
356 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fast Online Synthesis of Digital

Microfluidic Biochips
Daniel T. Grissom and Philip Brisk, Member, IEEE

Abstract—We introduce an online synthesis flow, focusing
primarily on the virtual topology and operation binder, for digital
microfluidic biochips, which will enable real-time response to
errors and control flow. The objective of this flow is to facilitate
fast assay synthesis while minimally compromising the quality
of results. In particular, we show that a virtual topology, which
constrains the allowable locations of assay operations such as
mixing, dilution, sensing, etc., in lieu of traditional placement, can
significantly speed up the synthesis process without significantly
lengthening assay execution time. We present a base virtual
topology and show how it can be leveraged to reduce algorithmic
runtimes and guarantee rout ability. We later present several
variations of the virtual topology and present experimental
results demonstrating best-design practices. We present two
binding solutions. The first is a left-edge binding algorithm, while
the second is a more intelligent path-based binding algorithm
that leverages spatial and temporal locality to produce superior
results.

Index Terms—Laboratory-on-chip, microfluidics, placement,
routing, scheduling, synthesis.

I. Introduction

W
ITH THE emergence of novel, scalable, flexible digital

micro fluidic biochips (DMFBs) [17], new features

such as end-user programmability and online synthesis will

revolutionize micro fluidic applications. Instead of application-

specific DMFBs, low-cost, general-purpose DMFBs will pro-

vide a reusable, flexible, and programmable platform. With

the notion of end-user programmability being introduced to

DMFBs, control-flow constructs present exciting, new pos-

sibilities for microfluidic applications. Consequently, when

control-flow is introduced, synthesis (Fig. 1) will need to

be performed online since the order of assays (biochemical

reactions) to be executed is no longer deterministic, but instead

dependent on live-feedback from the DMFB [2]–[15].

In contrast to offline compilers, which synthesize assays

as deterministic state-machines, an online interpreter will

Manuscript received March 15, 2013; revised July 12, 2013 and September
13, 2013; accepted October 13, 2013. Date of current version February 14,
2014. This work was supported in part by the National Science Foundation
(NSF) under Grant CNS-1035603 and in part by an NSF Graduate Research
Fellowship awarded to Daniel Grissom. This paper was recommended by
Associate Editor Y.-W. Chang. A preliminary version of this paper was pre-
sented at the 2012 International Conference on Hardware/Software Codesign
and System Synthesis.

The authors are with the Department of Computer Science and En-
gineering, University of California, Riverside, CA 92521 USA (e-mail:
grissomd@cs.ucr.edu; philip@cs.ucr.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2290582

Fig. 1. DMFB synthesis consists of scheduling, placing, and routing
(Fig. 3, [11]).

Fig. 2. Offline versus online synthesis tradeoffs.

act more like a virtual machine that manages the DMFBs

resources and interprets assays on-the-fly. Fig. 2 shows the

tradeoffs that need to be made when moving synthesis online.

During offline compilation, optimized designs are created with

little concern to algorithmic runtime (time need for synthesis)

since the synthesis process is run once and the compiled “exe-

cutable binary” is packaged into an application-specific device.

With a programmable DMFB, the end-user will have to wait

each time a programmed assay is synthesized. Furthermore,

each time a branch is taken, the user will have to wait as

the target assay of the branch is interpreted online. Thus, new

synthesis methods are needed that concede optimality in assay

length (i.e., schedules) and area to reduce algorithmic runtimes

from seconds/minutes to milliseconds and achieve a greater

amount of flexibility [15].

A. Motivation

We motivate the need for fast, online synthesis methods

with an example that is either impossible without this feature,

or requires unreasonably complex solutions. Consider a drug-

discovery application where a DMFB executes an assay,

measures the result and then automatically executes a new

assay (or batch of assays) with different concentrations, based

on the previous result. This process is repeated thousands of

times until a set of concentrations yielding the desired result

is discovered.

With offline compilation, a single graph must be created that

details every possible execution path, which quickly becomes

intractable as the compiler must account for numerous paths

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



GRISSOM AND BRISK: FAST ONLINE SYNTHESIS OF DIGITAL MICROFLUIDIC BIOCHIPS 357

Fig. 3. (a) Placement failure occurs because there is insufficient space for
M7 to be placed given the placement of modules M1–M6; (b) Routing failure
occurs because the droplet (D) is attempting to reach the detection zone
(marked with magnifying glass lenses) but cannot because modules M1–M3
are placed in such a way that block all paths to the destination.

that will never be taken [2]. Instead, upon completion of one

assay, an online interpreter could immediately interpret and

execute the next assay with only milliseconds of downtime

between assays.

Although synthesis has been performed entirely offline up

to this point, Ho et al. [13] suggest that online systems are

forthcoming with the development of specialized heuristics,

which can perform synthesis in milliseconds. Luo et al. [15]

have implemented one such specialized heuristic for an error

detection and recovery scheme based on check-pointing: at

each checkpoint, a droplet is routed to a sensor that detects

whether its concentration is satisfactory; if not, the assay is

resynthesized on-the-fly to repeat the sequence of operations

that produced the droplet, interleaving the schedule of these

newly-introduced operations with concurrent operations that

do not depend on the droplet that failed the checkpoint.

B. Problem Formulation

A synthesis tool that converts a micro fluidic assay from

a sequencing graph specification to a sequence of electrode

activations must solve three NP-Hard problems: scheduling;

placement; and routing.

