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Abstract

We present a practical vision-based robotic bin-picking system that per-

forms detection and 3D pose estimation of objects in an unstructured bin

using a novel camera design, picks up parts from the bin, and performs er-

ror detection and pose correction while the part is in the gripper. Two main

innovations enable our system to achieve real-time robust and accurate op-

eration. First, we use a multi-flash camera that extracts robust depth edges.

Second, we introduce an efficient shape-matching algorithm called fast di-

rectional chamfer matching (FDCM), which is used to reliably detect objects

and estimate their poses. FDCM improves the accuracy of chamfer match-

ing by including edge orientation. It also achieves massive improvements in

matching speed using line-segment approximations of edges, a 3D distance

transform, and directional integral images. We empirically show that these

speedups, combined with the use of bounds in the spatial and hypothesis

domains, give the algorithm sublinear computational complexity. We also

apply our FDCM method to other applications in the context of deformable

and articulated shape matching. In addition to significantly improving upon

the accuracy of previous chamfer matching methods in all of the evaluated

applications, FDCM is up to two orders of magnitude faster than the previous

methods.

1 Introduction

Building smarter, more flexible, and independent robots that can interact with the

surrounding environment is a fundamental goal of robotics research. Potential ap-

plications are wide-ranging, including automated manufacturing, entertainment,
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in-home assistance, and disaster rescue. One of the long-standing challenges in re-

alizing this vision is the difficulty of “perception” and “cognition”—i.e., providing

the robot with the ability to understand its environment and make inferences that

allow appropriate actions to be taken. Perception through inexpensive contact-free

sensors such as cameras are essential for continuous and fast robot operation. In

this paper, we address the challenge of robot perception in the context of industrial

robotics.

1.1 Visual Perception in Industrial Robotics

Computer vision has made rapid progress in the last decade, moving closer to

definitive solutions for longstanding problems in visual perception such as object

detection [DT05, VJ01, TPM08], object recognition [FFFP06, OT01, DBdFF02],

and pose estimation [AT06, SB06b, MREM04]. While the huge strides made in

these fields lead to important lessons, most of these methods cannot be readily

adapted to industrial robotics because many of the common assumptions are either

violated or invalid in such settings.

Material properties: One of the most common assumptions in traditional vi-

sion algorithms relates to the characterization of the reflectance of materials in the

scene. Most vision algorithms characterize materials as Lambertian [BJ03], i.e.,

the appearance (radiance) of a single surface point is invariant to the location of

the observer (camera). While this is a reasonable assumption in many scenarios,

this is less applicable to industrial vision tasks. Several common materials handled

in industrial settings such as metal, glass, ceramics, and some plastics are not close

to Lambertian. Hence, using the Lambertian assumption for such objects generally

results in poor performance. This necessitates industrial robots to possess the abil-

ity to understand and make inferences about objects that have complex reflectance

characteristics.

Environmental challenges: The types of errors that afflict vision-based sys-

tems in industrial settings are also very different from those in natural environ-

ments. Several industrial assembly and manufacturing tasks must be accomplished

in dark or dimly lit environments with dust, dirt, grime, and grease. It is essential

for vision-based techniques to be able to cope with such sources of error in order

to be successful in such environments.

Variable appearance: The most popular methods for object detection, recog-

nition, and pose estimation are based on the idea of feature descriptors such as

Scale Invariant Feature Transform (SIFT) [Low04], Histogram of Gradients (HOG)

[DT05], and SURF [BETG08]. The basic idea is to detect several keypoint loca-

tions on the surface of each object and compute these feature descriptors at these

keypoint locations. The features of each object are then stored in a database. When

a test image is acquired, the keypoint locations and the feature descriptors for the
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test image are computed and then matched to the features stored in the database.

An appropriately computed matching score is used to detect and recognize ob-

jects, and the geometric relationship between the matched keypoint locations in

the test image and the database are used to make inferences about the poses of

the objects. This general principle is quite popular and is used in several object

recognition methods [STFW05, LSP06, NFF07]. Unfortunately, this successful

paradigm cannot be easily adapted to industrial robotics because visual appearance

features are unreliable in industrial settings. Variable material properties, as well as

uncontrolled illumination and environmental conditions, make appearance-based

descriptors unreliable and preclude the use of such techniques in most industrial

applications.

Background Clutter: The objects in a factory environment are usually stacked

in part containers, which produces additional challenges such as overlapping parts,

occlusions, cast shadows, and complex backgrounds. Therefore, most commercial

vision systems assume that parts are separated in a kitting stage before operation.

Machine vision systems that are capable of handling clutter, occlusions, and com-

plex backgrounds would eliminate the need for kitting stages, thereby allowing

such systems to handle a complex bin of parts.

Model-based estimation: While industrial settings are challenging because of

the above-mentioned factors, they are also in some ways more structured and allow

opportunities to exploit this structure. For example, 3D CAD models of most of

the industrial parts are readily available. Even if some of them are not, the fact

that most industrial assembly lines repeatedly handle a finite set of discrete parts

many times (order of millions) makes CAD model acquisition cost-effective. The

3D CAD models provide a reliable source of information, potentially overcoming

the challenging reflectance and environmental conditions.

1.2 A Practical Vision-Based Robotic Bin-Picking System

In this paper, we present a practical vision-based robotic bin-picking system that

overcomes the challenges described in Section 1.1. The system performs detec-

tion and estimation of the 3D poses of objects that are stacked in a part container,

picks up the parts from the container using an industrial robot arm, performs pose

verification and refinement while the part is in the gripper, and inserts the picked

part at a designated position. We have introduced two novel ideas that allow us

to achieve reliable, fast, and accurate operation: (1) Novel imaging hardware that

provides reliable geometric features regardless of the object’s material and surface

characteristics; (2) Fast, robust, and accurate 3D pose estimation based on the Fast

Directional Chamfer Matching (FDCM) algorithm.

The fundamental challenges that arise due to non-Lambertian materials (e.g.,

metal, glass, ceramic), textureless parts (e.g., uniformly painted parts), and greasy
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and dirty environments lead to the fact that photometric features such as color and

appearance descriptors are not robust enough in industrial settings. This motivates

the need to develop features that are dependent on the geometry of the part rather

than its photometry. We use an inexpensive camera design, the multi-flash camera

(MFC) [RTF+04], that provides reliable geometric features: depth edges. The

location of the depth edges on an object are dependent only on the pose of the object

with respect to the observer and the object geometry. Therefore, depth edges can

be used to determine the pose of the object uniquely. In addition, these geometric

descriptors allow easy and efficient incorporation of the 3D CAD models into our

system. Given the 3D CAD model of an object, we retrieve the pose of the object

that provides the best match between the observed features and the depth edges

from the CAD model. This allows us to bypass a time-consuming training phase

for each of the objects that would otherwise be necessary. A new part can be

integrated into our system in less than 10 minutes.

Although many shape matching algorithms have been proposed over the decades,

chamfer matching (CM) [BTBW77] remains among the fastest and most robust ap-

proaches in the presence of clutter. We adapt traditional chamfer matching with a

host of techniques to improve reliability, accuracy, and speed. First, we exploit the

geometric redundancies in the 3D structure of industrial parts by approximating the

edge features using line segments. This, along with a 3D integral distance trans-

form representation, allows us to both reduce the memory footprint and speed up

the matching algorithm by orders of magnitude. Second, we incorporate a direc-

tional error term in the distance transform definition which significantly improves

the reliability, robustness, and accuracy of matching. Further, we improve the pose

estimation accuracy using a continuous optimization procedure. The result is a

system that is capable of real-time operation for several industrial assembly appli-

cations.

While the primary goal of this research is to develop a robust and reliable vision

system for industrial robotics, the FDCM algorithm also achieves state-of-the-art

performance in shape matching. We present two additional application domains

that benefit from FDCM: deformable object detection using a hand-drawn shape,

and human pose estimation.

The paper is organized as follows. We briefly overview the related literature

in Section 2. We present the shape matching algorithm and its optimization in

Section 3. Pose estimation and the robotic bin-picking system are described in

Section 4. We report on our extensive experimental validation of the proposed

system and compare it to the state of the art in Section 5. The paper is concluded

in Section 6. We note that this paper builds upon our previous work [LTV+10,

LTVC10].
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2 Related Work

In recent decades, there has been a considerable amount of work on automating the

process of part assembly using vision systems [SI73, NPK96, ASBR10]. Though

vision systems are successful in identifying, inspecting, and locating parts in care-

fully engineered manufacturing settings, it remains a great challenge to extend their

applicability to more general, unconstrained settings. Also, they often make use of

simple geometric features such as lines, circles, or ellipses and their spatial orga-

nization [Vis]. Changing a target object in the assembly process would require

significant manual adjustments or algorithmic modifications.

