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Abstract—It is well known that spatial averaging can be re-
alized (in space or frequency domain) using algorithms whose
complexity does not scale with the size or shape of the filter. These
fast algorithms are generally referred to as constant-time or ���
algorithms in the image-processing literature. Along with the
spatial filter, the edge-preserving bilateral filter involves an addi-
tional range kernel. This is used to restrict the averaging to those
neighborhood pixels whose intensity are similar or close to that of
the pixel of interest. The range kernel operates by acting on the
pixel intensities. This makes the averaging process nonlinear and
computationally intensive, particularly when the spatial filter is
large. In this paper, we show how the ��� averaging algorithms
can be leveraged for realizing the bilateral filter in constant time,
by using trigonometric range kernels. This is done by generalizing
the idea presented by Porikli, i.e., using polynomial kernels. The
class of trigonometric kernels turns out to be sufficiently rich,
allowing for the approximation of the standard Gaussian bilateral
filter. The attractive feature of our approach is that, for a fixed
number of terms, the quality of approximation achieved using
trigonometric kernels is much superior to that obtained by Porikli
using polynomials.

Index Terms—Bilateral filter, constant-time algorithm,
edge-preserving smoothing, ��� complexity, raised cosines.

I. INTRODUCTION

T
HE bilateral filtering of an image in the general set-

ting is given by

where

In this formula, measures the geometric proximity be-

tween the pixel of interest , and nearby pixel . Its role is to lo-

calize the averaging to a neighborhood of . On the other hand,
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function measures the similarity between the intensity

of the pixel of interest and its neighbor . Normalizing

factor is used to preserve constants and, in particular, the local

mean.

In this paper, we consider the so-called unbiased form of the

bilateral filter [1], where is translation invariant, that is,

, and where the range filter is symmetric

and depends on the difference of intensity,

. In this case, the filter is given by

(1)

where

(2)

We call the spatial kernel, and the range kernel. The

local support of the spatial kernel specifies the neighborhood

over which the averaging takes place. A popular form of the

bilateral filter is one where both and are Gaussian

[1]–[4].

The edge-preserving bilateral filter was originally introduced

by Tomasi and Manduchi in [1] as a simple noniterative alterna-

tive to anisotropic diffusion [5]. This was motivated by the ob-

servation that while standard spatial averaging performs well in

regions with homogenous intensities, it tends to poorly perform

in the vicinity of sharp transitions, such as edges. For the bilat-

eral filter in (1), the difference is close to zero in

homogenous regions, and hence, . In this

case, (1) simply results in the averaging of pixels in the neigh-

borhood of the pixel of interest. On the other hand, if the pixel of

interest is in the vicinity of an edge, is large

when belongs to the same side of the edge as and is small

when is on the other side of the edge. As a result, the av-

eraging is restricted to neighborhood pixels that are on the same

side of the edge as the pixel of interest. This is the basic idea

that allows one to perform smoothing while preserving edges at

the same time. Since its inception, the bilateral filter has found

widespread use in several image processing, computer graphics,

and computer vision applications. This includes denoising [6],

video abstraction [7], demosaicing [8], optical-flow estimation

[9], and stereo matching [10], to name a few. More recently, the

bilateral filter has been extended by Baudes et al. [3] to realize

the popular nonlocal neighborhood filter, where the similarity

between pixels is measured using patches centered around the

pixels.
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The direct implementation of (1) turns out to be rather compu-

tationally intensive for real-time applications. Several efficient

numerical schemes have been proposed in the past for imple-

menting the filter in real time, even at video rates [11]–[14].

These algorithms (with the exception of [11]), however, do not

scale well with the size of the spatial kernel, and this limits their

usage in high-resolution applications. A significant advance was

obtained when Porikli [2] proposed a constant-time implemen-

tation of the bilateral filter (for arbitrary spatial kernels) using

polynomial range kernels. The algorithm was also ex-

tended to include Gaussian by locally approximating it

using polynomials. More recently, Yang et al. [4] have pro-

posed a algorithm for arbitrary range and spatial kernels by

extending the bilateral filtering method of Durand and Dorsey

[11]. Their algorithm is based on a piecewise-linear approxima-

tion of the bilateral filter obtained by quantizing .

In this paper, we extend the algorithm of Porikli to

provide an exact implementation of the bilateral filter, using

trigonometric range kernels. Our main observation is that

trigonometric functions share a common property of polyno-

mials, which allows one to “linearize” the otherwise nonlinear

bilateral filter. The common property is that the translation of a

polynomial (resp. trigonometric function) is again a polynomial

(resp. trigonometric function) and, importantly, of the same

degree. By fixing to be a trigonometric function, we show

how this self-shiftable property can be used to (locally) linearize

the bilateral filter. This is the crux of the idea that was used for

deriving the algorithm for polynomial in [2].

