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Abstract

We present a technique for separating foreground objects

from the background in a video. Our method is fast, fully au-

tomatic, and makes minimal assumptions about the video.

This enables handling essentially unconstrained settings,

including rapidly moving background, arbitrary object mo-

tion and appearance, and non-rigid deformations and ar-

ticulations. In experiments on two datasets containing over

1400 video shots, our method outperforms a state-of-the-

art background subtraction technique [4] as well as meth-

ods based on clustering point tracks [6, 18, 19]. Moreover,

it performs comparably to recent video object segmentation

methods based on object proposals [14, 16, 27], while being

orders of magnitude faster.

1. Introduction

Video object segmentation is the task of separating fore-

ground objects from the background in a video [14, 18, 26].

This is important for a wide range of applications, includ-

ing providing spatial support for learning object class mod-

els [19], video summarization, and action recognition [5].

The task has been addressed by methods requiring a user

to annotate the object position in some frames [3, 20, 26,

24], and by fully automatic methods [14, 6, 18, 4], which

input just the video. The latter scenario is more practi-

cally relevant, as a good solution would enable processing

large amounts of video without human intervention. How-

ever, this task is very challenging, as the method is given no

knowledge about the object appearance, scale or position.

Moreover, the general unconstrained setting might include

rapidly moving backgrounds and objects, non-rigid defor-

mations and articulations (fig. 5).

In this paper we propose a technique for fully automatic

video object segmentation in unconstrained settings. Our

method is computationally efficient and makes minimal as-

sumptions about the video: the only requirement is for the

object to move differently from its surrounding background

in a good fraction of the video. The object can be static

in a portion of the video and only part of it can be mov-

ing in some other portion (e.g. a cat starts running and then

stops to lick its paws). Our method does not require a static

or slowly moving background (as opposed to classic back-

ground subtraction methods [9, 4, 7]). Moreover, it does

not assume the object follows a particular motion model,

nor that all its points move homogeneously (as opposed to

methods based on clustering point tracks [6, 17, 18]). This

is especially important when segmenting non-rigid or artic-

ulated objects such as animals (fig. 5).

The key new element in our approach is a rapid technique

to produce a rough estimate of which pixels are inside the

object based on motion boundaries in pairs of subsequent

frames (sec. 3.1). This initial estimate is then refined by

integrating information over the whole video with a spatio-

temporal extension of GrabCut [21, 14, 26]. This second

stage automatically bootstraps an appearance model based

on the initial foreground estimate, and uses it to refine the

spatial accuracy of the segmentation and to also segment the

object in frames where it does not move (sec. 3.2).

Through extensive experiments on over 1400 video shots

from two datasets [24, 19], we show that our method: (i)

handles fast moving backgrounds and objects exhibiting a

wide range of appearance, motions and deformations, in-

cluding non-rigid and articulated objects; (ii) outperforms

a state-of-the-art background subtraction technique [4] as

well as methods based on clustering point tracks [6, 18, 19];

(iii) is orders of magnitude faster than recent video object

segmentation methods based on object proposals [14, 16,

27]; (iv) outperforms the popular method [14] on the large

YouTube-Objects dataset [19]; (v) produces competitive re-

sults on the small SegTrack benchmark [24]. The source

code of our method is released at http://groups.

inf.ed.ac.uk/calvin/software.html

2. Related Work

Interactive or supervised methods. Several methods for

video object segmentation require the user to manually an-

notate a few frames with object segmentations and then

propagate these annotations to all other frames [3, 20, 26].

Similarly, methods based on tracking [8, 24], require the

user to mark the object positions in the first frame and then

track them in the rest of the video.

Background subtraction. Classic background subtrac-

tion methods model the appearance of the background at

each pixel and consider pixels that change rapidly to be
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foreground. These methods typically assume a stationary,

or slowly panning camera [9, 4, 7]. The background should

change slowly in order for the model to update safely with-

out generating false-positive foreground detections.