Model-based vision systems exploit 3D CAD models of objects, along with

either acquired 2D images or range sensor data, for image interpretation. Such

methods provide means for efficient detection, recognition, and pose estimation of

objects in cluttered environments [Low87, Low91, SM92, JH99, BN10, DUNI10].

Methods such as [Low87, Low91, DD92] rely on establishing correspondences

between 2D image features and points in the 3D models in order to obtain an initial

estimate of object pose. The estimate is later refined using iterative algorithms.

These correspondences are, however, difficult to obtain reliably.

Since establishing 3D-to-2D correspondences using images is a hard task, sev-

eral systems rely either directly or indirectly on 3D information. Such methods

greatly simplify the correspondence problem at the cost of increased hardware re-

quirements. The most common approach is the use of 3D range sensors either

based on structured light [SS03] or on time of flight [CSD+10]. This provides the

ability to establish 3D-to-3D point correspondences by matching 3D point descrip-

tors from the CAD model to those in the acquired point cloud data. Several 3D

point descriptors [SM92, JH99, BN10] have been proposed for matching the 3D

scene points to the model points. To remove false matches, an interpretation tree

procedure [GLP84] can be applied to find mutually consistent pairs. With these

consistent pairs, one can use Horn’s method [Hor87] to estimate the object’s 3D

pose. Unfortunately, these descriptors are less reliable for pose estimation of indus-

trial parts because these objects are mostly made of planar surfaces, which leads to

very few and uninformative features.

Recently, the use of the multi-flash camera [RTF+04] for object pose estima-

tion was proposed in [ASBR10]. The MFC, which was originally developed in the

context of non-photorealistic rendering, provides depth edge features that can be

used for pose estimation tasks. In this paper and in [LTV+10], we significantly

expand the scope and impact of MFC for industrial robotics. While [ASBR10]

presented a system capable of handling isolated parts, here we present a system

that can handle multitudes of parts randomly placed in a cluttered bin. Further, we

also present a novel shape-matching algorithm that results in better accuracy and
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orders-of-magnitude improvement in matching speed, allowing real-time system

performance.

One of the main technical contributions of this work is the development of the

fast directional chamfer matching algorithm, which is widely applicable to several

applications that currently use shape matching. Below, we briefly discuss related

approaches in shape matching.

Shape matching has been an active area in robotic vision research. Several

authors have proposed shape representations and similarity measures that aim to

be invariant to object deformations [BMP02, LJ07]. These methods actively han-

dle intra-class shape variations and achieve good performance in object recogni-

tion. However, they require a clean segmentation of the target object. This ren-

ders them less suitable for dealing with unstructured scenes due to the difficulty in

foreground-background separation.

Recent studies focus on the recognition and localization of object shapes in

cluttered images. In [BBM05], the shape matching problem is posed as finding

the optimal correspondences between feature points, which leads to an integer

quadratic programming problem. In [FTG06], a contour segment network frame-

work is proposed in which shape matching is formulated as finding paths on the

network that are similar to model outlines. In [FFJS08], Ferrari et al. propose

a family of scale-invariant local shape descriptors (pair-of-adjacent-segment fea-

tures) formed by k-connected nearly straight contour fragments in the edge map.

These descriptors are later utilized in a shape matching framework [FJS10] through

a voting scheme on a Hough space.

Zhu et al. [ZWWS08] formulate shape detection as a subset selection prob-

lem on a set of salient contours. Due to the NP-hardness of the selection prob-

lem, they compute an approximate solution using a two-stage linear programming

procedure. In [FS07], a hierarchical object contour representation is proposed to

model shape variation, and the matching is performed using dynamic program-

ming. In [RJM08], a multi-stage approach is employed in which coarse detections,

which are established by matching subsets of contour segments, are pruned by

building the entire contour using dynamic programming.

These algorithms yield impressive results for matching shapes in cluttered im-

ages. However, they share a common drawback, high computational complexity,

which makes them unsuitable for time-critical applications. Although proposed

decades ago, chamfer matching [BTBW77] remains the preferred method when

speed and accuracy are required, as discussed in [TSTC03]. In this paper, we pro-

pose an improved version of chamfer matching and demonstrate its superiority with

respect to other variants [Gav98, SBC08]. Our approach improves the accuracy of

chamfer matching while greatly reducing its time complexity, leading to a speedup

of up to two orders of magnitude in several application scenarios.
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3 Fast Directional Chamfer Matching

In this section, we introduce our fast directional chamfer matching algorithm,

which we use for object detection and pose estimation in industrial robotics and

other application areas.

3.1 Chamfer Matching

First we briefly explain standard chamfer matching (CM) [BTBW77], which is a

popular technique for finding the best alignment between a template edge map and

a query edge map. Let U = {ui}, where i = 1, 2, ..., |U |, be the set of edge pixels

from a template edge map, and let V = {vj}, where j = 1, 2, ..., |V |, be the set of

edge pixels from a query image edge map. The chamfer distance between U and

V is defined as the average over all pixels ui ∈ U of the distance between ui and

its nearest pixel in V :

dCM(U, V ) =
1

n

∑

ui∈U

min
vj∈V

‖ui − vj‖. (1)

where n is the number of template edge pixels, n = |U |.
Let W be a warping function defined on the image plane that is parameterized

by s. For instance, if W is a 2D Euclidean transformation, then s ∈ SE(2) can be

written as s = (θ, t̄x, t̄y), where t̄x and t̄y are translations parallel to the x and

y axes, respectively, and θ is the in-plane rotation angle. Its action on each image

point x ∈ R
2 is given via the transformation

W (x; s) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

x+

(

t̄x
t̄y

)

. (2)

The best alignment parameter ŝ between the two edge maps is then given by

ŝ = arg min
s∈SE(2)

dCM(W (U ; s), V ) (3)

where W (U ; s) = {W (ui, s)}, i = 1, 2, ..., |U |.
The chamfer matching cost can be computed efficiently using the distance

transform image

DTV (x) = min
vj∈V

‖x− vj‖, (4)

which specifies the distance from each pixel x in the distance transform image to

the nearest edge pixel in V . The distance transform can be computed in two passes
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over the image using dynamic programming [FH04]. Using the distance transform,

the cost function (1) can be evaluated in linear time O(n) via

dCM(U, V ) =
1

n

∑

ui∈U

DTV (ui). (5)

Chamfer matching provides a fairly smooth measure of fitness and can toler-

ate small rotations, misalignments, occlusions, and deformations. However, it be-

comes less reliable in the presence of background clutter due to an increase in the

proportion of false correspondences. To improve its robustness, several variants of

chamfer matching have been introduced that exploit edge orientation information.

In [Gav98, DCS09], the template and query image edges are quantized into discrete

orientation channels, and individual matching scores across channels are summed.

Although these methods improve performance in cluttered scenes, the cost func-

tion is sensitive to the number of orientation channels and becomes discontinuous

across channel boundaries. In [SBC08], the chamfer distance is augmented with an

additional cost for orientation mismatch, which is given by the average difference

in orientations between template edges and their nearest edge points in the query

image. The method is known as oriented chamfer matching (OCM).

3.2 Directional Chamfer Matching

Instead of an explicit formulation of the orientation mismatch, we generalize the

chamfer distance to points in R
3 in order to match directional edge pixels. Each

edge pixel x is augmented with a direction term, φ(x), and the directional chamfer

matching (DCM) score is given by

dDCM(U, V ) =
1

n

∑

ui∈U

min
vj∈V

(‖ui − vj‖+ λ‖φ(ui)− φ(vj)‖π) (6)

where the parameter λ is a weighting factor between the location and orientation

terms. To compute the direction terms, we fit line segments to the edge points (as

explained in Section 3.3), and φ(x) is the orientation of the line segment associated

with point x. Note that the directions are written modulo π: 0 ≤ φ(x) < π, and

the orientation error is defined as the minimum circular difference between the two

directions:

‖φ(x1)− φ(x2)‖π = min
{

|φ(x1)− φ(x2)|,
∣

∣ |φ(x1)− φ(x2)| − π
∣

∣

}

. (7)

In Figure 1, we illustrate the differences between DCM and OCM [SBC08].