II. CONSTANT-TIME BILATERAL FILTER

A. Main Idea

It is the presence of term in (1) that makes

the filter nonlinear. In the absence of this term, that is, when

is constant, the filter is simply given by averaging

(3)

where we assume to have a total mass of unity. It is well

known that (3) can be implemented in constant time, irrespective

of the size and shape of the filter, using the convolution-multi-

plication property of the (fast) Fourier transform. The number of

computations required per pixel, however, depends on the size

of the image in this case [15]. On the other hand, it is known that

(3) can be realized at the cost of a constant number of operations

per pixel (independent of the size of the image and the filter)

using recursive algorithms. These recursive algorithms are

based on specialized kernels, such as the box and the hat func-

tion [16]–[18], and the more general class of Gaussian-like box

splines [19].

Our present idea is to leverage these fast averaging algorithms

by expressing (1) in terms of (3), where the averaging is per-

formed on the image and its simple pointwise transforms. Our

observation is that we can do so if the range kernel is of the form

(4)

Fig. 1. Family of raised cosines ���� � ��������� over the dynamic range
�� � � � � as � goes from 1 to 5 (outer to inner curves). We set � � 	


corresponding to the maximum dynamic range of a grayscale image, and � �
��	� . They satisfy the two essential properties required to qualify as a valid
range kernel of the bilateral filter—nonnegativity and monotonicity (decay).
Moreover, they have the remarkable property that they converge to a Gaussian
(after appropriate normalization) as � gets large; see (7).

By plugging (4) into (1), we can write the integral as

This is clearly shown to be the linear combination of two

spatial averages, performed on images and

. Similarly, we can write the integral in (2) as

In this case, the averaging is on images and

. This is the trick that allows us to express (1) in

terms of linear convolution filters applied to pointwise trans-

forms of the image.

Note that the domain of is in (4). We assume

here (without loss of generality) that the dynamic range of the

image is within . The maximum of over all

and such that is within in this case. Therefore,

by letting , we can guarantee the argument of the

cosine function to be within a range of . The cru-

cial point here is that the cosine function is oscillating and can

assume negative values over . However, its restriction

over the half-period has two essential properties of

a range kernel—it is nonnegative and has a bump shape (cf. the

outermost curve in Fig. 1). Note that, in practice, the bound on

the local variations of intensity could be much lower than .



3378 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 12, DECEMBER 2011

B. General Trigonometric Kernels

The aforementioned idea can be easily extended to more gen-

eral trigonometric functions of form

. This is most conveniently done by writing

in terms of complex exponentials, namely

(5)

Coefficients must be real and symmetric since is real

and symmetric. Now, using the addition–multiplication property

of exponentials, we can write the following:

where . Plugging this into (1), we

immediately see that

(6)

where and . We

refer to and as the auxiliary images, and as the

degree of the kernel.

The above analysis gives us the following algorithm

for the bilateral filter: We first set up the auxiliary images and

coefficients from the input image. We then average each

of the auxiliary images using a algorithm (this can be done

in parallel). The samples of the filtered image is then given by

the simple sum and division in (6). In particular, for an image

of size , we can compute the spatial averages for any

arbitrary at the cost of operations using

the Fourier transform. As mentioned earlier, this can be further

reduced to a total of operations using specialized spatial

kernels [16], [17], [19].

C. Raised Cosines

We now address the fact that must have some additional

properties to qualify as a valid range kernel (aside from being

symmetric). Namely, must be nonnegative and must be

monotonic in that whenever . In par-

ticular, it must have a peak at the origin. This ensures that large

differences in intensity gets more penalized than small differ-

ences and that (1) purely behaves as a spatial filter in a region

having uniform intensity. Moreover, one must also have some

control on the variance (effective width) of . We now ad-

dress these design problems in order.

The properties of symmetry, nonnegativity, and monotonicity

are simultaneously enjoyed by the family of raised cosines of

the form

Writing and applying the binomial

theorem, we see that

This expresses the raised cosines, as in (5), although we have

used a slightly different summation. Since has a total of

terms, this gives a total of auxiliary images

in (6). The central term is constant when is even,

and we have one less auxiliary image to process in this case.

D. Approximation of Gaussian Kernels

Fig. 1 shows the raised cosines of degree to . It

is shown that becomes more Gaussian-like over the half-

period with the increase in . The fact, however, is that

converges pointwise to zero at all points as gets large,

except for node points . This problem can be

nevertheless addressed by suitably scaling the raised cosine. The

precise result is given by the following pointwise convergence:

(7)

Proof: Note that Taylor’s theorem with remainder

tells us that if is sufficiently smooth, then

, where is some

number between 0 and . Applied to the cosine function,

we have . In other words,

, where (we write

to signify that for some absolute

constant , where is independent of ). Using this estimate,

along with the binomial theorem, we can write

where . We are almost done since it is well

known that approaches as gets large.

