

Fast Oexpected(N) Algorithm for Finding Exact Maximum

Distance in E
2
 Instead of O(N

2
) or O(N lgN)

Vaclav Skala

Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, CZ

306 14 Plzen, Czech Republic

Abstract. This paper describes novel and fast, simple and robust algorithm with O(N) expected complexity which

enables to decrease run-time needed to find an exact maximum distance of two points in E2. The proposed algorithm has

been evaluated experimentally on larger different datasets. The proposed algorithm gives a significant speed-up to

applications, when medium and large data sets are processed. It is over 10 000 times faster than the standard algorithm

for 106 points randomly distributed points in E2. Experiments proved the advantages of the proposed algorithm over the

standard algorithm and convex hull diameters approaches.

Keywords: maximum distance; algorithms; algorithm complexity; pattern recognition; computer graphics.

PACS: 02.60.-x, 02.30.Jr , 02.60 Dc, 89.20.Ff

INTRODUCTION

A maximum distance of two points in the given data set is needed in many applications. A standard “Brute

Force” algorithm with O(N
2
) complexity is usually used, where N is a number of points in the given data set. Such

algorithm leads to very high run-time if larger data sets are to be processed. Typical data sets in computer graphics

contain usually 10
5
-10

7
 and even more of points. In spite of the CPU speed increases, the run-time even for such

a simple task leads to unacceptable processing time.

However our task is just to find the maximum distance, not all the pairs having a maximum distance. Therefore

the complexity of this algorithm should be lower. Also due to the numerical precision points do not lie exactly on a

circle if data have this very specific property.

BRUTE FORCE ALGORITHM

The standard “Brute Force” (BF) algorithm uses two nested loops in order to find a maximum distance.

Algorithms with such approach can be found in many textbooks dealing with fundamental algorithms and data

structures, e.g. [4], [5], [7], [8], [12]. Such algorithms can be represented by Alg.1 in general as:

function distance_2 (A , B: point);

{ distance_2:=(A.x-B.x)^2 + (A.y-B.y)^2};

Square of the distance ║A-B║ #

d := 0;

for i := 1 to N-1 do

 for j := i+1 to N do

 {

 d0 := distance_2(Xi , Xj);

 if d < d0 then d := d0

 };

d := SQRT (d) # if needed #

ALGORITHM 1. “Brute Force” algorithm

FIGURE 1. Splitting the  set to i sets of the worst case

x

a/2 a/2

b/2

b/2

C B y

0



d

D A

3

4

2

1

dd

ICNAAM 2013, Rhodos, Greece, AIP Conf.Proceedings No.1558, pp.2496-2499, AIP Publishing, http://dx.doi.org/10.1063/1.4826047, 2013

The Alg.1 is clearly of O(N
2
) complexity and processing time increases significantly with number of points

processed, see Tab.1.

FIGURE 2. Splitting the  set to i sets for the rectangular area case

In practice, it can be expected that points are not organized in a very specific manner, e.g. points on a circle etc.,

and points are uniformly distributed more or less. In this case “output sensitive” algorithms usually lead to efficient

solutions.

Let points are inside of an Axis Aligned Bounding Box (AABB) defined as <-a/2 , a/2>×<-b/2 , b/2>. Fig.1

presents a typical situation for the worst case when AABB is a square (a = b), while the Fig.2 presents general

AABB situation for the case a > b. In the following we will explore the worst case, i.e. situation at the Fig.1, and the

first maximum distance estimation d is d = a.

It can be seen that points in the set 0 cannot influence the maximum distance computation in the given data set.

We can remove all points 0 from the given data set  and obtain faster algorithm. As the maximum distance

finding algorithm is of O(N
2
) complexity, an algorithm with a lower complexity can be used in order to find and

eliminate points which cannot influence the final distance. Space subdivision techniques can be used to split points

into the disjunctive data sets i and decrease run-time complexity again. For a general case, when AABB is not

squared, the 0 set will contain more points of course, see Fig.2.

Let us explore the worst case more in a detail and consider the case, when .

FIGURE 3. Distances definition for a general AABB FIGURE 4. Experimental speed up of the proposed algorithm;

convex hull comparison is included

Radiuses and are given as

 ,

 . An extension to E
3
 is

straightforward and easy to implement.