Clustering point tracks. Several automatic video seg-

mentation methods track points over several frames and

then cluster the resulting tracks based on pairwise [6, 17]

or triplet [18] similarity measures. The underlying assump-

tion induced by pairwise clustering [6, 17] is that all ob-

ject points move according to a single translation, while the

triplet model [18] assumes a single similarity transforma-

tion. These assumptions have trouble accommodating non-

rigid or articulated objects. Our method instead does not at-

tempt to cluster object points and does not assume any kind

of motion homogeneity. The object only needs to move suf-

ficiently differently from the background to generate mo-

tion boundaries along most of its physical boundary. On the

other hand, these methods [6, 17, 18] try to place multiple

objects in separate segments, whereas our method produces

a simpler binary segmentation (all objects vs background).

Ranking object proposals. The works [14, 16, 27] are

closely related to ours, as they tackle the very same task.

These methods are based on finding recurring object-like

segments, aided by recent techniques for measuring generic

object appearance [10], and achieve impressive results on

the SegTrack benchmark [24]. While the object proposal in-

frastructure is necessary to find out which image regions are

objects vs background, it makes these methods very slow

(minutes/frame). In our work instead, this goal is achieved

by a much simpler, faster process (sec. 3.1). In sec. 4 we

show that our method achieves comparable segmentation

accuracy to [14] while being two orders of magnitude faster.

Oversegmentation. Grundmann et al. [13] oversegment

a video into spatio-temporal regions of uniform motion and

appearance, analog to still-image superpixels [15]. While

this is a useful basis for later processing, it does not solve

the video object segmentation task on its own.

3. Our approach

The goal of our work is to segment objects that move dif-

ferently than their surroundings. Our method has two main

stages: (1) efficient initial foreground estimation (sec. 3.1),

(2) foreground-background labelling refinement (sec. 3.2).

We now give a brief overview of these two stages, and then

present them in more detail in the rest of the section.

(1) Efficient initial foreground estimation. The goal of

the first stage is to rapidly produce an initial estimate of

which pixels might be inside the object based purely on

motion. We compute the optical flow between pairs of sub-

sequent frames and detect motion boundaries. Ideally, the

motion boundaries will form a complete closed curve co-

inciding with the object boundaries. However, due to in-

accuracies in the flow estimation, the motion boundaries

Figure 1. Motion boundaries.. (a) Two input frames. (b) Optical

flow �fp. The hue of a pixel indicates its direction and the color

saturation its velocity. (c) Motion boundaries bmp , based on the

magnitude of the gradient of the optical flow. (d) Motion bound-

aries bθp, based on difference in direction between a pixel and its

neighbours. (e) Combined motion boundaries bp. (f) Final, binary

motion boundaries after thresholding, overlaid on the first frame.

are typically incomplete and do not align perfectly with ob-

ject boundaries (fig. 1f). Also, occasionally false positive

boundaries might be detected. We propose a novel, compu-

tationally efficient algorithm to robustly determine which

pixels reside inside the moving object, taking into account

all these sources of error (fig. 2c).

(2) Foreground-background labelling refinement. As

they are purely based on motion boundaries, the inside-

outside maps produced by the first stage typically only ap-

proximately indicate where the object is. They do not accu-

rately delineate object outlines. Furthermore, (parts of) the

object might be static in some frames, or the inside-outside

maps may miss it due to incorrect optical flow estimation.

The goal of the second stage is to refine the spatial ac-

curacy of the inside-outside maps and to segment the whole

object in all frames. To achieve this, it integrates the infor-

mation from the inside-outside maps over all frames by (1)

encouraging the spatio-temporal smoothness of the output

segmentation over the whole video; (2) building dynamic

appearance models of the object and background under the

assumption that they change smoothly over time. Incor-

porating appearance cues is key to achieving a finer level

of detail, compared to using only motion. Moreover, af-

ter learning the object appearance in the frames where the

17781778



2

2

4

5

3

1
1

0 0 0 1 1 1 2 2 2S:

1 W

1

x

Figure 2. Inside-outside maps. (Left) The ray-casting observation. Any ray originating inside a closed curve intersects it an odd number

of time. Any ray originating outside intersects it an even number of times. This holds for any number of closed curves in the image.

(Middle) Illustration of the integral intersections data structure S for the horizontal direction. The number of intersections for the ray

going from pixel x to the left border can be easily computed as Xleft(x, y) = S(x − 1, y) = 1, and for the right ray as Xright(x, y) =
S(W, y)− S(x, y) = 1. In this case, both rays vote for x being inside the object. (Right) The output inside-outside map M t.

inside-outside maps found it, the second stage uses it to seg-

ment the object in frames where it was initially missed (e.g.

because it is static).