To establish (7), all we need to show is that, for any fixed , the

residual terms can be made negligibly small by simply setting

large.

Now note that if , then the magnitude of

is within unity, and on the other hand,

when . Thus, given any fixed , we set to be large

enough so that satisfies the above bounds. Then, following the

trivial inequality , we see that the modulus of the

residual is

provided that . This can be clearly

achieved by increasing since is monotonic in .

We have seen that raised cosines of sufficiently large order

provide arbitrarily close approximations of the Gaussian. The

crucial feature about (7) is that the rate of convergence is much

faster than that of Taylor polynomials, which were used to ap-

proximate the Gaussian range kernel in [2]. In particular, we

can obtain an approximation comparable to that achieved using
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Fig. 2. (Dashed black curve) Approximation of the Gaussian ������ ��� �
over the interval [�255, 255] using (solid red curve) the Taylor polynomial and
(solid blue curve) the raised cosine. We set� � �	 and use� � 
 for the raised
cosine in (7). The raised cosine is of the form � �� �������� ���
�� in
this case. We use a three-term Taylor polynomial of the form � �� � �� � .
It is clear that the raised cosine offers a much better approximation than its
polynomial counterpart. In particular, note how the polynomial blows up beyond
��� � �		.

polynomials using a fewer number of terms. This is important

from the practical standpoint. In Fig. 2, we consider the target

Gaussian kernel , where . We approxi-

mate this using the raised cosine of degree 4, which has three

terms. We also plot the polynomial corresponding to the three-

term Taylor expansion of the Gaussian, which is used for ap-

proximating the Gaussian in [2]. It is clear that the approxima-

tion quality of the raised cosine is superior to that offered by a

Taylor polynomial having equal number of terms. In particular,

note that the Taylor approximation does not automatically offer

the crucial monotonic property.

E. Control of the Width of Range Kernel

The approximation in (7) also suggests a means of control-

ling the variance of the raised cosine, namely, by controlling the

variance of the target Gaussian. The target Gaussian (with nor-

malization) has a fixed variance of . This can be increased

by simply rescaling the argument of the cosine in (7) by some

. In particular, for sufficiently large

(8)

The variance of the target Gaussian (again with normalization)

has now increased to . A fairly accurate estimate of the

variance of the raised cosine is therefore . In par-

ticular, we can increase the variance by simply setting

for all , provided that is large enough.

Bringing down the variance below , on the other hand, is

more subtle. This cannot be achieved by simply rescaling with

on account of the oscillatory nature of the cosine. For

instance, setting can cause to become nonnegative

or lose its monotonicity. The only way of doing so is by in-

creasing the degree of the cosine (cf. Fig. 1). In particular,

TABLE I
� IS THE MINIMUM DEGREE OF THE RAISED COSINE REQUIRED TO

APPROXIMATE A GAUSSIAN OF STANDARD DEVIATION � ON INTERVAL [�255,
255]. THE ESTIMATE ��	�� � IS ALSO SHOWN

TABLE II
TIME IN MILLISECONDS REQUIRED FOR PROCESSING A GRAYSCALE IMAGE OF

SIZE 720 � 540 PIXELS USING OUR ALGORITHM. THE PROCESSING WAS DONE

ON A MAC OS X �� QUAD CORE 2.6-GHz MACHINE USING MULTITHREADING

must be large enough so that the argument of is within

for all . This is the case if

In other words, to approximate a Gaussian having small vari-

ance , must be at least as large as . The bound

is quite tight for large but is loose when is small. We empir-

ically determined for certain values of for the case when

, some of which are given in Table I. It turned out to

be much lower than the estimate when is small. For a

fixed setting of (e.g., for grayscale images), this suggests the

use of a lookup table for determining for small- on the fly.

The above analysis leads us to an algorithm for approx-

imating the Gaussian bilateral filtering, where both the spatial

and range filters are Gaussians. The steps are summarized in

Algorithm 1.

Algorithm 1 Fast bilateral filtering for the Gaussian

kernel

Input: Image , dynamic range , , and for

the spatial and range filters.

1. Set and .

2. If , pick any large . Else, set , or

use a look-up table to fix .

3. For , set up images

and and

coefficients .

4. Use an algorithm to filter and with a

Gaussian of variance to get and .

5. Set as the ratio of and

.

Return: Filtered image .

