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Abstract. This paper describes novel and fast, simple and robust algorithm with O(N) expected complexity which 

enables to decrease run-time needed to find an exact maximum distance of two points in E2. The proposed algorithm has 

been evaluated experimentally on larger different datasets. The proposed algorithm gives a significant speed-up to 

applications, when medium and large data sets are processed. It is over 10 000 times faster than the standard algorithm 

for 106 points randomly distributed points in E2. Experiments proved the advantages of the proposed algorithm over the 

standard algorithm and convex hull diameters approaches.  
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INTRODUCTION 

A maximum distance of two points in the given data set is needed in many applications. A standard “Brute 

Force” algorithm with O(N
2
) complexity is usually used, where N is a number of points in the given data set. Such 

algorithm leads to very high run-time if larger data sets are to be processed. Typical data sets in computer graphics 

contain usually 10
5
-10

7
 and even more of points. In spite of the CPU speed increases, the run-time even for such 

a simple task leads to unacceptable processing time.  

However our task is just to find the maximum distance, not all the pairs having a maximum distance. Therefore 

the complexity of this algorithm should be lower. Also due to the numerical precision points do not lie exactly on a 

circle if data have this very specific property.  

BRUTE FORCE ALGORITHM 

The standard “Brute Force” (BF) algorithm uses two nested loops in order to find a maximum distance. 

Algorithms with such approach can be found in many textbooks dealing with fundamental algorithms and data 

structures, e.g. [4], [5], [7], [8], [12]. Such algorithms can be represented by Alg.1 in general as: 

 

 

 

function distance_2 (A , B: point); 

{   distance_2:=(A.x-B.x)^2 + (A.y-B.y)^2}; 

# Square of the distance ║A-B║ # 

 

d := 0; 

for i := 1 to N-1 do 

  for j := i+1 to N do  

  {  

     d0 := distance_2(Xi , Xj); 

     if d < d0 then d := d0 

  }; 

d := SQRT (d)  # if needed # 

 

ALGORITHM 1. “Brute Force” algorithm 
 

FIGURE 1. Splitting the  set to i sets of the worst case 
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The Alg.1 is clearly of O(N
2
) complexity and processing time increases significantly with number of points 

processed, see Tab.1.  

 

FIGURE 2.  Splitting the  set to i sets for the rectangular area case 

 

In practice, it can be expected that points are not organized in a very specific manner, e.g. points on a circle etc., 

and points are uniformly distributed more or less. In this case “output sensitive” algorithms usually lead to efficient 

solutions. 

Let points are inside of an Axis Aligned Bounding Box (AABB) defined as <-a/2 , a/2>×<-b/2 , b/2>. Fig.1 

presents a typical situation for the worst case when AABB is a square (a = b), while the Fig.2 presents general 

AABB situation for the case a > b. In the following we will explore the worst case, i.e. situation at the Fig.1, and the 

first maximum distance estimation d is d = a. 

It can be seen that points in the set 0 cannot influence the maximum distance computation in the given data set. 

We can remove all points 0 from the given data set  and obtain faster algorithm. As the maximum distance 

finding algorithm is of O(N
2
) complexity, an algorithm with a lower complexity can be used in order to find and 

eliminate points which cannot influence the final distance. Space subdivision techniques can be used to split points 

into the disjunctive data sets i and decrease run-time complexity again. For a general case, when AABB is not 

squared, the 0 set will contain more points of course, see Fig.2.  

Let us explore the worst case more in a detail and consider the case, when    .  

 
 

FIGURE 3.  Distances definition for a general AABB FIGURE 4.  Experimental speed up of the proposed algorithm;  

convex hull comparison is included 
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PROPOSED ALGORITHM 

The new proposed algorithm was developed for larger data sets and it is based on “in-core” technique, i.e. all data 

are stored in a computer memory. The fundamental requirements for the algorithm development were: simplicity, 

robustness and simple extensibility to E
3
. The proposed algorithm is based on two main principles: 

 Remove as many non-relevant points as possible 

 Divide and conqueror technique in order to decrease algorithm complexity 

Fig.1 shows five regions i, where the given points are located. It should be noted that the worst case is presented, 

i.e. when AABB is a square. Let us assume that the points that cannot contribute to the final maximum distance are 

located in the region 0, which contains points closer to all corners of the AABB than the minimal edge length of 

the AABB or known distance estimation. Then the given data set  can be reduced to  =  - 0. In order to 

decrease expected number of points to be processed, we need to process this data set  to get more information on 

those points.  