The proposed matching cost, DCM, is a piecewise smooth function of both the
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Figure 1: Matching costs for an edge point. (a) Oriented chamfer matching

(OCM) [SBC08]. (b) Directional chamfer matching (DCM, proposed in this pa-

per). Whereas in OCM the location error is augmented with the orientation differ-

ence from the nearest edge point, DCM jointly minimizes location and orientation

errors.

translation (tx, ty) and the rotation (θ) of the template pose. It is more robust to

clutter, missing edges, and small misalignments.

The computational complexity of existing chamfer matching algorithms is lin-

ear in the number of template edge points. Even though DCM includes an addi-

tional direction term, our algorithm (derived in this section) computes the exact

DCM score with sublinear complexity.

3.3 Line-Based Representation

The edge map of a scene is not an unstructured binary pattern. On the contrary, the

object contours comply with certain continuity constraints that can be retained by

combining line segments of various lengths, orientations, and translations. Based

on this observation, we represent an edge image as a collection of m line segments.

Compared with a set of points which has cardinality n, its line-based representa-

tion is more concise. Encoding an edge map using the line-based representation

requires only O(m) memory size, where m << n, and is particularly suitable

when the storage space for templates is limited. When the object exhibits a curved

contour, more segments are required for good approximation, but the line-based

representation is still more concise than the set of edge pixels.

We use a variant of the RANSAC [FB81] algorithm to compute the line-based

representation of an edge map. The outline of the algorithm is as follows. The

algorithm initially hypothesizes a variety of line segments by selecting a small

subset of edge points and their directions. The support of each line segment is

given by the set of points that satisfy the line’s equation up to a small residual,

ν ≥ 0, and form a continuous structure. The line segment with the largest support

is retained, and its supporting points are removed from the set of edge points. The
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(a) (b)

Figure 2: Line-based representation. (a) Edge image. The image contains 11,542

edge points. (b) Line-based representation of the edge image. The image contains

300 line segments.

procedure is repeated with the reduced set of edge points, until the support of the

longest line candidate becomes smaller than a few points.

The algorithm only retains edge points with continuity and sufficient support;

therefore, the noise and isolated edges are filtered out. In addition, the directions

recovered through the line fitting procedure are more precise than would be ob-

tained using local operators such as image gradients. An example of the line-based

representation is given in Figure 2, where a set of 11,542 points is modeled with

300 line segments.

3.4 Three-Dimensional Distance Transform

The matching score given in (6) requires finding the minimum matching cost over

location and orientation terms for each template edge point. Therefore, the com-

putational complexity of the brute-force algorithm is quadratic in the number of

template and query image edge points. Here we present a three-dimensional dis-

tance transform representation (DT3V ) for computing the matching cost in linear

time. A similar structure was also used in [OH97] for fast evaluation of Hausdorff

distances.

This representation is a three dimensional image tensor in which the first two

dimensions are the locations in the image plane and the third dimension belongs to

a discrete set of edge orientations. We evenly quantize the edge orientation into q

discrete channels, Φ̂ = {φ̂i}, i = 1, 2, ..., q, which evenly divide the range [0 π).
Each element of the tensor encodes the minimum distance to an edge point in the

joint location and orientation space:

DT3V (x, φ(x)) = min
vj∈V

(

‖x− vj‖+ λ‖φ̂(x)− φ̂(vj)‖π

)

, (8)
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Figure 3: Computation of the integral distance transform tensor. (a) The set V

of points in the query edge map is mapped into a set of line segments through a

line-fitting procedure. (b) Edges are quantized into discrete orientation channels.

(c) Two dimensional distance transform of each orientation channel. (d) The three-

dimensional distance transform, DT3V , is updated based on the orientation cost.

(e) The 3D distance transform is integrated along the discrete edge orientations,

and the integral distance transform tensor, IDT3V , is computed.

where φ̂(x) is the nearest quantization level in the orientation space Φ̂ to the edge

orientation φ(x).
We present an algorithm to compute the DT3V tensor in O(q) passes over

the image by solving two dynamic programs consecutively. Equation (8) can be

rewritten as

DT3V (x, φ(x)) = min
φ̂i∈Φ̂

(

DT
V {φ̂i}

+ λ‖φ̂(x)− φ̂i‖π

)

(9)

where DT
V {φ̂i}

is the two dimensional distance transform of the edge points in V

that have edge orientation φ̂i.

Initially, we compute q two-dimensional distance transforms DT
V {φ̂i}

, which

requires O(q) passes over the image using the standard distance transform algo-

rithm [FH04]. Subsequently, the DT3V tensor (9) is computed by using a second

dynamic program for each image pixel separately. The tensor is initialized with

the two dimensional distance transforms, DT3V (x, φ̂i) = DT
V {φ̂i}

(x), and is up-

dated with a forward recursion

DT3V (x, φ̂i) = min{DT3V (x, φ̂i),DT3V (x, φ̂i−1) + λ‖φ̂i−1 − φ̂i‖π} (10)
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and a backward recursion

DT3V (x, φ̂i) = min{DT3V (x, φ̂i),DT3V (x, φ̂i+1) + λ‖φ̂i+1 − φ̂i‖π} (11)

for each pixel x. Unlike in the standard distance transform algorithm, special han-

dling is required for the circular orientation. The forward and backward recursions

do not terminate after a full cycle, i = 1, . . . , q or i = q, . . . , 1 respectively, but

the values of the tensor entries continue to be updated in a circular form until the

value for a tensor entry is not changed. Note that at most 1.5 cycles are needed for

each of the forward and backward recursions, therefore the worst time computa-

tional cost isO(q) passes over the image. We illustrate the computation of the three

dimensional distance transform in Figure 3(a)–(d). Using DT3V , the directional

chamfer matching score of any template U can be computed as

dDCM(U, V ) =
1

n

∑

ui∈U

DT3V (ui, φ̂(ui)), (12)

where the complexity is linear in n, the number of edge points in U .

3.5 Integral Distance Transform Tensor

Let l[x1,x2] represent the line segment in the image plane connecting pixels x1 and

x2. Let LU = {l[sj ,ej ]}, j = 1, . . . ,m, be the line-based representation of tem-

plate edge points U , where sj and ej are the start and end locations of the jth line

segment respectively. For ease of notation, we sometimes refer to a line segment

with only its index, lj = l[sj ,ej ]. We assume that the line segment directions are re-

stricted to q discrete channels Φ̂, which is enforced in the line-based representation.

We choose the number of directions q large enough (in our experiments, q = 60)

to avoid quantization artifacts. The line-based representation of Figure 2(b) is gen-

erated from the edge image in Figure 2(a) using q = 60 directions.

Since the edge points in a line segment all have the same orientation, which is

the direction of the line segment φ̂(lj), the directional chamfer matching score (12)

can be rearranged as

dDCM(U, V ) =
1

n

∑

lj∈LU

∑

ui∈lj

DT3V (ui, φ̂(lj)). (13)

In this formulation, the kth orientation channel of the DT3V tensor, DT3V (x, φ̂k),
is only used for evaluating the matching scores of the line segments having the

direction φ̂k, which is achieved by summing over the points in the line segments.
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Integral images are intermediate image representations used for fast calculation

of region sums [VJ01] and linear sums [BB09]. Here, we present an integral dis-

tance transform representation (IDT3V ) to evaluate the summation of costs over

any line segment in O(1) operations, as shown in Figure 3(e).

Let x0 be the intersection of an image boundary with the line that passes

through x and has direction φ̂i. Each entry of the IDT3V tensor is given by

IDT3V (x, φ̂i) =
∑

xj∈l[x0,x]

DT3V (xj , φ̂i). (14)

The IDT3V tensor can be computed in one pass over the DT3V tensor. Using

this representation, the directional chamfer matching score of any template U can

be computed in O(m) operations via

dDCM(U, V ) =
1

n

∑

l[sj ,ej ]
∈LU

IDT3V (ej , φ̂(l[sj ,ej ]))− IDT3V (sj , φ̂(l[sj ,ej ])).

(15)

3.6 Search Optimization

In this section we present two search optimization techniques based on the bounds

on the matching cost and empirically show that the number of evaluated line seg-

ments is sublinear in the number of template points n.