III. EXPERIMENTS

We implemented the proposed algorithm for Gaussian bilat-

eral filtering in Java on a Mac Operating System (OS) X

Quad core 2.66-GHz machine as an ImageJ plug-in. We used

multithreading for computing the spatial averages of the auxil-

iary images in parallel. A recursive algorithm was used for
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Fig. 3. Comparison of various implementations of the Gaussian bilateral filter on the grayscale image Isha of size 600 � 512. The filter settings are � � ��

and � � ��. (a) Original image. (b) Direct implementation of the bilateral filter. (c) Output obtained using polynomial kernel [2]. (d) Output of our algorithm.
Note the strange artifacts in (c), particularly around the right eye (see zoomed insets). This is on account of the distortion caused by the polynomial approximation
shown in Fig. 2. The standard deviation of the error between (b) and (c) is 6.5, whereas that between (b) and (d) is 1.2.

implementing the Gaussian filter in space domain [15]. The av-

erage time required for processing a 720 540 grayscale image

using our algorithm are shown in Table II. We repeated the ex-

periment for different variances of the Gaussian range kernel

and at different spatial variances. As shown in the table, the pro-

cessing time is quite fast, compared with a direct implementa-

tion of the bilateral filter, which requires considerable time de-

pending on the size of the spatial filter. For instance, a direct

implementation of the filter on a 512 512 image required 4 s

for as low as 3 on our machine (using discretized Gaussians

supported on ), and this climbed up to almost 10 s for

. As shown in Table II, the processing time of our algo-

rithm, however, suddenly shoots up for narrow Gaussians with

. This is due to the large required to approximate the

Gaussian in this regime (cf. Table I). We have figured out an ap-

proximation scheme for further accelerating the processing for

very small , without appreciably degrading the final output.

Discussion of this method is, however, beyond the present scope

of this paper.

We next tried a visual comparison of the output of our algo-

rithm with the algorithm in [2]. In Fig. 3, we compare the out-

puts of the two algorithms with the direct implementation, on

a natural grayscale image. As is clearly shown in the processed

images, our result very closely resembles the exact output. The

result obtained using the polynomial kernel, on the other hand,

shows strange artifacts. The difference is also clear from the

standard deviation of the error between the exact output and the

approximations. We note, however, that the execution time of

the polynomial method is slightly lower than that of our method

since it requires half the number of auxiliary images for a given

degree.

We also tested our implementation of the Gaussian bilateral

filter on color (red–green–blue) images. We tried a naive pro-

cessing, where each of the three color channels were indepen-

dently processed. The results on a couple of images are shown

in Fig. 4. The Java source code can be downloaded from the web

at http://bigwww.epfl.ch/algorithms/bilateral-filter.

IV. DISCUSSION

We have presented a general method of computing the bilat-

eral filter in constant time using trigonometric range kernels.

Within this framework, we have shown how feasible range ker-

nels could be realized using the family of raised cosines. The

highlights of our approach are the following.

Accuracy. Our method is exact, at least for the family of

raised cosines. It does not require the quantization of the

range kernel, as is the case in [4] and [11]. Moreover, note

that the auxiliary images in (6) have the same dynamic

range as the input image irrespective of the degree . This

is unlike the situation in [2], where the dynamic range

of the auxiliary images exponentially grow with . This

makes the computations susceptible to numerical errors for

large .
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Fig. 4. Results on the color images Greekdome and Tulip, using our implementation of the Gaussian bilateral filter. The original image is on the left, and the
processed image is on the right. In either case, the red, green, and blue channels were independently processed. We used � � �� and � � �� for Greekdome,
and � � �� and � � �� for Tulip. (Images courtesy of S. Paris and F. Durand).

Speed. Besides having complexity, our algorithm can

be also implemented in parallel. This allows us to further

accelerate its speed.

Approximation Property. Trigonometric functions yield

better (local) approximation of Gaussians than polyno-

mials. In particular, we showed that by using a particular

class of raised cosines, we can obtain much better approx-

imations of the Gaussian range kernel than that offered

by the Taylor polynomials in [2]. The final output is arti-

fact-free and very closely resembles the true output. The

only flip side of our approach (this is also the case with

[2], as noted in [4]) is that a large number of terms are

required to approximate very narrow Gaussians over large

intervals.

Space-Variant Extension. The spatial kernel in (1) can be

changed from point to point within the image to control

the amount of smoothing (particularly in homogenous re-

gions), while the range kernel is kept fixed. Due to (6), this

can be done by simply computing the space-variant aver-

ages of each auxiliary image. The good news is that this

can be also realized for an image at the cost of

operations, using particular spatial kernels. This

includes the 2-D box and hat filter [16], [17] and the more

general class of Gaussian-like box splines in [19].
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