 AABB points

dE

a/2 a/2

x

b/2

b/2

C
B y

0


d

D A

3

4

2

1

dd

 Extreme points

L

L

b/2

ξ

P

x

a/2 a/2

b/2

C B

y

0

d

D
A

d2

d1

1,E+03

1,E+04

1,E+05

1,E+06

100 1 000 10 000

BF/QH

BF/New

N *103

speed-up

ICNAAM 2013, Rhodos, Greece, AIP Conf.Proceedings No.1558, pp.2496-2499, AIP Publishing, http://dx.doi.org/10.1063/1.4826047, 2013

PROPOSED ALGORITHM

The new proposed algorithm was developed for larger data sets and it is based on “in-core” technique, i.e. all data

are stored in a computer memory. The fundamental requirements for the algorithm development were: simplicity,

robustness and simple extensibility to E
3
. The proposed algorithm is based on two main principles:

 Remove as many non-relevant points as possible

 Divide and conqueror technique in order to decrease algorithm complexity

Fig.1 shows five regions i, where the given points are located. It should be noted that the worst case is presented,

i.e. when AABB is a square. Let us assume that the points that cannot contribute to the final maximum distance are

located in the region 0, which contains points closer to all corners of the AABB than the minimal edge length of

the AABB or known distance estimation. Then the given data set  can be reduced to  =  - 0. In order to

decrease expected number of points to be processed, we need to process this data set  to get more information on

those points.

The following principal steps have to be made:

1. Pre-processing: can be performed with O(N) complexity:

a. Find the bounding AABB and extreme points, i.e. two extreme points for each axis (max. 4 points).

b. Find the most distant “extreme” points [max] for each corner of the AABB (max. 4 points).

c. Find the minimum distant “extreme” points [min] for each corner of the AABB (max. 4 points).

d. Determine the longest mutual distance d between those found points (max.12 points).

It should be noted that the worst case is a squared AABB and found distance d ≥ a.

For a rectangular window found distance d ≥ max{a,b}.

e. Determine points of 0 that cannot contribute to the maximum distance, i.e. points having a smaller

distance than the found distance d from all corners of the AABB and extreme points. Remove the 0

points from the original data set .

f. Split remaining points to new sets i, i=1,..,4, see the Fig.1.

2. Run-time steps of the proposed algorithm:

a. Taking an advantage of space subdivision, find the maximum distance d between points of [1, 3],

i.e. one point from 1 and the second point is from 3 as there can be expected the longest distance

between the given points - this step is O(N
2
) complexity.

b. Remove points from the 2 and 4 datasets closer to the related corner of the AABB than already

found distance d - this step is O(N) complexity.

c. Find a new maximum distance d between points of [2, 4] - this step is O(N
2
) complexity.

d. If already found distance d  dd then

i. Reduce 1, 2, 3, 4 - steps are O(N
2
) complexity

ii. find a new maximum distance d between points of [1, 2], [2, 3], [3, 4] and [4, 1].

It is necessary to note that if d > dd, then the 0 boundary crosses the AABB and points in the

neighbors regions cannot contribute to the maximum distance.

As can be seen the algorithm is very simple and easy to implement.

Implementation notes

There are several possibilities how to further improve the proposed algorithm especially in the context of the

specific programming language and data structures used. However, the influence of this is small as experiments

proved and for the expected data sizes do not have any significant influence. Generally, it is recommended:

 The “array list” construction should be used for storing i sets; this construction enables to increase an array

size without reallocation and data copying,

 Two or higher dimensional arrays for storing x, y values should not be used, as for each array element one

addition and one multiplication operations are needed (computational cost is hidden in the index evaluation).

Data should be stored in two arrays X and Y, or as pairs (x, y) in one-dimensional structure array XY etc.

 Square of a distance should be used in order to save multiple square root evaluations. It is possible as the square

function is monotonically growing and can be used for comparison operations.

It should be noted that the i sets are determined by an arc of a circle, i.e. the separation function is quadratic.

Experiments proved that if a half-space separation function is used as in Fig.2, the proposed algorithm is faster as

only a linear function is evaluated.

