNN)) and SVMs as basic building
blocks for classification. Huang et al.[34] exploited a sim-
ilar approach by utilizing gated NNs (MLPs and RBFNs).
Gating is used for on-line feature selection in order to re-
duce the number of features fed to a classifier. Gates are open
for useful features and they are close for bad ones. First,
the original data are used to train the gating network. At
the end of the training, the gate-function values for each
feature indicate whether a particular feature is relevant or
not by comparing these values against a threshold. Only the
relevant features are then used to train a classifier. Pal and
Chakraborty [30] trained MLPs and RBFNs with new fea-
tures (400 in number) based on the hydrophobicity of the
amino acids. In some cases, the 400-dimensional feature vec-
tors led to a higher accuracy than when using the traditional
(125-dimensional) ones. Okun [32] applied a variant of the
nearest-neighbor classifier (HKNN). Table 1 summarizes the
best results achieved with the above mentioned methods.

As one can observe, the error rates when employing a
single classifier are high due to the discussed challenges. En-
sembles of classifiers can sometimes reduce the error rate to
about 39% as demonstrated in [28], but their consideration
is beyond this work. For HKNN, the normalized features were
used since feature normalization to zero mean and unit vari-
ance prior to HKNN dramatically increases classification ac-
curacy (on average, by 6% [35]). However, this normaliza-
tion can produce negative features and, thus, it is not appro-
priate for NMF requiring nonnegativity constraints to hold.
This is the reason why we prefer another feature scaling in
Section 2.2.

http://crd.lbl.gov/$sim $cding/protein/
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4. EXPERIMENTS

Experiments with NMF involve estimation of the error rate
when performing classification in low-dimensional space as
well as time until convergence on the data set described in
Section 3.2. Three techniques for mapping test data to this
space are used: direct, iterative, and iterative2. Regarding
NMF, matrices W and H are initialized with random num-
bers uniformly distributed between 0 and 1 when the state
of the random number generator ranged from 1 to 10. The
same value of the state is used for mapping both training and
test data. The value of tol was fixed to 0.01.

Though we tried numerous values of r (dimensionality
of reduced space) between 50 and 100, we report the best
results obtained with r = 88,7 which constitutes 70.4% of
the original dimensionality.

All algorithms were implemented in MATLAB running
on a Pentium 4 (3GHz CPU, 1GB RAM).

4.1. Classifiers

We studied three classifiers: standard k-nearest neighbor
(KNN) [36], k-nearest neighbor (KKNN) [37], and k-local
hyperplane distance nearest neighbor (HKNN) [38]. HKNN
was selected, since it demonstrated a competitive perfor-
mance compared to SVM when both methods were applied
to classify the above-mentioned protein data set in the origi-
nal space [32, 39], that is, without dimensionality reduction.
In addition, when applied to other data sets, the combination
of NMF and HKNN showed very good results [40], thus ren-
dering HKNN as a natural selection for NMF. Because of this
reason, KNN and its kernel variant were selected for com-
parison with HKNN since all three algorithms belong to the
same group of classifiers.

KNN has one parameter to be set: the number of nearest
neighbor, k. Typical values for it are 1, 3, and 5.

KKNN is a modification of KNN when applying kernels.
When selecting an appropriate kernel, the kernel nearest-
neighbor algorithm, via a nonlinear mapping to a high-
dimensional feature space, may be superior over KNN for
some sample distributions. The same kernels as in case of
SVM are commonly used, but as remarked in [37], only the
polynomial kernel with degree p �= 1 is actually useful, since
the polynomial kernel with p = 1 and radial basis (Gaus-
sian) kernel degenerate KKNN to KNN. The kernel approach
to KNN consists of two steps: kernel computation, followed
by distance computation in the feature space expressed via a
kernel. After that, a nearest-neighbor rule is applied just as
in the case of KNN. We tested KKNN for all combinations
of p = 0.5, 2, 3, 4, 5, 6, 7 and k = 1, 3, 5 (21 combinations of
parameters in total).

HKNN is another modification of KNN intended to
compete with SVM when KNN fails to do so. HKNN com-
putes distances of each test point x to L local hyperplanes,
where L is the number of different classes. The �th hyper-
plane is composed of k nearest neighbors of x in the training

7 Given a 125×313 training matrix, 88 is the largest possible value of r re-
sulting in data compression.

set, belonging to the �th class. A test point x is associated
with the class whose hyperplane is closest to x. HKNN needs
to predefine two parameters, k and λ (regularization). Their
values are 6 and 7 for k and 8, 10, 12, 20, 30, 40, 50 for
λ (hence 14 combinations of two parameters in total). The
value k = 7 is the largest possible value to choose since the
minimum number of protein folds per class in the training
set is seven.

4.2. Classification results

Table 2 summarizes the error ranges for three classifiers when
doing classification in the original and NMF spaces for r =
88 and parameters of each classifier given in Section 4.1. In
the first column, “NMF-Direct” stands for the NMF space
and direct technique used to map test data to this space.
“NMF-Iterative” and “NMF-Iterative2” mean the same re-
garding the iterative and iterative2 techniques, respectively.