3.1. Efficient initial foreground estimation

Optical flow. We begin by computing optical flow be-

tween pairs of subsequent frames (t, t + 1) using the state-

of-the-art algorithm [6, 22]. It supports large displacements

between frames and has a computationally very efficient

GPU implementation [22] (fig. 1a+b).

Motion boundaries. We base our approach on motion

boundaries, i.e. image points where the optical flow field

changes abruptly. Motion boundaries reveal the location of

occlusion boundaries, which very often correspond to phys-

ical object boundaries [23].

Let �fp be the optical flow vector at pixel p. The sim-

plest way to estimate motion boundaries is by computing

the magnitude of the gradient of the optical flow field:

b
m
p = 1− exp(−λ

m||∇ �fp||) (1)

where bmp ∈ [0, 1] is the strength of the motion boundary at

pixel p; λm is a parameter controlling the steepness of the

function.

While this measure correctly detects boundaries at

rapidly moving pixels, where bmp is close to 1, it is unre-

liable for pixels with intermediate bmp values around 0.5,

which could be explained either as boundaries or errors due

to inaccuracies in the optical flow (fig. 1c). To disambiguate

between those two cases, we compute a second estimator

bθp ∈ [0, 1], based on the difference in direction between the

motion of pixel p and its neighbours N :

b
θ
p = 1− exp(−λ

θ max
q∈N

(δθ2p,q)) (2)

where δθp,q denotes the angle between �fp and �fq . The idea

is that if n is moving in a different direction than all its

neighbours, it is likely to be a motion boundary. This esti-

mator can correctly detect boundaries even when the object

is moving at a modest velocity, as long as it goes in a dif-

ferent direction than the background. However, it tends to

produce false-positives in static image regions, as the direc-

tion of the optical flow is noisy at points with little or no

motion (fig. 1d).

As the two measures above have complementary failure

modes, we combine them into a measure that is more reli-

able than either alone (fig. 1e):

bp =

{

bmp , if bmp > T

bmp · bθp, if bmp ≤ T,
(3)

where T is a high threshold, above which bmp is considered

reliable on its own. As a last step we threshold bp at 0.5 to

produce a binary motion boundary labelling (fig. 1f).

Inside-outside maps. The produced motion boundaries

typically do not completely cover the whole object bound-

ary. Moreover, there might be false positive boundaries, due

to inaccurracy of the optical flow estimation. We present

here a computationally efficient algorithm to robustly esti-

mate which pixels are inside the object while taking into

account these sources of error.

The algorithm estimates whether a pixel is inside the

object based on the point-in-polygon problem [12] from

computational geometry. The key observation is that any

ray starting from a point inside the polygon (or any closed

curve) will intersect the boundary of the polygon an odd

number of times. Instead, a ray starting from a point out-

side the polygon will intersect it an even number of times

(figure 2a). Since the motion boundaries are typically in-

complete, a single ray is not sufficient to determine whether

a pixel lies inside the object. Instead, we get a robust es-

timate by shooting 8 rays spaced by 45 degrees. Each ray

casts a vote on whether the pixel is inside or outside. The

final inside-outside decision is taken by majority rule, i.e. a

pixel with 5 or more rays intersecting the boundaries an odd

number of times is deemed inside.

Realizing the above idea with a naive algorithm would

be computationally expensive (i.e. quadratic in the number

of pixels in the image). We propose an efficient algorithm

which we call integral intersections, inspired by the use of

integral images in [25]. The key idea is to create a special
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data structure that enables very fast inside-outside evalua-

tion by massively reusing the computational effort that went

into creating the datastructure.

For each direction (horizontal, vertical and the two diag-

onals) we create a matrix S of the same size W ×H as the

image. An entry S(x, y) of this matrix indicates the num-

ber of boundary intersections along the line going from the

image border up to pixel (x, y). For simplicity, we explain

here how to build S for the horizontal direction. The algo-

rithm for the other directions is analogous. The algorithm

builds S one line y at a time. The first pixel (1, y), at the left

image border, has value S(1, y) = 0. We then move right-

wards one pixel at a time and increment S(x, y) by 1 each

time we transition from a non-boundary pixel to a boundary

pixel. This results in a line S(:, y) whose entries count the

number of boundary intersections (fig. 2b.).

