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FAST NUMERICAL METHODS FOR BERNOULLI FREE
BOUNDARY PROBLEMS∗
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Abstract. The numerical solution of the free boundary Bernoulli problem is addressed. An
iterative method based on a level-set formulation and boundary element method is proposed. Issues
related to the implementation, the accuracy, and the generality of the method are discussed. The
efficiency of the approach is illustrated by numerical results.
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1. Introduction. Bernoulli free boundary problems find their origin in the de-
scription of free surfaces for ideal fluids [12]. There are, however, numerous other
applications leading to similar formulations; see, for instance, [11]. For concreteness,
we focus on the exterior Bernoulli problem. Let Ω be a bounded domain in R

2.
The exterior Bernoulli problem consists in seeking a bounded domain A ⊃ Ω and a
function u defined on Ā \ Ω such that

Δu = 0 in A \ Ω,(1.1)

u = 1 on ∂Ω,(1.2)

u = 0 on ∂A,(1.3)

∂u

∂n
= μ on ∂A,(1.4)

where μ is given. In the previous example, one can think of u as a streamfunction
and of Ω as an obstacle. Taking into account (1.3), condition (1.4) can be written as
| ∇u | = |μ | and corresponds, for fluid applications, to Bernoulli’s principle; see, for
instance, [9].

The above problem has been extensively studied; see [11] for general remarks.
For a convex simply connected bounded domain Ω, it is known that for any negative
constant μ < 0, the above problem admits a unique classical solution. Further, the free
boundary ∂A has regularity C2,α; see [21, Theorem 1.1].1 The convexity assumption
is necessary for uniqueness, as counterexamples show (see [11, Example 13]). The
study of the interior Bernoulli problem is more delicate, and not even convexity can
ensure uniqueness.
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There are roughly two ways of tackling such problems numerically. First, a varia-
tional formulation may be considered and the corresponding cost function minimized
[19, 23, 28]; this requires the calculations of shape gradients. Second, a fixed point-
type approach can be set up where a sequence of elliptic problems is solved in a
sequence of converging domains, those domains being obtained through some updat-
ing rule at each iteration [6, 11, 24]. The method studied in this paper falls in the
latter category.

Two simple generic numerical tools are combined. First, the interface is repre-
sented through a level-set formulation as described in section 2. Second, the elliptic
part of the problem is solved through the use of a boundary element method; see
section 3 (see [14] for another example of a method involving those two tools in a
different setting). The proposed method is thus conceptually simpler than the shape
optimization approach. Since it requires, in principle, only the calculations of quan-
tities being defined on the interface or close to it, it is potentially faster than the
finite difference approaches of, for instance, [6, 11, 24] or more generally of immersed
interface-type methods [27]. The feasibility of the algorithm and its complexity are
investigated in section 4.

A general overview of the strategy is as follows: the potential problem is solved
with one of the conditions on the free boundary omitted, and then the omitted con-
dition is used to update the location of the free boundary. More specifically, given
an initial domain A0 ⊃ Ω̄, the simplest variant of this type consists in solving the
sequence of problems

Δuk = 0 in Ak \ Ω, k = 0, 1, 2, . . . ,(1.5)

uk = 1 on ∂Ω,(1.6)

∂nuk = μ on ∂Ak.(1.7)

For a given domain Ak, it is well known that problem (1.5)–(1.7) admits a unique
solution; see, for instance, [15, Theorem 5.1]. The new domain Ak+1 is found by
moving ∂Ak in its normal direction so that uk vanishes there. Let Pk ∈ ∂Ak; to first
order, we have

uk(Pk+1) ≈ uk(Pk) + μdk,

where Pk+1 = Pk+nkdk, nk being the outer unit normal to ∂Ak at Pk. The new point
Pk+1, or similarly the distance dk, is determined by the requirement uk(Pk+1) = 0,

i.e., dk = −uk(Pk)
μ . The free boundary is thus updated according to2

∂Ak+1 = ∂Ak − uk

μ
nk.(1.8)

2. Level-set representation of the interface. In the above iterative process,
the interface ∂Ak has to be updated as long as the residual uk|∂Ak

is not (numerically)
zero. Relation (1.8) indicates that the boundary should be moved in the normal
direction by an amount proportional to the residual.