3.6.1 Bound in the Hypotheses Domain

The O(m) complexity is only an upper bound on the number of computations.

FDCM can be used for object detection and for localization. For object detection,

we only need to retain the hypotheses for which the template matching cost is less

than a detection threshold. For localization, we only need to retrieve the hypothesis

with the lowest matching cost.

We order the template line segments with respect to their lengths and start the

summation (15) from the longest line segment. A hypothesis is eliminated during

the summation if the cost is larger than the detection threshold or the current best

hypothesis. Since the lengths of the line segments roughly decay exponentially, for

most of the hypotheses only a few arithmetic operations are performed.

3.6.2 Bound in the Spatial Domain

The DCM cost function (6) is smooth and bounded in the spatial domain. We utilize

this fact to significantly reduce the number of hypotheses evaluated. Let δ ∈ R
2
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Figure 4: Empirical evidence of sublinear time complexity in the number of tem-

plate points. The graph plots the ratio of the number of evaluated lines m̃ to the

number of template points n vs. the number of template points. (If the complexity

were linear in n, the graph would be a horizontal line.)

be a translation of the model U in the image plane. The DCM cost variation due to

translation is given by

dDCM(U + δ, V ) =
1

n

∑

ui∈U

min
vj∈V

‖ui + δ − vj‖+ λ‖φ(ui)− φ(vj)‖π

≤
1

n

∑

ui∈U

min
vj∈V

‖ui − vj‖+ ‖δ‖ + λ‖φ(ui)− φ(vj)‖π = ‖δ‖ + dDCM(U, V ).

(16)

From Equation (16), the variation of the cost is bounded by the spatial translation

|dDCM(U + δ, V ) − dDCM(U, V )| ≤ ‖δ‖. If the detection threshold is τ and

the cost of the current hypothesis is ψ > τ , then there can not be a target within

the ‖δ‖ = |ψ − τ | pixel range that has a matching cost lower than the detection

threshold. Therefore, we can skip the evaluation of the hypotheses within this

region.

3.6.3 Empirical Evidence of Sublinear Complexity

It is easy to see that the sublinear complexity holds in the case of scaling the

template shape. As the number of edge points, n, increases with the template

size, the cardinality m of the line-based representation of the template remains the

same. Hence, the same number of arithmetic operations is required to compute the

matching cost, which means the matching complexity is constant irrespective of

the number of edge points.
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(a)

Part ContainerRobot Arm

Gripper Camera

Camera

LED

Gripper

(b) (c)

MFC

Figure 5: Our robotic grasping system. A multi-flash camera (MFC), shown in

detail in (c), is mounted on the robot arm and used to perform detection and pose

estimation of objects (parts) placed in a container. The gripper camera is a standard

camera that is mounted above the robot’s wrist joint and pointed at the tip of the

gripper. The gripper camera is used to perform error detection after an object is

picked up from the container.

We also provide empirical evidence that in a more general setup, as well, the

matching complexity is a sublinear function of the number of template points. As

explained above, the O(m) complexity is only an upper bound on the number of

evaluations, and on average we need to evaluate only a fraction of the m lines.

Empirically, we evaluate the m̃ longest lines, where m̃ is chosen to fit 20% – 30%
of the template points. Most of the energy is concentrated in only a few lines, and

we find that m̃ grows sublinearly with n. In Figure 4, we plot the number of tem-

plate points, n, on the x-axis and the ratio of the number of evaluated lines to the

number of template points, m̃
n

, on the y-axis. For this graph, m̃ is selected as the

number of lines that fit 30% of the template points. The curve is generated using

1,000 shape images from the MPEG-7 dataset. We observe that as the number

of template points increases, the fraction of evaluated lines decreases, which pro-

vides empirical evidence that the algorithm is sublinear in the number of template

points
(

< O(n)
)

.

4 Pose Estimation for Robotic Bin Picking

In this section, we present our robotic bin-picking system that uses the shape

matching algorithm described in Section 3.

15



Capture 

MFC images

Compute 

depth edge 

map

Match pose templates to 

the computed depth edge 

map using DCM

Multi-view 

pose 

refinement

Grasp and 

pick up 

object

CAD 

model

Render depth edge 

maps for each 

database pose

Pose templates
Online 

rendering

Offline Database Generation

Error detection and 

pose correction

in the gripper

Perform 

assembly

Figure 6: Flowchart of our system.

4.1 System Overview

Figure 5 shows our system setup. We mount an MFC and a standard camera on

an industrial robot arm. The MFC is used to perform object detection and pose

estimation of objects that are randomly arranged in a part container. The robot

arm uses the estimated pose of the object to grasp the object and lift it out of the

container. The standard camera, which we call the gripper camera, is focused on

the tip of the gripper and is used to perform error detection after the object is picked

up. Both cameras are calibrated offline using a checkerboard. The calibration

determines internal parameters of the cameras as well as the poses of the cameras

with respect to the robot coordinate system (hand-eye calibration).

The flowchart in Figure 6 provides a summary of our system. We give an

overview of our algorithm below and explain the details of each process in the

following subsections.

1. Offline database generation (Section 4.3): For each object, we render the

3D CAD model according to a set of hypothesized poses, extract depth

edges, and compute the line-based representation (which was presented in

Section 3.3) of the depth edges.

2. MFC imaging and depth edge extraction (Section 4.2): We capture 9 im-

ages, using the 8 different flashes of the MFC and one image without any

flash. The depth edges in the scene are computed using these images.

3. Object detection and pose estimation: Using the FDCM algorithm (which

was presented in Section 3), we retrieve the database pose and its in-plane

transformation parameters that have the minimum matching cost and use

these as a coarse pose estimate. The matching algorithm is accelerated us-

ing a heuristic that we call one-dimensional search (Section 4.4). Further

improvement of the coarse estimate is achieved via a multi-view pose refine-

ment algorithm (Section 4.5).

4. Grasping and picking up the object: We use the estimated 3D pose to

grasp the object with the gripper and lift it out of the part container.
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Figure 7: Illustration of the principle of multi-flash camera (MFC) imaging. The

scene is illuminated by flashing one LED at a time. Due to the different positions

of the LEDs, the shadows cast by the object change. While intensity values of

points such as P1 (on the top surface of the object) remain nearly constant when

illuminated by different LEDs, intensity values of points such as P2 (which is in

shadow for some of the LEDs) change. This property is exploited to detect depth

edges.

5. Error detection and pose correction (Section 4.6): We use the gripper

camera to detect grasping errors. We evaluate/re-estimate the pose of the

object in the gripper. The pose of the object is corrected if necessary.

6. Assembly: The pose-corrected object is ready for the next step of the assem-

bly task.

4.2 MFC Imaging and Depth Edge Extraction

We use an MFC [RTF+04] to detect depth edges (depth discontinuities) in the

scene. A depth edge is a robust geometric feature. It is invariant to the surface

properties of objects (textured, textureless, shiny, etc.) and is unaffected by oil,

grime, or dirt on the object surface, which are common in industrial environments.

The MFC is equipped with 8 point light sources made of light-emitting diodes

(LEDs). They are evenly distributed around the camera in a circular fashion, as

shown in Figure 7. During the MFC imaging, these LEDs are sequentially switched

on to illuminate the scene. Only one LED is switched on at a time, and an image is

taken. This is repeated for each of the 8 LEDs. We also take an image with all the

LEDs turned off to record the ambient illumination. The different LED positions
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(a) Flash from right (b) Flash from left (c) Depth edges (d) Canny edges

Figure 8: Comparison between depth edges extracted using an MFC and stan-

dard Canny edges for a simple scene (top) and a highly cluttered scene (bottom).

(a, b) Two out of eight flash images captured with an MFC. Note the different

shadow locations. (c) Extracted depth edges. (d) Standard intensity edges com-

puted by using a Canny edge detector on an image captured without flash. Note

that the Canny edge results include both texture and depth edges as well as are

affected by shadows due to ambient lights.

result in different illumination directions, so the positions of shadows vary across

the 8 images. This property can be exploited to detect the depth edges in the scene,

as discussed below.