After computing S for all horizontal lines, the data struc-

ture is ready. We can now determine the number of inter-

sections X for both horizontal rays (left→right, right→left)

emanating from a pixel (x, y) in constant time by

Xleft(x, y) = S(x− 1, y) (4)

Xright(x, y) = S(W, y)− S(x, y) (5)

where W is the width of the image, i.e. the rightmost pixel

in a line (fig. 2b).

Our algorithm visits each pixel exactly once per direc-

tion while building S, and once to compute its vote, and is

therefore linear in the number of pixels in the image. The

algorithm is very fast in practice and takes about 0.1s per

frame of a HD video (1280x720 pixels) on a modest CPU

(Intel Core i7 at 2.0GHz).

For each video frame t, we apply the algorihtm on all 8

directions and use majority voting to decide which pixels

are inside, resulting is an inside-outside map M t (fig. 2c).

3.2. Foreground-background labelling refinement

We formulate video segmentation as a pixel labelling

problem with two labels (foreground and background). We

oversegment each frame into superpixels St [15], which

greatly reduces computational efficiency and memory us-

age, enabling to segment much longer videos.

Each superpixel sti ∈ St can take a label lti ∈ {0, 1}. A

labelling L = {lti}t,i of all superpixels in all frames repre-

sents a segmentation of the video. Similarly to other seg-

mentation works [14, 21, 26], we define an energy function

to evaluate a labeling

E(L) =
∑

t,i

At
i(l

t
i) + α1

∑

t,i

Lt
i(l

t
i) (6)

+ α2

∑

(i,j,t)∈Es

V t
ij(l

t
i , l

t
j) + α3

∑

(i,j,t)∈Et

W t
ij(l

t
i , l

t+1
j )

At is a unary potential evaluating how likely a superpixel is

to be foreground or background according to the appearance

model of frame t. The second unary potential Lt is based on

a location prior model encouraging foreground labellings in

areas where independent motion has been observed. As we

explain in detail later, we derive both the appearance model

and the location prior parameters from the inside-outside

maps M t. The pairwise potentials V and W encourage spa-

tial and temporal smoothness, respectively. The scalars α

weight the various terms.

The output segmentation is the labeling that mini-

mizes (6):
L∗ = argmin

L

E(L) (7)

As E is a binary pairwise energy function with submodular

pairwise potentials, we minimize it exactly with graph-cuts.

Next we use the resulting segmentation to re-estimate the

appearance models and iterate between these two steps, as

in GrabCut [21]. Below we describe the potentials in detail.

Smoothness V, W. The spatial smoothness potential V is

defined over the edge set Es, containing pairs of spatially

connected superpixels. Two superpixels are spatially con-

nected if they are in the same frame and are adjacent.

The temporal smoothness potential W is defined over

the edge set Et, containing pairs of temporally connected

superpixels. Two superpixels sti, s
t+1
j in subsequent frames

are connected if there at least one pixel of sti moves into

st+1
j according to the optical flow (fig. 3).

The functions V,W are standard contrast-modulated

Potts potentials [21, 26, 14]:

V
t
ij(l

t
i , l

t
j) = dis(sti, s

t
j)

−1[lti �= l
t
j ] exp(−βcol(sti, s

t
j)

2) (8)

W
t
ij(l

t
i , l

t+1
j ) = φ(sti, s

t+1
j )[lti �= l

t
j ] exp(−βcol(sti, s

t+1
j )2) (9)

where dis is the Euclidean distance between the centres of

two superpixels and col is the difference between their av-

erage RGB color. The factor that differs from the standard

definition is φ, which is the percentage of pixels within the

two superpixels that are connected by the optical flow. This

is a better weight than the Euclidean distance, as it is invari-

ant of the speed of the motion.
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Appearance model At. The appearance model consists

of two Gaussian Mixture Models over RGB colour values1,

one for the foreground (fg) and one for the background

(bg). In the task of interactive segmentation [21], where

this methodology originated, the appearance model param-

eters are estimated from some manually labelled pixels. In

this paper instead, we estimated them automatically based

on the inside-outside maps M t (sec. 3.1).