2The present iterative process can be modified by imposing the Neumann condition (1.7) on the
“next” boundary ∂Ak+1 instead of ∂Ak [11, 13]. However, in the formulation adopted here, those
modifications are of little use, as they require information such as curvature which complicates the
calculation of the “evolution” of the interface.
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If the residual is considered as a normal speed, a time-dependent problem can be
set up for the “evolution” (or correction) of the domain Ak. We denote the domain
so generated Ak(t) with Ak(0) = Ak. Let F : R

2 → R be an extension of the residual
away from Ak (see subsection 2.3 below). We want the interface Γ(t) = ∂Ak(t) to be
characterized by

Γ(0) = ∂Ak, Γ(t) = {(x(t), t);x(0) = x0, x0 ∈ ∂Ak} for t > 0,

where

dx

dt
= Fn, x(0) = x0,

n being the unit outer normal to ∂Ak(t). A level-set approach, as pioneered in [30]
(see also [29, 34]), consists in representing the interface {Γ(t)}t≥0 as the zero level set
of family of level-set functions {φ(·, t)}t≥0 with the property

Ak(t) = {x ∈ R
2;φ(x, t) < 0}, Γ(t) = ∂Ak(t) = {x ∈ R

2;φ(x, t) = 0},
where Ak(t) denotes the domain stemming from the evolution of Ak through the
above process. By taking the time derivative of the relation φ(x(t), t) = 0, the level-
set equation is obtained:

∂tφ + F |∇φ| = 0,(2.1)

φ(·, 0) = φ0,(2.2)

where φ0 is a level-set function corresponding to ∂Ak.
Several points related to the implementation of the above method now have to be

considered. The fixed boundary ∂Ω is approximated by a piecewise linear curve ∂Ωh

with N elements. The size of the smallest element of ∂Ωh is denoted Δx. Let B ⊂ R
2

be a square domain of size MΔx × MΔx, where M is chosen large enough so that
B contains A. We associate with B, in a natural way, a uniform Cartesian mesh Bh

of size Δx. In the following, the level-set functions are characterized by their nodal
values on the mesh Bh. Two kinds of interpolation operators are considered on Bh.
In the contouring step (subsection 2.1), a classical P1 interpolation is used. In the
projection step (subsection 2.2), a classical local Q2 interpolation is considered.

2.1. Contouring. In many applications of the level-set method, the actual re-
construction of the interfaces is not needed. This is not the case here, as the elliptic
problem (1.5)–(1.7) has to be solved in a family of successive domains defined by
those interfaces. Let φ be a given level-set function and IPφ its P1-interpolant on Bh.
By contouring, we mean the operation that associates with the nodal values of φ the
zero level set of IPφ. More precisely, each square cell of the underlying Cartesian grid
is divided into two triangular elements,3 and on each of those triangles, the unique
polynomial of degree 1 agreeing with the values of the level-set function at the vertices
is considered. Contour lines are then constructed by connecting the zeros of IPφ on
the grid lines. This process is facilitated by two facts: first, each triangle contains at
most one contour line passing through it, and, second, the gradient of IPφ is piecewise
constant on the grid elements, yielding an outward normal to Ak(t). Note that both
properties fail in general for the local Q2 interpolant considered in the projection step
below.

If IPφ is uniformly equal to zero on a given triangle, then the problem is under-
resolved (Δx is too large) and the algorithm fails.

3Any such decomposition is acceptable.
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2.2. Projection. As mentioned above, some quantities such as the normal speed
need to be extended away from the interface. The first step in this process consists
again in an accurate reconstruction of the boundary. A loop through the mesh is done
to determine which nodes are “close to” the interface. Here a node is close to the
interface if it has a primary neighbor where φ has opposite sign.