ICNAAM 2013, Rhodos, Greece, AIP Conf.Proceedings No.1558, pp.2496-2499, AIP Publishing, http://dx.doi.org/10.1063/1.4826047, 2013

EXPERIMENTAL RESULTS

Standard PC with 2,8 GHz Intel Pentium 4, 1 GB RAM with MS Windows XP was used. Cumulative results

obtained by experiments are presented in Tab.1. Experiments proved that the speed-up grows significantly with the

number of points processed. Delphi/Pascal was used for the experimental implementation.

TABLE 1. Experimental results for uniformly distributed points [* values obtained by extrapolation]

Points Computational time Speed-up [* times]

10
3
*N Brute Force (BF) [s] New algorithm [s] BF/New

1 000 13 784 0.26 53 277

4 000 221 674 1.23 180 094

10 000 1 106 173* 2.47 447 916

Detailed experimental comparison of the proposed algorithm with the standard and convex hull diameter

algorithms is presented by Fig.4. It can be seen that the speed-up of the proposed algorithm is significant, e.g. for

 points speed up is approx. times and grows with number of points processed. There might be

additional speed up if GUP is used for processing.

CONCLUSION

A new simple, easy to implement, robust and effective algorithm for finding a maximum distance of points in E
2

was developed and experimentally verified. The experimental results clearly proved that the proposed algorithm is

convenient for medium and large data sets. Algorithm speed-up grows significantly with the number of points

processed. The proposed algorithm can be easily extended to E
3
 by a simple modification. In the E

3
 case, we have to

process 1, … , 8 data subsets. However the memory requirements and preprocessing time remain the same as we

have to only split data from the  set to the i datasets which are smaller, but number of processed points remains

constant.

ACKNOWLEDGMENTS

The author would like to express his thanks to students of the University of West Bohemia, especially to students

V.Ondracka, V.Bystricky, P.Kellnhofer, V.Gersl, O.Petrik, Z.Prokop, B.Podlesak, J.Vyskovsky for experimental

verification of the proposed algorithm and an extensive testing. Many thanks are given to anonymous reviewers for

their valuable comments and suggestions that significantly contributed to the improvement of this paper. This work

was supported by the Ministry of Education of the Czech Republic – projects LG13047, LH12181.

REFERENCES

1. Barber,C.B., Dobkin,D.P., Huhdanpaa, H.: The Quickhull Algorithm for Covex Hulls, ACM Trans.on Mathematical

Software, Vol.22, No.4, pp.469-483, 1996

2. Chan,T.: Optimal output-sensitive convex hull algorithms in two and three dimensions, Discrete Comput. Geom, Vol.16,

No.3, pp.361–368, 1996.

3. Dobkin,D.P., Snyder,L.: On a general method of maximizing and minimizing among certain geometric problems,

Proceedings of the 20th Annual Symposium on the Foundations of Computer Science, pp. 9-17, 1979.

4. Hilyard,J., Teilhet,S.: C# Coockbook, OReilly, 2007.

5. Mehta,D.P., Sahni,S.: Handbook of Data Structures and Applications, CRC Press, 2005.

6. O’Rourke,J: Computational Geometry in C, Cambridge University Press, 1998.

7. Sahni,S.: Data Structures and Applications in C++, McGraw-Hill, 1998

8. Sedgwick,R.: Algorithms in Java, Addison Wesley Professional, 2002

9. Shamos,M.I.: Computational geometry, Ph.D. thesis, Yale University, 1978

10. Skiena,S. S.: Convex Hull, §8.6.2 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 351-354, 1997.

11. Snyder,W.E., Tang,D.A., Finding the extrema of a region, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.

PAMI-2, pp. 266-269, 1980

12. Wirth,N. 1976: Algorithms + Data Structures = Program, Prentice Hall, 1976

13. Yao,A.C.-C.: A Lower Bound to Finding Convex Hulls. J. ACM 28, 780-787, 1981.

WEB resources

14. http://softsurfer.com/Archive/algorithm_0109/algorithm_0109.htm#Convex Hull Algorithms (retrieved on 2013-04-21)

ICNAAM 2013, Rhodos, Greece, AIP Conf.Proceedings No.1558, pp.2496-2499, AIP Publishing, http://dx.doi.org/10.1063/1.4826047, 2013