Let Ii denote the image illuminated by the ith LED, after subtracting the ambi-

ent image. First, we construct the maximum image, Imax, where the cast shadows

due to the flashes are removed. We consider each pixel location and find the maxi-

mum intensity value at that location across the 8 images:

Imax(x, y) = max
i

Ii(x, y). (17)

Next, we compute the ratio images

RIi =
Ii

Imax

. (18)

Ideally, if a pixel is in a shadow region of image Ii (e.g., point P2 in Figure 7),

this ratio should be 0 since the contribution of the illumination from the ambient

source has been removed. In contrast, the ratio in other non-shadow regions (e.g.,

point P1 in Figure 7) should be close to 1 since these regions are illuminated by

all the flashes. Notice that a depth edge corresponds to a point of transition from

a non-shadow region to a shadow region along the illumination direction defined
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Figure 9: Database generation. We uniformly sample the rotation angles (θx and

θy) on the 2-sphere. The template database is generated by rendering the CAD

model of the object at each of the sampled rotations.

by the LED position in each image. Therefore, for each ratio image, we detect this

transition by using a Sobel filter whose direction is aligned with the illumination

direction, followed by non-maximum suppression. We then add the filter responses

across different flash images and use hysteresis thresholding similar to the Canny

edge detector [Can86] to obtain a depth edge image.

Comparison with Intensity Edges: Figure 8 compares depth edges extracted

using an MFC to standard intensity edges, which were computed by using a Canny

edge detector on an image captured without flash. Note that the Canny edge results

include texture edges (e.g., the artificially painted object surface in the top row,

and small scratches on the surface of the shiny objects in the bottom row). They

are also affected by shadows due to ambient light (note the difference of detected

edge locations between the MFC depth edge results and the Canny edge results).

In contrast, our approach using MFC imaging provides depth edges only, which

can be used as robust geometric features for object detection and pose estimation.

4.3 Database Generation

An object exhibits different silhouettes in different poses. Although the matching

algorithm in Section 3 models in-plane rotation and translation, it does not model

rotations in depth, which can change an object’s depth-edge silhouette. To accom-

modate these variations, we generate a set of templates across the range of possible

rotations in depth, denoting this set of templates by {Uk}. The search problem

in (3) is generalized to find the best-matching template in this set, as follows:

arg min
k,s∈SE(2)

dDCM (W (Uk; s), V ). (19)
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Template

Query Image

Figure 10: One-dimensional search. A template is rotated and translated such that

one template line segment (the blue line segment) is aligned with one line segment

in the query image (the green line segment). The template is translated along the

query line segment, and the directional chamfer matching cost is evaluated for each

translation.

Given a CAD model of the object, we generate a database of depth-edge tem-

plates by detecting the depth discontinuities in the model. In this simulation, a

virtual camera with the same internal parameters as the real camera is placed at

the origin, and its optical axis is aligned with the z-axis of the world coordinate

system. The CAD model of the object is then placed on the z-axis at a distance tz
from the virtual camera, which is equal to the actual distance of the part container

from the real MFC in our setup. The virtual flashes are switched on one at a time,

and eight renderings of the object (including cast shadows) are acquired. The depth

edges are detected using the procedure described in Section 4.2.

An arbitrary 3D rotation can be decomposed into a sequence of three elemental

rotations about three orthogonal axes. We align the first of these axes to the camera

optical axis and refer to the rotation about this axis as in-plane rotation (θz). The

other two axes are on a plane perpendicular to the camera optical axis, and we

call the rotation about these two axes out-of-plane rotation (θx and θy). Note that

an in-plane rotation simply results in an in-plane rotation of the observed images,

whereas the effect of an out-of-plane rotation depends on the 3D structure of the

object. Due to this distinction, we only include out-of-plane rotations of the object

in the database. We sample K out-of-plane rotations (θx and θy) uniformly on the

2-sphere, S2, as shown in Figure 9, and generate the depth-edge template Uk for

each rotation k ∈ {1, . . . ,K}.
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4.4 One-dimensional Search

In order to retrieve the coarse pose of the object in the scene using (19), we sequen-

tially search over all the database templates, Uk, where k = 1, . . . ,K. For each

template Uk, searching for the best alignment ŝ = (θz, t̄x, t̄y) is computationally

intensive (three degrees of freedom). Here we present a heuristic method to greatly

reduce the search space (from three degrees of freedom to one degree of freedom),

which exploits the fact that under the best alignment, the template and query im-

age line segments are well aligned. Additionally, the major lines of the template

and the query images are reliably detected during the line-fitting process, since the

algorithm favors line segments with larger support.

We order the sets of template and query line segments from longest to shortest

and use a few major lines from the ordered sets of template and query line segments

to guide the hypothesis search. The template is initially rotated and translated such

that a template line segment is aligned with the direction of a query image line

segment and the end point of the template line is translated to match the start point

of the query line segment, as illustrated in Figure 10. The template is then trans-

lated along the query line segment direction, and the cost function is evaluated

only at locations where there is an overlap between the two segments. This pro-

cedure reduces the three-dimensional search (in-plane rotation and translation) to

one-dimensional search along only a few directions. The search time is invariant

to the size of the image and is only a function of the number of templates and

query image lines and their lengths. With this heuristic, we can efficiently find the

minimum-cost template and its alignment parameters.

4.5 Multi-View Pose Refinement

The minimum-cost template, together with its in-plane transformation parameters

(θz, t̄x, t̄y), provide a coarse estimate of the 3D object pose. Let θx, θy be the out-

of-plane rotation angles, and let tz be the distance from the camera, which are used

to render the template. We back-project the in-plane translation parameters to 3D

using the camera calibration matrix K, and obtain the initial 3D pose of the object,

p0, as the three Euler angles (θx, θy, θz) and a 3D translation vector (tx, ty, tz)
T .

The 3D pose p can also be written in matrix form

Mp =

(

Rp tp
0 1

)

∈ SE(3), (20)

where Rp is the 3 × 3 rotation matrix computed by a sequence of three rotations

around the x–y–z axes, RθzRθyRθx , and tp is the 3D translation vector.

The precision of the initial pose estimation is limited by the discrete set of

out-of-plane rotations included in the database. Below, we present a continuous
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optimization method to refine the pose estimate. The proposed method is a com-

bination of the iterative closest point (ICP) [Zha94] and Gauss-Newton [BV04]

optimization algorithms. It can work with any number (one or more) of views with

known camera poses.

Refinement Algorithm: Let M(j) ∈ SE(3) be the 3D rigid transformation

matrix representing the pose of the camera corresponding to the jth view in the

world coordinate system, and let P = (K 0) be the 3 × 4 projection matrix.

As explained in Section 4.1, the projection matrix is known through camera cal-

ibration, and the camera poses are known through hand-eye calibration and the

motion of the robot. The edge points detected in the jth view are given by the set

V (j) = {v
(j)
i }.

First, we establish a set of correspondences between the 3D CAD model points

ũ
(j)
i and the 2D detected edge points v

(j)
i . We find these 3D-to-2D point corre-

spondences via closest-point assignment on the image plane. To do so, we simulate

the multi-camera setup and render the 3D CAD model with respect to the current

pose estimate p. Let U (j) = {u
(j)
i } be the sets of detected edge points in the jth

synthetic view and Ũ (j) = {ũ
(j)
i } be the corresponding 3D CAD model points in

the jth camera coordinate system. For each point u
(j)
i ∈ U (j), we search for the

nearest point in V (j) with respect to the directional chamfer matching cost as

arg min
v
(j)
k

∈V (j)

∥

∥u
(j)
i − v

(j)
k

∥

∥+ λ
∥

∥φ
(

u
(j)
i

)

− φ
(

v
(j)
k

)
∥

∥

π
(21)

and establish 3D-to-2D point correspondences
(

ũ
(j)
i ,v

(j)
i

)

.

Using the found correspondences, our optimization algorithm minimizes the

sum of squared projection errors simultaneously in all the views:

ε(p) =
∑

j

∑

ũ
(j)
i

∥

∥PM(j)MpM
(j)−1

ũ
(j)
i − v

(j)
i

∥

∥

2
. (22)

Note that both the 3D points ũ
(j)
i and their projections are expressed in homoge-

neous coordinates, while the corresponding edge points are expressed in Cartesian

image coordinates. With a slight abuse of notation, in this formulation, we assume

that the projections of the 3D points have been converted to 2D image coordinates

before measuring the distances.