With each node xi, we associate its eight closest neighbors and construct on this
set of nine nodes the unique polynomial of degree 2 in each variable agreeing with
the values of φ there. This local Q2 interpolant is denoted IQ,xi

φ. For each node
xi close to the interface, the closest point x� to xi on the zero level set of IQ,xi

φ is
computed. The square of the Cartesian distance, i.e., |x− xi|2, is minimized subject
to the constraint IQ,xiφ = 0. The Lagrangian for this problem is

L(x, λ) = |x− xi|2 + λ IQ,xiφ(x).(2.3)

To find the point x�, the system

∇x,λL(x, λ) = 0(2.4)

is solved by Newton’s method with Armijo line search [25]. This projection method
was introduced and discussed in [17]. It roughly corresponds to a simpler version of
the method proposed in [8] which is based on cubic splines; see [26] for more comments
and comparisons. The above algorithm can fail if the interface is underresolved.

The projection step could potentially be used to reconstruct the interface, i.e.,
as another contouring step. However, while it is locally more accurate than the
above contouring algorithm (and is thus ideal when used in conjunction with the
extension step described below), it has several disadvantages as a contouring tool
(local character, nonconstant elementwise gradient).

2.3. Extension. This step extends the speed F away from the interface, so
that (2.1), (2.2) can be solved. Let Γ be the interface obtained from the contouring
step. By construction, Γ is a closed (for the problems considered here), possibly
multiconnected, piecewise linear (on the triangular mesh derived from Bh) curve in
B. The boundary nodes corresponding to Γ are denoted {ξj}; i.e., the ξj ’s are the
end points of the line segments that form Γ. Further, through the elliptic step (see
section 3), the value of F at the center point of each linear segment of Γ is known;
the center point nodes are denoted {ξ̄j}.

First, the values of F at the midpoint boundary nodes {ξ̄j} are extended to the
set of Cartesian nodes {xi} that form the vertices of the triangles containing the nodes
{ξ̄j}.

More precisely, consider the node ξ̄j in Figure 1, left. This local extension step is
based on the analysis of the “domain of influence” of the nodes {ξ̄j}. This domain of
influence is taken here as the set of all the points in B whose orthogonal projection
on the line containing the segment through ξ̄j belongs to that segment. If a node xi

belongs to the domain of influence of ξ̄j , then F is extended at xi by the value F (ξ̄j)
as in Figure 1, left. If instead the node xi is in the domain of influence of more than
one midpoint boundary node, as would be the case in the dark grey area in Figure 1,
left, then the value at the midpoint of the closest segment to xi is retained. Finally,
if xi does not belong to the domain of influence of any midpoint boundary node, as
in the light grey area in Figure 1, right, then the value of F at xi is taken as

F (xj) =
β

α + β
Fj−1 +

α

α + β
Fj ,
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Fig. 1. Left: general view of the geometry involved in the local extension step and corresponding
“domains of influence” (dark grey area: shock-like domain, light grey area: rarefaction-like domain);
right: definition of the local angles α and β.

where Fj−1 and Fj are the values of F at the midpoint boundary nodes ξ̄j−1 and ξ̄j ,
respectively, and where the angles α and β are defined as in Figure 1, right. This way
of defining the local extension of F is compatible with the global extension (2.7).

Second, a renormalized function φ̃ is initialized as a signed distance function at
the same Cartesian nodes at which F has just been extended. The projection step is
used to do this.

We emphasize that both of those local extension steps for F and φ̃ take place only
on the nodes adjacent to the interface; the corresponding values are then used as start-
ing points for the extension to the rest of the Cartesian nodes. This is accomplished
using the fast marching method [2] to solve

| ∇φ̃ | = 1 in B,(2.5)

φ̃ = 0 on Γ,(2.6)

∇F̃ · ∇φ̃ = 0 in B,(2.7)

F̃ = F on Γ.(2.8)

A fully upwind mixed first/second order discretization of the above equations is ap-
plied on the mesh Bh; see [18, 35, 36] for more details.