We estimate appearance models At for each frame t.

However, since the appearance of the fg and bg typically

changes smoothly over time, these models are tightly cou-

pled as their estimation integrates information over the

whole video. Hence, the collection of per-frame models can

be seen as a single dynamic appearance model.

At each frame t we estimate a fg model from all super-

pixels in the video, weighted by how likely they are to be

foreground and by how close in time they are to t. More

precisely, the weight of each superpixel st
′

i in frame t′ is

exp(−λ
A · (t− t

′)2) · rt
′

i (10)

The first factor discounts the weight of st
′

i over time. The

second factor is the percentage of pixels of st
′

i that are inside

the object according to the inside-outside map M t′ . The

estimation of bg appearance models is analogous, with the

second factor replaced by 1 − rt
′

i (i.e. the ratio of pixels

considered to be outside the object).

After estimating the foreground-background appearance

models, the unary potential At
i(l

t
i) is the log-probability of

sti to take label lti under the appropriate model (i.e. the fore-

ground model if lti = 1 and the background one otherwise).

Having these appearance models in the segmentation en-

ergy (6) enables to segment the object more accurately than

possible from motion alone, as motion estimation is inher-

ently inaccurate near occlusion boundaries. Moreover, the

appearance models are integrated over large image regions

and over many frames, and therefore can robustly estimate

the appearance of the object, despite faults in the inside-

outside maps. The appearance models then transfer this

knowledge to other positions within a frame and to other

frames, by altering towards foreground the unary potential

of pixels with object-like appearance, even if the inside-

outside maps missed them. This enables completing the

segmentation in frames where only part of the object is

moving, and helps segmenting it even in frames where it

does move at all.

Location model Lt. When based only on appearance, the

segmentation could be distracted by background regions

with similar colour to the foreground (even with perfect ap-

pearance models). Fortunately, the inside-outside maps can

provide a valuable location prior to anchor the segmenta-

tion to image areas likely to contain the object, as they move

1As the basic units are superpixels, all measurements refer to their av-

erage RGB value.

differently from the surrounding region. However, in some

frames (part of) the object may be static, and in others the

inside-outside map might miss it because of incorrect opti-

cal flow estimation (fig. 4, middle row). Therefore, directly

plugging the inside-outside maps as unary potentials in Lt

would further encourage an all-background segmentation in

frames where they missed the object.

We propose here to propagate the per-frame inside-

outside maps over time to build a more complete location

prior Lt. The key observation is that ‘inside’ classifications

are more reliable than ‘outside’ ones: the true object bound-

aries might not form a near-closed motion boundary due

to the reasons above, but accidental near-closed boundaries

rarely form out of noise. Therefore, our algorithm accumu-

lates inside points over the entire video sequence, following

the optical flow (fig. 4, bottom row).

The algorithm proceeds recursively. The value of the lo-

cation prior at a superpixel sti is initially Lt
i := rti , i.e. the

percentage of its pixels that are inside the object according

to the inside-outside map M t. We start propagating from

frame 1 to frame 2, then move to frame 3 and so on. At

each step, the value of the location prior for a superpixel

st+1
j in frame t+ 1 gets updated to

L
t+1
j := L

t+1
j + γ

∑

i φ(s
t
i, s

t+1
j ) · ψ(sti) · L

t
i

∑

i φ(s
t
i, s

t+1
j )

(11)

where the summation runs over all superpixels in frame t;

the connection weight φ is the percentage of pixels in su-

perpixel sti that connect to superpixel st+1
j by following the

optical flow (fig. 3); γ ∈ [0, 1] controls the rate of accu-

mulation; ψ is a transfer quality measure, down-weighting

propagation if the optical flow for sti is deemed unreliable

ψ(sti) = exp(−λ
ψ
∑

p∈st
i

||∇ �fp||) (12)

In essence, ψ measures the sum of the flow gradients in sti;

large gradients can indicate depth discontinuities, where the

optical flow is often inaccurate, or that sti might cover bits

of two different objects.

We run the forward propagation step above and an analo-

gous backward step, starting from the last frame towards the

first one. These two steps are run independently. The final

location prior Lt is the normalised sum of the two steps.