The nonlinear least squares error function given in (22) is minimized using the

Gauss-Newton algorithm. Starting with the initial pose estimate p0, we improve

the estimation via the iterations

pt+1 = pt +∆p. (23)
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The update vector ∆p is given by the solution of the normal equations

(JT
ε
Jε)∆p = −JT

ε
ε, (24)

where ε ∈ R
N is the residual vector comprising the N summed error terms in (22),

and Jε is the N×6 Jacobian matrix of ε with respect to p, evaluated at pt. Similar

to the ICP algorithm, the correspondence and minimization problems are solved

iteratively until convergence.

Implementation for Bin Picking: The pose refinement method could be used

with a single view to refine the coarse pose estimate. However, we found that

the estimation accuracy obtained using a single view is not enough for accurate

grasping. To increase the accuracy, we use a two-view approach. We move the

robot arm to a second location and capture the scene again using the MFC. The

second location is determined depending on the coarse pose estimate of a detected

object, such that in the second view the object is captured at the center of the image

and from a different out-of-plane rotation angle.

Since we perform the coarse pose estimation on the first view, typically the

projection errors in the second view are larger than those in the first view. This is

particularly the case when the distance between the camera and the object is very

different from the hypothesized distance tz that was used to generate the database

(Section 4.3). To improve convergence, we first perform the refinement using the

first view only, for several iterations, and then jointly using both views. In general,

we found that 20 iterations suffice for convergence.

4.6 Error Detection and Pose Correction in the Gripper

The estimated 3D pose of the object is used to grasp the object using the gripper

and lift it out of the part container. The grasping will fail if the estimated pose is

inaccurate. Moreover, even if the estimated pose is correct, the grasping process

may introduce errors because of slippage and interference from the other objects.

These can result in a grasping failure (object is not picked up) or in the object

having the wrong pose in the gripper, which would make it impossible to perform

subsequent assembly tasks. Therefore, after grasping, we use the gripper camera to

detect these errors and correct the object pose before the next stage in the assembly.

The goal of this error detection and pose correction process is to determine

whether the object is grasped with the correct pose. We use a standard camera as

the gripper camera and mount it above the wrist joint of the robot arm, as shown

in Figure 5. The gripper camera is focused on the tip of the gripper and captures

an image of the object after it is lifted out the part container. We use the Canny

edge detector to extract edges from the image acquired by the gripper camera. The

extracted edges include both texture and depth edges, which are not as robust as the
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depth edges extracted using the MFC. However, since the object is already isolated

in the gripper, we find that these edges work well for error detection.

Since we know the ideal pose of the object in the gripper (the pose that would

occur if there were no error in the initial pose estimation and gripping process),

we use this ideal pose as the initial guess and apply the pose refinement algorithm

described in Section 4.5. If the refined pose is very different from the ideal pose

or the matching cost becomes larger than a threshold, then we detect it as an error

and drop the object back into the part container. Otherwise, we use the refined

pose for the subsequent assembly task. Since the gripper camera is located above

the robot’s wrist joint, we can obtain a second view of the object in the gripper

with a different pose by rotating the wrist and capturing another image using the

gripper camera. In the experiments (see Section 5.1.4), we show that single-view

pose estimation is sufficient for detecting errors, but for pose correction, two-view

pose estimation is preferable due to the higher accuracy required.

Foreground Extraction: We exploit robot motion to make the pose estimation

in the gripper more accurate and efficient. The idea is to move the robot arm during

the exposure time of the camera, while keeping the relative pose between the cam-

era and the gripper fixed. This can be achieved by fixing the joints of the robot that

are between the gripper and the arm segment to which the camera is attached (not

moving the wrist joint) and moving the other joints. This robot motion introduces

blur only in the background while keeping the foreground object sharp. As shown

in Figure 11, images captured during such a robot motion produce sharp edges only

on the foreground object (which is stationary relative to the camera), leading to ac-

curate and efficient pose estimation. We call this foreground extraction, because it

is essentially the reverse of standard background subtraction.

5 Experiments

We conducted extensive evaluations of the proposed algorithm for several applica-

tions using challenging real and synthetic datasets. In this section, we first demon-

strate results for the robotic bin-picking system described in Section 4 and then

present results of the proposed shape matching algorithm (described in Section 3)

for other applications: deformable object detection using a hand-drawn shape, and

human pose estimation.

Note that in all of our experiments, we emphasize our FDCM algorithm’s im-

provement in accuracy and speed compared to CM and OCM. For deformable ob-

ject detection and human pose estimation, the performance of FDCM is roughly

comparable to state-of-the-art methods, and if desired the FDCM estimates could

be further refined by using them as initial hypotheses for more computationally

expensive point registration algorithms.
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(a) (b) (c) (d)

Figure 11: Foreground extraction. Images captured by the gripper camera (a) while

the robot arm is fixed and (c) during a robot arm motion in which the relative pose

between the object and the gripper camera is fixed. Note that in (c), the back-

ground is blurred due to the motion, while the foreground object remains sharp.

Corresponding Canny edge detection results using the same threshold are shown

in (b) and (d).

In all our experiments, we used q = 60 orientation channels. We set the weight-

ing factor λ = 180
6·π , which means that a 6◦ error in line orientation carries the same

penalty as a 1-pixel distance in image plane.

5.1 Pose Estimation for Robotic Bin Picking

5.1.1 Synthetic Examples

We quantitatively evaluated the accuracy of the proposed matching algorithm to de-

tect and localize objects in highly cluttered scenes on an extensive synthetic dataset.

The synthetic dataset was generated using 3D models of 6 objects, with 3D shapes

of varying complexity, which were placed randomly one over the other to generate

several cluttered scenes. We computed depth-edge images by simulating the MFC

and its cast shadows in software using OpenGL. The average occlusion of each

part in the dataset was 15%, while the maximum occlusion was 25%. Moreover,

in order to simulate missing depth edges and other imperfections in MFC imaging,

a small fraction (about 10–15%) of the depth edges were removed. Furthermore,

the depth-edge images were corrupted with significant noise by adding uniformly

sampled line segments. There were a total of 606 such synthetic images rendered

under this setup, six of which are shown in Figure 12.

For each object in this experiment, we generated a database containing K =
300 shape templates, one for each of the uniformly sampled out-of-plane rotations

(see Section 4.3). For each query image, we retrieved the best template pose using
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Table 1: Detection failure rates and processing time in highly cluttered scene with

multiple objects.

Algorithm Circuit Diamond Ellipse T-Nut Knob Wheel Avg. Time

Breaker Part Part (sec)

FDCM (ours) 0.03 0.01 0.05 0.11 0.04 0.08 0.05 0.71

OCM [SBC08] 0.05 0.05 0.14 0.17 0.04 0.17 0.10 65.3

CM 0.11 0.22 0.26 0.34 0.26 0.22 0.24 29.1

a brute force search scheme (over all in-plane rotation and translation parameters).

Full 3D pose of the objects were then recovered for a known depth using the es-

timated in-plane transformation parameters together with the out-of-plane rotation

parameters that generated the template poses. An estimation was labeled as correct

if the position was within 5 mm, and the three estimated angles were each within

10◦, of the ground truth pose.

Detection and Localization: We compared the performance of our proposed

FDCM to CM (described in Section 3.1) and OCM [SBC08]. The detection fail-

ure rates and processing times are shown in Table 1. Whereas CM had an average

detection failure rate of 0.24, the proposed FDCM algorithm had a failure rate of

only 0.05. It also improved upon the error rate of the competing state-of-the-art

matching formulation (OCM) by a factor of 2. Notice that objects with discrimi-

native shapes, such as the diamond part and the circuit breaker part, are easier to

detect and localize. In contrast, the T-nut object, which has a simple shape, is rela-

tively difficult to detect, since false edges from clutter and other objects frequently

mislead the optimization algorithm. Our FDCM algorithm is 40× faster than CM,

and 90× faster than OCM: The average detection time of FDCM was 0.71 seconds,

compared to 29.1 seconds for CM and 65.3 seconds for OCM. Several examples

of successful detections for various objects in challenging scenarios are shown in

Figure 12.

Robustness to Occlusion: We further quantitatively evaluated the robustness

of the FDCM algorithm to varying degrees of occlusion, from no occlusion to an

average occlusion of 30%. The results are presented in Figure 13. We achieved

greater than 99% detection rate up to 5% occlusion, and about 85% detection rate

when one-fourth (25%) of the object is occluded.