2.4. Updating the interface. The interface is moved by updating the corre-
sponding level-set function through (2.1), (2.2). More precisely, after the extension
step, the level-set function φ̃ corresponding to the current interface Γ is a signed
distance function, and, in particular, |∇φ̃| = 1. Therefore, (2.1), (2.2) here reads

∂tφ + F̃ = 0,

φ(·, 0) = φ̃.

The update is then trivially computed by taking one forward Euler step,

φnew = φ̃− Δt F̃ ,(2.9)
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where Δt = − 1
2μ . Note that this corresponds to half the optimal time step given by

(1.8); taking the “optimal” value from (1.8) may lead to overshoots in the position of
the interface and may, in fact, result in slowing down the convergence of the global
iterative process.

2.5. Initial interface. An initial guess of the interface’s position, ∂A0, needs
to be provided. This can be done in an ad hoc way. In section 4, ∂A0 is taken as a
curve of constant distance to Ω.

3. Boundary element method. Consider again the problem (1.5)–(1.7). For
the sake of simplicity, the subscript k is dropped in this section. We assume both ∂A
and ∂Ω to be simple closed curves and let Γ = ∂A∪ ∂Ω. The region of interest A \ Ω̄
being interior to ∂A and exterior to ∂Ω, ∂A is oriented counterclockwise, while ∂Ω is
clockwise.

Multiplying (1.5) by the fundamental solution G(x, y) := − 1
2π log |x − y| and

integrating twice by parts leads to

u(x) =

∫
Γ

G(x, y)
∂u

∂ny
(y) ds(y) −

∫
Γ

∂G

∂ny
(x, y)u(y) ds(y),(3.1)

where n is the unit outer normal to A \ Ω̄ at y. The above integral representation
is valid for x ∈ A \ Ω̄. To treat the case x ∈ Γ, we define the linear operator
L : L2(Γ) → L2(Γ) by

Lv(x) =

⎧⎪⎪⎨
⎪⎪⎩

v(x)
2 +

∫
∂A

∂G
∂ny

(x, y) v(y) ds(y) −
∫
∂Ω

G(x, y) v(y) ds(y) for x ∈ ∂A,

∫
∂A

∂G
∂ny

(x, y) v(y) ds(y) −
∫
∂Ω

G(x, y) v(y) ds(y) for x ∈ ∂Ω

and the function F ∈ L2(Γ) by

F(x) =

⎧⎪⎪⎨
⎪⎪⎩
μ

∫
∂A

G(x, y) ds(y) −
∫
∂Ω

∂G
∂ny

(x, y) ds(y) for x ∈ ∂A,

μ

∫
∂A

G(x, y) ds(y) −
∫
∂Ω

∂G
∂ny

(x, y) ds(y) − 1
2 for x ∈ ∂Ω.

Taking into account the boundary conditions (1.6) and (1.7), it is then standard to
check that if

w(x) =

{
u(x) for x ∈ ∂A,
∂u
∂n (x) for x ∈ ∂Ω,

where u is the solution to (1.5)–(1.7), then

Lw(x) = F(x) ∀x ∈ Γ.(3.2)

Problem (3.2) is discretized as follows. The interface ∂A = ∂Ah is obtained
through contouring of a given level-set function, see section 2, and piecewise constant
elements are considered. The function w solution to (3.2) is approximated by wh such
that

wh(x) = we ∀x ∈ e,
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where e is an edge of either ∂Ah or ∂Ωh and where we is the constant value of wh on
that edge. Equation (3.2) is then collocated at the midpoints of the edges. In other
words, for a generic piecewise constant function vh, we define

Lhvh(ξ̄e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vh(ξ̄e)
2 +

∫
∂Ah

∂G
∂ny

(ξ̄e, y) vh(y) ds(y) −
∫
∂Ωh

G(ξ̄e, y) vh(y) ds(y)

for ξ̄e ∈ ∂Ah,∫
∂Ah

∂G
∂ny

(ξ̄e, y) vh(y) ds(y) −
∫
∂Ωh

G(ξ̄e, y) vh(y) ds(y)

for ξ̄e ∈ ∂Ωh,

where ξ̄e is the midpoint of the edge e. Similarly, we also have

Fh(ξ̄e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μ

∫
∂Ah

G(ξ̄e, y) ds(y) −
∫
∂Ωh

∂G
∂ny

(ξ̄e, y) ds(y) for ξ̄e ∈ ∂Ah,

μ

∫
∂Ah

G(ξ̄e, y) ds(y) −
∫
∂Ωh

∂G
∂ny

(ξ̄e, y) ds(y) − 1
2 for ξ̄e ∈ ∂Ωh.