First, we would like to analyze each classifier separately
from the others. KNN using normalized features in the orig-
inal space is clearly the best, since it yields the lowest mini-
mum error as well as the narrowest range of errors. KKNN
applied in the NMF-Iterative and NMF-Iterative2 spaces can
sometimes lead to errors smaller than those in the original
space, but the ranges of errors achieved for low-dimensional
spaces are significantly wider than the range for the origi-
nal space. This fact emphasizes sensitivity of KKNN to its
parameter settings when the data dimensionality is reduced
by 30%. Finally, HKNN employed in the NMF-Iterative and
NMF-Iterative2 spaces demonstrated clear advantages of di-
mensionality reduction. Though the iterative technique had
slight edge (only in 6 out 140 experiments) over the iterative2
technique in terms of minimum error achieved (this error is
the lower for both iterative techniques than error in the orig-
inal space!), the former has significantly larger maximum er-
ror than the latter. In addition, the iterative2 technique yields
the same maximum error as that in the original space and
this error is the lowest among all others. Hence, the itera-
tive2 technique causes HKNN to have the smallest variance
of error, thus making it least sensitive to different parame-
ters. For each classifier, the direct technique for mapping test
data to low-dimensional space lagged far behind either iter-
ative technique in terms of classification accuracy. Therefore
we do not recommend to apply it alone.

If one compares three classifiers, HKNN emerges as
an undisputed winner in both high- and low-dimensional
spaces. Based on the previous experience with this classifier
[38, 40], this fact is not surprising. Coupled with our mod-
ifications of NMF, it demonstrated a good performance ex-
ceeding that of many neural network models and SVM em-
ployed in high-dimensional space (see Table 1). In particular,
compared to the classification in the original space, the min-
imum error in the NMF-Iterative2 space is lower by 4% (last
column in Table 2).

We also noticed that for certain values of the state of the
random number generator, the iterative2 technique provides
a better classification accuracy than the iterative technique in
more than a half of experimental cases. For example, these
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Table 2: Ranges of the error rates (%) for three classifiers.

Space Scaling KNN
Classifier

HKNN
KKNN

Original No 58.44− 67.79 56.36− 68.05 52.47− 53.25

Original Yes 55.58− 67.79 55.06− 68.57 45.45− 47.53

NMF-direct Yes 70.39− 85.45 69.09− 89.87 59.22− 79.48

NMF-iterative Yes 57.14− 73.25 54.03− 95.32 40.52− 49.35

NMF-iterative2 Yes 57.66− 74.03 54.29− 96.10 41.30− 47.53

states are 1, 5, 7, and 8 for HKNN, with states 1 and 8
shared with other two classifiers. With such states, the accu-
racy was better in the overwhelming number of cases. Thus,
it seems that there is a link between high accuracy in the low-
dimensional space of NMF and the state of the random gen-
erator, which needs further exploration.

4.3. Time

In this section, we provide the evidence that feature scaling
prior to iterations significantly speeds up convergence when
mapping both training and test data to low-dimensional
space, compared to the case when no scaling is used. Table 3
accumulates gains resulted from feature scaling for several
data dimensionalities. R1 stands for the ratio of the average
times spent on learning NMF basis and mapping training
data to NMF space without and with scaling prior to NMF.
R2 means the ratio of the average times spent on mapping
test data by means of the iterative technique without and
with scaling prior to NMF. R3 is the ratio of the average times
spent on mapping test data by means of the iterative2 tech-
nique without and with scaling prior to NMF. Thus, the av-
erage gain from feature scaling is more than 11 times.

5. CONCLUSION

The main contribution of this work is two modifications of
the basic NMF algorithm [3] and its practical application to
the challenging real-world task of protein fold recognition.
The first modification carries out feature scaling before NMF
while the second modification combines two known tech-
niques for mapping unseen data.

When modifying NMF, we considered two aspects: (1)
time until convergence since factorization is done by means
of an iterative algorithm and (2) the error rate when combin-
ing NMF and a classifier. Three nearest-neighbor classifiers
were tested.

We demonstrated that proper feature scaling makes
the NMF algorithm 11 times faster to converge. The rea-
son of why it happens is explained based on Theorem 1
in Section 2.2. Regarding classification in low-dimensional
space, our experimental results showed that simultaneously
with faster convergence, significant gains in accuracy can be
achieved, too, compared to the known results in the original,
high-dimensional space. However, these gains depend on the
state of the random number generator, a classifier, and its pa-
rameters.

Table 3: Gains in time resulting from feature scaling.

Mapping

Training data Test data

r R1 R2 R3

88 11.9 11.4 10.4

75 13.8 12.9 13.1

50 13.2 11.1 12.5

25 9.5 6.4 8.8

Average 12.1 10.4 11.2

APPENDIX

Lee and Seung in [41] used a measure resembling the
Kullback-Leibler divergence [42] to quantify the quality of
the approximation V ≈ WH. For two nonnegative matrices,
A and B, this measure is

D
(
A‖B) =

∑

i j

(
Aij log

Aij

Bi j
− Aij + Bij

)
. (A.1)

It is lower bounded by zero if and only if A = B. Regarding
NMF, let A = V and B = WH. In order to ensure a good
approximation, one minimizes D(V ‖ WH) with respect to
W andH, subject to the nonnegativity constraints onW and
H.

Equation (A.1) can be rewritten as follows:

D
(
V ‖WH

) =
∑

i j

(
Vij log

Vij

(WH)i j
−Vij + (WH)i j

)

= F0 − F,
(A.2)

where F0 =
∑

i j(Vij logVij−Vij) and F =
∑

i j(Vij log(WH)i j
− (WH)i j).

F0 does not include (WH)i j and therefore does not have
any effect on minimization and can be omitted. As a result,
minimizing F0−F implies maximizing F, subject to the con-
straints.
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