Two-View Pose Refinement: In this experiment, we evaluate the accuracy of

the pose refinement algorithm described in Section 4.5. Using the same set of 6

objects, we render one object at a time in random poses. After a coarse pose es-

timate was computed, both the refinement schemes using one view and that using

two views were applied independently to further refine the estimates. The final

pose estimates were compared to the ground truth pose. The results in Table 2,

averaged over 6 objects and 100 trials each, demonstrate that the two-view ap-
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(b) (c) (d)(a)

Diamond Part

Circuit Breaker Part

T-Nut

Ellipse Part

Knob

Wheel

Figure 12: Examples of successful pose estimation on the synthetic dataset.

(a) Photo of each part. (b) Sample depth-edge template. (c) Rendered query image.

(d) Pose estimation result.
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Figure 13: Detection rate versus percentage of occlusion.

Table 2: Comparison of the average absolute pose estimation error between the

one-view and two-view approaches.

Average tX tY tZ θX θY θZ
absolute error mm mm mm degree degree degree

1 View 0.127 0.165 1.156 0.674 0.999 0.349

2 View 0.094 0.096 0.400 0.601 0.529 0.238

proach outperformed the one-view approach. In the rendered images, 1 mm cor-

responded to about 6.56 pixels on the image plane, indicating that the two-view

estimate achieves sub-pixel accuracy.

5.1.2 Real Examples

Object Detection and Pose Estimation in Cluttered Scenes: To quantitatively

evaluate performance, we performed several real experiments. Six different types

of objects were laid one on top of another in a cluttered manner as shown in Fig-

ure 14. We then extracted depth edges using the MFC and performed object detec-

tion and pose estimation on the resulting depth-edge images. In each trial of this

experiment, we used the system to detect a single instance of an object type. Over

several hundred trials, the average detection rate was 95%. Shown in Figure 14

are some typical example trials of this experiment. On each image, we overlay the

silhouettes of the detector outputs for three different object types. Notice that some

of the parts have no texture, while others are quite specular. In such challenging

scenarios, methods based on traditional image edges (e.g., Canny edges) usually

fail, but the MFC enables us to robustly extract depth edges. Also notice that since

the depth edge features are not affected by texture, our method works robustly even

for parts that have artificial texture painted on them. This indicates that the method

can work in the presence of oil, grime, or dirt (which are all common in industrial
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Figure 14: Results using real examples. The system detected and accurately esti-

mated the pose for specular (shiny metal) objects, textureless objects (such as the

ones in the bottom center image), and objects that have potentially misleading tex-

ture painted on them (such as the ones in the bottom right image). Overlaid on each

image is the top detector output for each of three different object types.

environments), all of which add artificial texture to the surface of objects.

Statistical Evaluation: In order to statistically evaluate the accuracy of the

proposed system, we need a method of independently obtaining the 3D ground

truth pose of the object. Since there was no simple way of obtaining this (es-

pecially when objects were stacked on top of each other or piled in a bin), we

instead devised a method to evaluate the consistency of pose estimate across multi-

ple viewpoints of the camera. We placed an object in the scene and commanded the

robot arm to move to several rotations and translations, so that data are collected

when the camera is pointing at the object using many different camera poses. The

camera poses were maintained such that the distance along the z-axis between the

camera and the object is ±10 mm from the hypothesized distance tz that was used

to generate the database (Section 4.3). From each camera pose, MFC images were

captured, and our algorithm was used to estimate the pose of the object in the cam-

era coordinate system. Since the object is static, the estimated pose of the object

in the world coordinate system should be identical irrespective of the viewpoint

of the MFC. For each view, the estimated pose of the object was transformed to

the world coordinate system using the known position and orientation of the robot

arm. We repeated this experiment for 7 different objects, with 25 trials for each ob-

ject (the object was placed in a different pose for each trial). During each of these

independent trials, the robot arm was moved to 40 different viewpoints in order
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Figure 15: Results from real examples. Histograms of deviations from the median

pose estimate, in mm (top) and degrees (bottom), across multiple trials of pose

estimation.

to evaluate the consistency of the pose estimates. The histogram of the deviations

from the median pose estimate is shown in Figure 15. The results demonstrate that

the algorithm computes consistent estimates, with a standard deviation of less than

0.5 mm in the in-plane directions (x, y) and about 2 degrees in each of the three

orientation angles. The standard deviation of the estimate in the z direction (along

the optical axis of camera) is slightly larger (approximately 1.2 mm).

Effect of Depth Variation: In our experiments, the system was optimized

for a part container with a depth variation of 40 mm and a distance along the z-

axis of 275 mm from the camera to the top of the part container. As explained in

Section 4.3, the pose estimation algorithm requires a rough value of the distance,

tz , from the camera to the objects along the z-axis. In this experiment, we analyze

how deviations of the true object distance from the hypothesized distance tz affect

pose estimation accuracy.

We placed a single object in the scene and performed pose estimation at several

different camera poses with offsets along the z-axis from the hypothesized distance

of 275 mm. At each z offset (height), we repeated the pose estimation for 100
trials by randomly changing the camera pose in the (x, y) directions. As in the

previous experiment, we used the median pose estimate as the ground truth pose.

An estimate is labeled as correct if the translation error, computed as the Euclidean

distance between the (x, y, z) translation vectors, is less than 3 mm and the rotation

error, computed as the geodesic distance between two 3D rotations, is less than 8◦.
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Figure 16: Effect of depth variation on pose estimation.

The accuracy of the system is shown in Figure 16. The pose estimation algorithm

is quite robust to depth variations between [−20,+50] mm, which is significantly

larger than our target capture range. Outside of this range, our two-view pose

refinement algorithm failed to converge to the true solution for several trials, due to

the incorrect distance assumption causing large projection errors. This experiment

suggests that for part containers with larger depth variations, coarse pose estimation

should be performed at multiple scales, targeting different depths, to get a better

initial depth estimation. Alternatively, we could move the robot arm and change

the height of the capture position based on previous object pose estimates in order

to maintain a roughly constant distance between the camera and the objects.

5.1.3 Bin-Picking System Performance

We evaluated the performance of bin picking using the robotic system shown in

Figure 5. Extension 1 demonstrates our system accomplishing this task in real time.

Figure 5 shows a part container (bin) containing a large number of circuit breaker

parts. The gripper (end effector) of the robot arm is designed to grasp each of the

objects by first inserting its three metal pins in the closed state through a hole in the

object. The gripper then opens by moving the three pins radially outward, thereby

exerting outward horizontal forces on the inside edges of the hole. The gripper has

a diameter of 3 mm in its closed state, while the hole in the object has a diameter of

about 6 mm. Therefore, in order to successfully insert the gripper inside the hole

(before lifting the object), the pose estimate error in the (x, y) directions must be

less than 1.5 mm. If the pose estimate error is greater, the pins will not be inserted

into the hole, resulting in a failure to grasp the object.
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Our system was able to successfully guide the robot arm in the grasping task,

achieving a grasping success rate of 94% over several hundred trials. There were

two main causes for the grasping failures in 6% of the trials: (1) This particular

target object has very similar depth edges when it is flipped upside-down, which

occasionally led to inaccurate pose estimates; (2) Even when the pose estimation

was correct, the hole of the object was occasionally occluded by other objects,

resulting in a grasping failure. It is important to note that all of these grasping

failures were detected by the error-detection process using the gripper camera, so

they did not affect the subsequent assembly task. Among the instances of success-

ful grasping, a few trials resulted in the object being picked up by the gripper in

an incorrect pose, due to interference from neighboring objects during the pickup

process. These cases were also detected and were corrected automatically by our

system using the gripper camera and our process for pose estimation and correction

in the gripper (described in Section 4.6).

Processing Time: The entire pose estimation process requires less than 1 sec-

ond for an object in an extremely cluttered environment (on an Intel quad-core 3.4
Ghz CPU with 3 GB memory). The decomposition of processing time is 0.6 sec-

onds for FDCM and 0.3 seconds for the multi-view pose refinement algorithm. As

shown in Extension 1, almost all of the computation occurs during robot motion,

so the computation time has almost no effect on the system operation speed. In

environments with minimal clutter, the algorithm runs about twice as fast, since

there are significantly fewer edges in the captured images.