The approximate solution wh is the solution to

Lhwh(ξ̄e) = Fh(ξ̄e) ∀ξ̄e ∈ ∂Ah ∪ ∂Ωh.(3.3)

The above integrals are computed exactly in the present implementation, in the sense
of the Cauchy principal value where appropriate; see [4] for more details.

Both the integral equation (3.2) and the linear problem (3.3) are well conditioned
with one exception: 0 is an eigenvalue of L if and only if the transfinite diameter
of A is 1 [20]. This can be avoided by appropriate rescaling if necessary. It can be
verified that Lh admits eigenvalues and singular values that are bounded independent
of the mesh; see, e.g., [20] or [31] for explicit expressions of the eigenvalues in some
specific cases. Further, in spite of the fact that the elements of ∂Ah are allowed to
be arbitrarily small, the condition number of Lh has been numerically verified to be
of order N , which would correspond to the uniform mesh case [3]. The condition
number of the matrices corresponding to the numerical tests of section 4 are on the
order of 100. The resulting linear system is solved by GMRES [25, 33], which is
consequently expected to perform well here even without preconditioning; see also [7]
for a general convergence result for GMRES applied to integral equations. GMRES
is restarted after 20 steps (i.e., the solver is GMRES(20)) and is stopped on small
relative residuals; more precisely, the stopping criterion is

‖Fh − Lhw‖2 ≤ 10−10‖Fh‖2,

where w denotes the current iterate. With the above parameters, GMRES has been
observed to perform slightly better than other CG-like methods such as QMR and
Bi-CGSTAB [25] on the test problems of section 4.

4. Numerical results.

4.1. Algorithm. To solve the external Bernoulli problem, we use the following
algorithm:
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Input: a discretization of the boundary ∂Ω, ∂Ωh, μ
Create the underlying Cartesian grid Bh

Create a level set function φ on Bh corresponding to ∂A0

k = 0
R−1 = 1010 (initial residual)
loop

Contour φ (subsection 2.1) to find ∂Ak

Solve (3.3) to get u
Rk = max of |u| on ∂Ak

if (Rk−1−Rk)/Rk < 10−3 (small residual decrease) then
STOP

end if
Set F = u on ∂Ak

Extend φ and F (subsections 2.2 and 2.3)
Move boundary (subsection 2.4)
k = k + 1

end loop

Several remarks are in order.
• Profiling reveals that for reasonable meshes the relative costs of contouring

and interface updating are very low (less than 1%), while most of the time
is spent constructing and solving the linear system (3.3) (about 90%) and
extending the solution (about 10%). Methods such as fast multipoles [5, 32]
can be used to bring down the asymptotic complexity of the linear solver
from O(N2) to O(N), where N is the number of elements of ∂Ωh. However,
this results in increased efficiency only for very large values of N ; see [26,
Appendix] for more details; see also [16] for a large-scale two-dimensional ex-
ample. Fast summation methods should be considered for three-dimensional
problems.

• Progressive mesh refinement can be considered; i.e., a coarse mesh solution
can be used as the starting point. A strategy of this type is, for instance, used
in [23] for a similar type of problem but for a different numerical approach.

• In solving (3.3), the “missing” condition (1.3) can be used when choosing the
initial iterate for GMRES. This results in faster convergence (fewer GMRES
iterates) as the algorithm progresses.