The following principal steps have to be made: 

1. Pre-processing: can be performed with O(N) complexity: 

a. Find the bounding AABB and extreme points, i.e. two extreme points for each axis (max. 4 points). 

b. Find the most distant “extreme” points [max] for each corner of the AABB (max. 4 points). 

c. Find the minimum distant “extreme” points [min] for each corner of the AABB (max. 4 points). 

d. Determine the longest mutual distance d between those found points (max.12 points).  

It should be noted that the worst case is a squared AABB and found distance d ≥ a.  

For a rectangular window found distance d ≥ max{a,b}. 

e. Determine points of 0 that cannot contribute to the maximum distance, i.e. points having a smaller 

distance than the found distance d from all corners of the AABB and extreme points. Remove the 0 

points from the original data set . 

f. Split remaining points to new sets i, i=1,..,4, see the Fig.1. 

2. Run-time steps of the proposed algorithm: 

a. Taking an advantage of space subdivision, find the maximum distance d between points of [1, 3], 

i.e. one point from 1 and the second point is from 3 as there can be expected the longest distance 

between the given points - this step is O(N
2
) complexity. 

b. Remove points from the 2 and 4 datasets closer to the related corner of the AABB than already 

found distance d - this step is O(N) complexity. 

c. Find a new maximum distance d between points of [2, 4] - this step is O(N
2
) complexity. 

d. If already found distance d  dd then  

i. Reduce 1, 2, 3, 4 - steps are O(N
2
) complexity 

ii. find a new maximum distance d between points of [1, 2], [2, 3], [3, 4] and [4, 1]. 

It is necessary to note that if d > dd, then the 0 boundary crosses the AABB and points in the 

neighbors regions cannot contribute to the maximum distance.  

As can be seen the algorithm is very simple and easy to implement. 

 

Implementation notes 

There are several possibilities how to further improve the proposed algorithm especially in the context of the 

specific programming language and data structures used. However, the influence of this is small as experiments 

proved and for the expected data sizes do not have any significant influence. Generally, it is recommended: 

 The “array list” construction should be used for storing i sets; this construction enables to increase an array 

size without reallocation and data copying, 

 Two or higher dimensional arrays for storing x, y values should not be used, as for each array element one 

addition and one multiplication operations are needed (computational cost is hidden in the index evaluation). 

Data should be stored in two arrays X and Y, or as pairs (x, y) in one-dimensional structure array XY etc. 

 Square of a distance should be used in order to save multiple square root evaluations. It is possible as the square 

function is monotonically growing and can be used for comparison operations.  

It should be noted that the i sets are determined by an arc of a circle, i.e. the separation function is quadratic. 

Experiments proved that if a half-space separation function is used as in Fig.2, the proposed algorithm is faster as 

only a linear function is evaluated. 
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EXPERIMENTAL RESULTS 

Standard PC with 2,8 GHz Intel Pentium 4, 1 GB RAM with MS Windows XP was used. Cumulative results 

obtained by experiments are presented in Tab.1. Experiments proved that the speed-up grows significantly with the 

number of points processed. Delphi/Pascal was used for the experimental implementation. 

 
TABLE 1. Experimental results for uniformly distributed points [* values obtained by extrapolation] 

Points Computational time Speed-up [* times] 

10
3
*N Brute Force (BF) [s] New algorithm [s] BF/New 

1 000 13 784 0.26 53 277 

4 000 221 674 1.23 180 094 

10 000 1 106 173* 2.47 447 916 

Detailed experimental comparison of the proposed algorithm with the standard and convex hull diameter 

algorithms is presented by Fig.4. It can be seen that the speed-up of the proposed algorithm is significant, e.g. for 

    points speed up is approx.         times and grows with number of points processed. There might be 

additional speed up if GUP is used for processing. 

CONCLUSION 

A new simple, easy to implement, robust and effective algorithm for finding a maximum distance of points in E
2
 

was developed and experimentally verified. The experimental results clearly proved that the proposed algorithm is 

convenient for medium and large data sets. Algorithm speed-up grows significantly with the number of points 

processed. The proposed algorithm can be easily extended to E
3
 by a simple modification. In the E

3
 case, we have to 

process 1, … , 8 data subsets. However the memory requirements and preprocessing time remain the same as we 

have to only split data from the  set to the i datasets which are smaller, but number of processed points remains 

constant. 
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