4. Experimental evaluation

We evaluate our method on two datasets: SegTrack [24]

and YouTube-Objects [19]. The parameters λ, T, β, γ are

kept fixed to the same values in all experiments.

4.1. SegTrack

Dataset. SegTrack [24] was originally introduced to eval-

uate tracking algorithms, and it was adopted to benchmark
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Figure 4. Location model. Top row: three video frames. Middle

row: likelihood of foreground based on the inside-outside maps

in individual frames. They miss large parts of the person in the

second and third frames, as the head and torso are not moving.

Bottom row: the location model based on propagating the inside-

outside maps. It includes most of the person in all frames.

video object segmentation by [14]. It contains 6 videos

(monkeydog, girl, birdfall, parachute, cheetah, penguin)

and pixel-level ground-truth for the foreground object in ev-

ery frame. Following [14], we discard the penguin video,

since only a single penguin is labelled in the ground-truth,

amidst a group of penguins. The videos offer various chal-

lenges, including objects of similar color to the background,

non-rigid deformations, and fast camera motion (fig. 5).

Setup. As in [14, 24], we quantify performance with the

number of wrongly labeled pixels, averaged over all frames

of a video. We set the weights α of the energy function (6)

by two-fold cross-validation. We split the dataset into two

sets of 3 and 2 videos respectively, and train the α weights

in each set. When testing our method on the videos in one

set, we use the weights trained on the other.

We compare to several methods [14, 16, 27, 6, 18, 4].

The video object segmentation method of Lee at al. [14] re-

turns a ranked list of spatio-temporal segments likely to be

objects. We report the results from their paper, which eval-

uates the segment corresponding to the ground-truth object,

out of the top 4 segments returned by the algorithm ([14],

fig. 6). In contrast, our method directly returns a single fore-

ground segment, as it discovers the foreground object auto-

matically. We also report the results of another two methods

based on ranking object proposals [16, 27].

We also compare to a state-of-the-art background sub-

traction method [4] and with two state-of-the-art clustering

point tracks based methods [6, 18]. We used the implemen-

tations provided by the respective authors2. As the latter are

2http://www2.ulg.ac.be/telecom/research/vibe/

http://lmb.informatik.uni-freiburg.de/resources/

software.php

precision ours [14] [16] [27] [6] [18] [4]

birdfall 217 288 189 155 468 468 606

cheetah 890
905

806 633 1968 1175 11210
(34228)

girl 3859 1785 1698 1488 7595 5683 26409

monkey 284
521

472 365 1434 1434 12662
(64339)

parachute 855 201 221 220 1113 1595 40251

Table 1. Results on SegTrack. The entries show the average num-

ber of mislabelled pixels per frame. For [14], the numbers in

parenthesis refer to the single top ranked hypothesis, as given to

us by the authors in personal communication.

designed to return multiple segments, we report results for

the segment best matching the ground-truth segmentation.

Results. As table 1 shows, even the recent background-

subtraction method [4] performs poorly on this data, since

it cannot handle fast camera motion. The point clustering

methods [6, 18] produce better results, as they can better

cope with these conditions.

Our method considerably outperforms [6, 4, 18] in all

videos, as it handles non-rigid objects better, and tightly

integrates appearance along with motion as segmentation

cues. Overall, our performance is about on par with [14].

This is remarkable, given that our approach is simpler, does

not require manual selection of the output segment, and is

two orders of magnitude faster (sec. 4.3). For reference, we

also reports the accuracy of the single top-ranked segment

by [14]. In this fully automatic mode, their method com-

pletely misses the object in cheetah and monkey. The very

recent method [27] achieves lower errors than ours on aver-

age, but is much slower (sec. 4.3).

Fig. 5 shows example frames from all 5 videos. Our

method accurately segments all videos but girl, as it misses

parts of her legs and arms. The higher error on parachute is

due to including the paratrooper in the segmentation, as it is

not annotated in the ground-truth. Note the high quality of

the segmentation on monkeydog and cheetah, which feature

fast camera motion and strong non-rigid deformations.

In general, inspecting the results reveals that all of [14,

16, 27] and our method solve this dataset well. All methods

lock on the object in all videos and accuracy differences

between methods are due to finer localization of the object

boundaries. When also taking into account that it contains

only 5 very short videos, we believe this dataset is saturated.