• The extension step through fast marching (subsection 2.3) is done in the whole
computational domain B. The corresponding complexity is O(M2 logM),
where M2 is the total number of nodes in the Cartesian grid Bh. A narrow
band/computational tube implementation [2, 37] could be considered to speed
up the algorithm. However, the global complexity of the problem would not
change: if the width of the band is a constant multiple of Δx, say nΔx, then
by (2.9), Δt should be reduced from −1

2μ to a value less than nΔx
|F̃ | since the

band has to contain the boundary.
• Higher order boundary element methods can be used [4]. While second order

convergence is observed in section 4, this is a result of the solution being
constant on the outer free boundary. Piecewise linear elements should be used
to ensure second order convergence for more general cases. To the authors’
knowledge, the present work is one of very few published results regarding the
accuracy of a combined level-set boundary element method; see, for instance,
[14].
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Table 1

Convergence and complexity rates for Example 1 (radial case); N is number of elements on
∂Ωh, L∞ error refers to the Hausdorff distance between exact and computed boundaries, k is the
number of nonlinear iterations (see section 4.1), Time is the runtime in seconds.

N max |u| on Γ Rate L∞ error Rate k Time Rate
25 1.64(−2) – 1.53(−2) – 6 0.71 –
50 5.07(−3) 1.7 4.40(−3) 1.8 8 4.1 2.5
100 1.30(−3) 2.0 1.12(−3) 2.0 10 19 2.2
200 3.34(−4) 2.0 2.85(−4) 2.0 11 76 2.0
400 8.18(−5) 2.0 7.10(−5) 2.0 12 372 2.1
800 1.92(−5) 2.1 1.74(−5) 2.0 14 1465 2.0

• The use of second order fast marching is not crucial for the accuracy of
the method which is dictated by both the contouring and boundary element
methods. It was observed that first order fast marching may lead to more
iterations (domain updates), and, hence, due to the very little difference in
cost per iteration, the use of second order fast marching is advocated.

• The numerical solutions are observed to be remarkably independent of the
initial domain ∂A0 (for problems with unique solutions [11]). More iterations
can be expected in case of poor initial guesses (for instance if the smoothness
properties of ∂A0 are vastly different from those of ∂A).

4.2. Example 1. Following [11], a quick look at the radial case is instructive.
Let Ω be the unit ball. We consider the problem (1.1)–(1.4) with Ω as above and
μ = −2. The solution to (1.1)–(1.3) with A being the ball of radius R centered at the
origin is

u(r) = −2R log r + 1,

expressed in polar coordinates. An iterative process similar to the one above can then
be considered. Taking (1.8) into account, the kth step of the algorithm reads

Rk+1 = Rk −Rk logRk +
1

2
, k = 1, 2, . . . .

Therefore, in the fully radial case, the problem amounts to finding a fixed point to
the function f(R) = R − R logR + 1

2 . The function f has a unique fixed point R̄,
where

R̄ =
1

2W ( 1
2 )

,

the function W being the Lambert W function4 [10].
Table 1 shows second order convergence in the L∞ norm. Full second order

convergence is obtained even though the elliptic solver is based on a piecewise constant
discretization. This is due to the fact that the exact solution is constant on both the
inner and outer boundaries. Further, when measured with respect to runtime, the
complexity is also second order.

The convergence history is instructive. Figure 2, left, displays the error (maximum
of |u| on the free boundary) through the iterations. The behavior of the first iterates
is governed by the geometry, see (2.9), and is only weakly dependent on the mesh size

4The Lambert W function is the inverse of W �→ z = W eW .
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Fig. 2. Convergence history of the iterations: maximum value of |u| on the current interface
as a function of the iteration number; left: Example 1, right: Example 2. The convergence curves
are in the obvious order: from top to bottom, N = 25, 50, 100, 200, 400, 800.

Δx. The later iterations during which the fine structure of the boundary is determined
do depend on Δx. This explains the mesh dependency of the number of iterations
observed in Table 1.

4.3. Example 2. We consider here the problem (1.1)–(1.4) with Ω consisting of
two disks of radius 1, one centered at (−2, 2) and one at (2,−2); further, μ = −1/4.
The initial boundary is taken as two circles of radius 1.1, one around each of the inner
disks. Note that for this choice of μ, the exact boundary is simply connected. A
couple of iterates are displayed in Figure 3. One can note that after the first step the
correct topology of the interface has already been achieved.