5.1.4 Pose Estimation in the Gripper

To evaluate the system’s potential for error correction in the gripper, we measure

the accuracy of pose estimation in the gripper using different numbers of views. In

this experiment, we picked up circuit breaker parts from the part container as de-

scribed in Section 5.1.3. After each pickup, we captured 8 images at different wrist

rotation angles, as shown in Figure 17, using the gripper camera and foreground

extraction during robot motion (described in Section 4.6). We performed the pose

refinement algorithm (Section 4.5) using from 1–8 views (for these experiments,

we used the ideal pose of the object as the initial guess).

Figure 18 shows pose estimation errors using different numbers of views. Since

the ground truth of the object pose in the gripper is not available, we used the pose

that was estimated using all 8 views as the ground truth, and compared it with

the poses estimated using different numbers (1–7) of views. The plots show the

average estimation errors and standard deviations of these estimation errors (error

bars) over 100 trials. Similar to our observations from synthetic data (shown in

Table 2), the translation errors on real data are smaller for two-view estimation

than for one-view estimation (see Figure 18, left). Two-view pose estimation is
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Figure 17: Example eight views captured with different wrist rotation angles.
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Figure 18: Pose estimation errors in the gripper using different numbers of views.

sufficient for accurate pose correction (error less than 0.5 mm), and using more

than two views does not further improve the estimation. The rotation estimation

errors are roughly the same (< 2 degrees) for each number of views. Figure 19

shows a typical example of two-view pose estimation. The estimated pose of the

object matches the object’s outline in both views quite closely, illustrating the high

accuracy of the estimated pose. The difference between this estimated pose and

the ideal pose provides an idea of the typical size of the initial pose error in the

gripper. Our system automatically estimates and corrects this error in the gripper.

5.2 Deformable Object Detection

We applied the FDCM algorithm to object detection and localization on the ETHZ

shape class dataset [FTG06]. The dataset consists of 255 images, each of which

contains one or more objects from five different object classes: apple logos, bot-

tles, giraffes, mugs, and swans. The objects have large variations in appearance,

viewpoint, size, and non-rigid deformation. We followed the experimental setup

proposed in [FTG06, FJS10], in which a single hand-drawn shape for each class is

used to detect and localize its instances in the dataset.

Our detection system is based on scanning using a sliding window. We retain

all the hypotheses whose matching costs are less than the detection threshold. We

densely sampled the hypothesis space and searched the images at 8 different scales
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1st View 2nd View

Ideal Pose

Estimated Pose

Figure 19: Two-view pose estimation in the gripper. The ideal pose is used as the

initial guess and refined to give the estimated pose. (Both poses are superimposed

on the input images of the two views).

and 3 different aspect ratios. The ratio between two consecutive scales is 1.2 and

between consecutive aspect ratios is 1.1. We performed non-maximal suppression

by retaining only the lowest-cost hypothesis among any group of detections that

have significant spatial overlap.

In Figure 20, we plot detection rate vs. false positives per image. The curve

is generated via altering the detection threshold for the matching cost. We com-

pared our approach with OCM [SBC08] and two recent studies by Ferrari et.

al. [FTG06, FJS10]. Our approach outperforms OCM at all the false positive rates

and is comparable to [FJS10]. Compared to [FJS10], our results are better for

two classes (giraffes and bottles) and slightly worse for the swans class, while for

two other classes (apple logos and mugs), the numbers are almost identical. As

shown in the detection examples (Figure 21), object localization is highly accu-

rate. Note that [ZWWS08] and [RJM08] report slightly better performance on this

dataset, but we could not include their results in our graphs because their results

were only reported in graphical format (as precision-recall curves). Also note that

these methods are orders of magnitude slower than FDCM.

Complexity Comparison: The average number of points in the shape tem-

plates were 1, 610, computed over five classes. Our line-based representation used

an average of 39 line segments per class. Note that the number of lines per class

provides an upper bound on the number of computations required. Since the algo-

rithm retrieves only the hypotheses having a smaller cost than the detection thresh-

old, the summation was terminated for a hypothesis if the cost exceeded this value.

By using this bound in the hypothesis domain (see Section 3.6.1 for more details),

on average only 14 line segments were evaluated per hypothesis.

The average evaluation time for a single hypothesis was 0.40 µs using FDCM,

whereas this process took 51.50 µs for OCM and 17.59 µs for CM. The proposed
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Figure 20: Receiver operating characteristic (ROC) curves on the ETHZ shape

dataset comparing our proposed approach to OCM [SBC08] and two recent studies

by Ferrari et. al. [FTG06, FJS10].
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Figure 21: Several localization results on the ETHZ shape dataset. The images are

searched using a single hand-drawn shape shown in the lower right of the images

in the rightmost column.

method is 43× faster than chamfer matching and 127× faster than oriented chamfer

matching. Note that the speed up is more significant for larger-sized templates,

since our cost computation is insensitive to the template size, whereas the cost of

standard chamfer matching increases linearly.

On average, we evaluated 1.05 million hypotheses per image, which took 0.42
seconds. Using the bound in the spatial domain presented in Section 3.6.2 enabled

91% of the hypotheses to be skipped, reducing the average evaluation time per

image to 0.39 seconds. Note that the speedup is not proportional to the fraction

of hypotheses skipped because in order to use the bound in the spatial domain, we

could no longer use the bound in the hypothesis domain (Section 3.6.1).
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Table 3: Pose estimation errors on three action sequences. Errors are measured as

the mean absolute pixel distance from the ground truth marker locations.

Algorithm Walking Jogging Boxing Average

FDCM (ours) 7.3 12.5 9.7 9.8

OCM [SBC08] 15.0 15.3 13.6 14.6

CM 9.3 13.6 10.6 11.2

Figure 22: Human pose estimation results. First row: Walking sequence. Second

row: Jogging and boxing sequences. Estimated poses and contours are overlayed

on the images.

5.3 Human Pose Estimation

We utilized our shape-matching framework for human pose estimation, which is a

highly challenging task due to the large set of possible articulations of the human

body. As proposed in [MM02], we matched a gallery of human shapes that have

known poses to each test image. Due to articulation, the size of the pose gallery

needed for accurate pose estimation is large. Hence, it becomes increasingly im-

portant to have an efficient matching algorithm that can cope with background

clutter.

The experiments were performed on the HumanEva dataset [SB06a], which

contains video sequences of multiple human subjects performing various activities

captured from different viewing directions. The ground truth locations of human

joints at each image were extracted using attached markers. Shape gallery tem-

plates were acquired in two steps. First, we computed the human silhouettes via
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HumanEva background subtraction code. Then, using the Canny edges around

the extracted silhouette outlines, we obtained the shape templates. We performed

the experiment on video sequences from one subject of three actions: walking,

jogging, and boxing. For each action, we included all of the images from the

subject’s training sequence (about 1, 000–2, 000 images) in the shape gallery. We

used this to estimate the subject’s pose in the corresponding validation sequence.

As we extracted Canny edges directly from the validation images, they included

us significant amount of background clutter. The best shape template, together

with its scale and location, were then retrieved via the matching framework. We

quantitatively evaluated the mean absolute error between the ground truth marker

locations and the estimated pose on the image plane. The results, presented in Ta-

ble 3, demonstrate significant improvements in accuracy compared to OCM and

CM. Our proposed approach can evaluate more than 1.1 million hypotheses per

second, whereas CM and OCM can evaluate only 31, 000 and 14, 000 hypotheses

per second, respectively. Examples of pose estimation are shown in Figure 22.

The code for FDCM can be downloaded from the first author’s website.

6 Conclusion

We presented a practical robotic system that uses novel computer vision hardware

and algorithms for detection and 3D pose estimation of industrial parts in a clut-

tered bin. Our implementation of the system on a robotic arm achieves accuracies

on the order of 1 mm (reduced to less than 0.5 mm with automatic error correction)

and 2◦, with a total processing time of less than 1 second. Given a CAD model,

a new object can be integrated into our system in less than 10 minutes. Our goal

with this line of research is to make substantial progress towards more versatile

and easy-to-customize robotic bin-picking systems.
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A Index to Multimedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.org.

Table 4: Multimedia Extensions
Extension Type Description

1 Video

System demo video. In the video, we demonstrate

the robustness and real-time performance of the

proposed system for picking up parts in a chal-

lenging setting. Through showing 10 consecutive

pickups of an industrial part from a highly clut-

tered bin, we illustrate the applicability of the pro-

posed system to industrial assembly. Each of the

major components of the algorithm is highlighted.

The video also contains several close-up views of

the pickups.
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