4.2. YouTube-Objects

Dataset. YouTube-Objects [19]3 is a large database col-

lected from YouTube containing many videos for each of

10 diverse object classes. The videos are completely uncon-

strained and very challenging, featuring large camera mo-

tion, diverse backgrounds, illumination changes and editing

3http://groups.inf.ed.ac.uk/calvin/

learnfromvideo
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aero bird boat car cat cow dog horse mbike train avg

Clustering tracks [6] 53.9 19.6 38.2 37.8 32.2 21.8 27.0 34.7 45.4 37.5 34.8

Automatic segment selection [19] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5

ours 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1

Table 2. Results on YouTube-Objects. The entries show the average per-class CorLoc (‘aero’ to ‘train’) as well as the average over all

classes (‘avg’). Top row: the best segment returned by the method of [6]. Middle row: the segment automatically selected by the method

of [19], out of those produced by [6]. Bottom row: the segment output by our method.

effects (e.g. fade-ins, flying logos). The objects undergo

rapid movement, strong scale and viewpoint changes, non-

rigid deformations, and are sometimes clipped by the im-

age border (fig. 5). The dataset also provides ground-truth

bounding-boxes on the object of interest in one frame for

each of 1407 video shots.

Setup. We adopt the CorLoc performance measure

of [19], i.e. the percentage of ground-truth bounding-boxes

which are correctly localized up to the PASCAL crite-

rion [11] (intersection-over-union ≥ 0.5). For the purpose

of this evaluation, we automatically fit a bounding-box to

the largest connected component in the pixel-level segmen-

tation output by our method. We set the α weights by man-

ual inspection on a few shots (about 5). The same weights

are then used for all 1407 shots in the database.

We compare to [6, 19] and report their performance as

originally stated in [19]. For [6] they report results for the

segment with the maximum overlap with the ground-truth

bounding-box (analogous to our experiment on SegTrack).

Prest et al. [19] automatically select one segment per shot

among those produced by [6], based on its appearance sim-

ilarity to segments selected in other videos of the same ob-

ject class, and on how likely it is to cover an object accord-

ing to a class-generic objectness measure [2]. As it returns a

single foreground segment per shot, this method is directly

comparable to ours.

We also run [14] on 50 videos (5/class) using the imple-

mentation by their authors4, as it is too slow to run on the

whole database. For evaluation we fit a bounding-box to the

top ranked output segment.

Results. As table 2 shows, our method substantially im-

proves over the result of [19], from 28.5% to 50.1% on av-

erage over all classes. Moreover, our method also outper-

forms the best segment produced by [6], confirming what

we observed on the SegTrack dataset. On the 50-video

subset, our method produces 42.0% CorLoc, considerably

above the 28.0% reached by [14]. This departs from what

observed on SegTrack and suggests that our method gener-

alizes better to a wide variety of videos.

Fig. 5 shows example results. The cat, dog, and mo-

torbike examples show fast camera motion, large scale and

viewpoint changes, and non-rigid deformations. On the bird

video our method segments both the bird and the hand,

as it considers them both foreground. The horse example

4https://webspace.utexas.edu/yl3663/˜ylee/

shows our method correctly segment objects even if largely

clipped by the image border in some frames, as it automati-

cally transfers object appearance learned in other frames.

4.3. Runtime

Given optical flow and superpixels, our method takes

0.5 sec/frame on SegTrack (0.05 sec for the inside-outside

maps and the rest for the foreground-background labelling

refinement). In contrast, [14] takes > 300 sec/frame,

with about 120 sec/frame for generating the object propos-

als [10]. The point track clustering method [6] takes 7-44

sec/frame depending on the video, and [18] takes 43-360

sec/frame. While [16, 27] do not report timings nor have

code available for us to measure, their runtime must be >

120 sec/frame as they also use the object proposals [10].

All timings were measured on the same computer (In-

tel Core i7 2.0GHz), and exclude optical flow computation,

which all methods require as input. High quality optical

flow can be computed rapidly using [22] (< 1 sec/frame).

Currently, we use TurboPixels as superpixels [15] (1.5

sec/frame), but even faster alternatives are available [1].

This analysis shows that our method is a lot faster than

these competitors and is in fact efficient enough to be ap-

plied to very large collections of videos.
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