No exact solution is available for the present example. In Table 2, the maximum
of u on the boundary is reported. By construction, this maximum should vanish
for the converged solution. The complexity, as measured from the runtimes, is also
reported. In both cases, the rates are about two.

Convergence history is displayed in Figure 2, right; a behavior similar as that of
Example 1 is observed.

5. Conclusion. Solutions of the Bernoulli free boundary problem can be effi-
ciently computed by the method presented here. Providing a Green’s function is
available, the method can be used to solve other free boundary problems. For in-
stance, it can be applied with only minor modifications to the Prandtl–Batchelor
problem (see [1] and the references therein), which consists in looking for a domain A
which is now interior to the fixed domain Ω such that for a given function σ,

|∇uA|2 − |∇uΩ|2 = σ on ∂A,

where uA and uΩ solve

{
ΔuA = −ω in A,

uA = 0 on ∂A,

⎧⎪⎨
⎪⎩

ΔuΩ = 0 in Ω,

uΩ = 0 on ∂A,

uΩ = μ on ∂Ω,

μ and ω being positive constants.5

5To avoid the calculation of a bulk due to the inhomogeneity, a particular solution to Δu0 = −ω
(for instance u0 = −ω

4
(x2 + y2)) can easily be subtracted from uA. This restores homogeneity but

renders the boundary condition nonconstant.
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Fig. 3. Evolution of the interface for Example 2 at the initial step and after steps 1, 2, and 15
(N = 100).

Table 2

Convergence and complexity rates for Example 2; N is number of elements on ∂Ωh, k is the
number of nonlinear iterations (see section 4.1), Time is the runtime in seconds.

N max |u| on Γ Rate k Time Rate
26 3.43(−3) – 11 4.4 –
50 9.16(−4) 2.0 13 19 2.2
100 1.64(−4) 2.5 15 85 2.2
200 5.31(−5) 1.6 18 573 2.8
400 1.71(−5) 1.6 19 1678 1.6
800 4.25(−6) 2.0 21 7613 2.2
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[15] R. González and R. Kress, On the treatment of a Dirichlet–Neumann mixed boundary value
problem for harmonic functions by an integral equation method, SIAM J. Math. Anal., 8
(1977), pp. 504–517.

[16] A. Greenbaum, L. Greengard, and G. B. McFadden, Laplace’s equation and the Dirichlet-
Neumann map in multiply connected domains, J. Comput. Phys., 105 (1993), pp. 267–278.

[17] P. A. Gremaud, C. M. Kuster, and Z. Li, A study of numerical methods for the level set
approach, Appl. Numer. Math., to appear.

[18] P. A. Gremaud and C. M. Kuster, Computational study of fast methods for the eikonal
equation, SIAM J. Sci. Comput., 27 (2006), pp. 1803–1816.

[19] J. Haslinger, T. Kozubek, K. Kunisch, and G. Peichl, Shape optimization and fictitious
domain approach for solving free-boundary problems of Bernoulli type, Comput. Optim.
Appl., 26 (2003), pp. 231–251.

[20] J. Hayes and R. Kellner, The eigenvalue problem for a pair of coupled integral equations
arising in the numerical solution of Laplace’s equation, SIAM J. Appl. Math., 22 (1972),
pp. 503–513.

[21] A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem
for the p-Laplace operator. I. The exterior convex case, J. Reine Angew. Math., 521 (2000),
pp. 85–97.

[22] A. Henrot and H. Shahgholian, The one phase free boundary problem for the p-Laplacian
with non-constant Bernoulli boundary condition, Trans. Amer. Math. Soc., 354 (2002), pp.
2399–2416.

[23] K. Ito, K. Kunisch, and G. H. Peichl, Variational approach to shape derivatives for a class
of Bernoulli problems, J. Math. Anal. Appl., 314 (2006), pp. 126–149.
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