Scheduling: A solution to the scheduling problem deter-

mines the time at which each assay operation starts and

finishes, including the allocation of temporary storage for

intermediate droplets, while ensuring that: 1) the schedule

satisfies all precedence constraints in the sequencing graph and

2) the demand for resources at each time-step of the schedule

does not exceed the supply of resources in the target DMFB

[18], [26].

Placement: At each time-step of the schedule, all of the

executing operations and stored droplets must be placed at

different locations on the chip while simultaneously ensuring

that modules are arranged in such a way as to avoid placement

failure [e.g., Fig. 3(a)]. In particular, operations that required

specialized external devices, such as heating or detection,

must be placed on DMFB locations that are accessible to the

appropriate specialized devices [27].

Routing: At different times during assay execution, droplets

must be transported to different DMFB locations, e.g., from

an input reservoir to where an operation will start, from

the location of one operation to another operation, or to a

temporary storage location, or to an output reservoir. During

routing, droplets in-transit must not inadvertently collide with

one another, or collide with other assay operations that are

in-progress [29].

In general, the objective of scheduling, placement, and

routing is to minimize assay execution time. In addition to

these basic requirements, we introduce three new goals: 1) fast

algorithmic runtimes; 2) placements that guarantee routability;

and 3) deadlock-free routing. Fast algorithmic runtimes are

imperative for dynamic synthesis and resynthesis to facilitate

control flow and error detection and recovery scenarios in a

way that does not cause large delays. Placements must be

routable a priori, because the computational overhead to detect

and rectify unroutable placements [e.g., Fig. 3(b)] is signifi-

cant. Droplet deadlocks are problematic because no droplet can

advance toward its destination, preventing completion of the

assay; the computational overhead to detect and rectify dead-

lock situations that may occur during routing is significant.

The usage of the virtual topology seamlessly achieves all three

of these objectives by reducing the algorithmic complexity of

synthesis and providing the order and constructs necessary to

compute routable placements and deadlock-free routes on the

first attempt.

C. Contribution

Assays are synthesized by computing solutions for three

NP-complete problems, as seen in Fig. 1 Before synthesis,

an assay is modeled as a directed acyclic graph (DAG),

where the nodes and edges represent operations and operation

dependencies, respectively. Each assay operation is then as-

signed start/stop times during resource-constrained scheduling

[21]. During the placement stage, the scheduled operations

are assigned specific locations, called modules, on the array

[27]. Finally, the routing stage computes droplet paths between

subsequent modules and I/O ports so droplets arrive safely at

each destination [29].

We present an online synthesis flow that can interpret assays

and map them onto a cross-referenced, fully-addressable or

active-matrix DMFB [17] in milliseconds, making it appropri-

ate for both offline and online synthesis. Our key contribution

is a virtual topology that defines distinct regions for module

placement and droplet routing. With our topology in mind,

we present several constraints are necessary and apply them

to list scheduling [26] and path scheduling [11] to quickly

produce schedules. Placement, which has been solved in the

past by iterative improvement algorithms [27], [35] or integer

linear programming (ILP) [14], is simplified to a binding

problem, which can be solved efficiently in polynomial-time.

We present two fast binding solutions. The placement defined

by the virtual topology provides dedicated routing cells which

ease the router’s job. We simplify an existing router [22] to

compute droplet paths very quickly.



358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fig. 4. (a) DMFB with a 2-D array of electrodes. (b) DMFB cross section
(Fig. 1, [11]).

D. DMFB Technology Overview

A DMFB manipulates discrete droplets of fluid on a 2-D

array of electrodes [Fig. 4(a)] through electrowetting, a process

that induces droplet motion [20]. Fig. 4(b) shows a droplet

sandwiched between a ground electrode and a set of inde-

pendent control electrodes. The droplet is centered over one

electrode (CE2), but overlaps adjacent electrodes CE1 and

CE3. If a voltage is applied to CE1 or CE3, the surface

energy gradient induces motion and the droplet moves to the

center of the newly activated electrode(s). During each droplet-

actuation cycle, a set of electrodes is activated, which moves

droplets from electrode to electrode. Basic assay operations

such as transport, mixing, merging, and splitting are performed

through the appropriate sequence of electrode activations over

a number of cycles.

There are several classes of DMFBs that provide varying

levels of droplet control. Typical direct-addressing (fully-

addressable) DMFBs have one control pin for each electrode

(i.e., (M×N) control pins for an (M×N) array of electrodes)

so each electrode (droplet) can be independently controlled

at all times. However, the wiring cost of independently con-

trolled electrodes, especially as array sizes grow, has motivated

cheaper designs [32].

Cross-referencing DMFBs use (M + N) control pins to

control an (M×N) array of electrodes [7]. In this scheme,

each row and each column has a single control pin; when a

particular column m and row n are activated, the electrode

at (m, n) is activated. Multiple columns and rows can be

simultaneously activated, but may cause superfluous electrode

activation, yielding undesired droplet movement [31]. Thus,

once a route for a direct-addressing DMFB is computed, each

droplet-actuation cycle is serialized across multiple droplet-

actuation cycles, resulting in prolonged routing times and

increased algorithmic complexity.

Pin-constrained DMFBs represent another addressing

scheme. An assay is first synthesized as if on a direct-

addressing DMFB. Then, special heuristics attempting to

solve the clique partitioning problem (NP-Hard) are used to

minimize the total number of control pins, based on which

electrodes can be activated together without causing undesired

droplet movement [32].

To summarize, pin-constrained designs offer minimal prod-

uct costs, are inflexible and cannot be reprogrammed af-

ter being manufactured; cross-referencing DMFBs are repro-

grammable, but add another layer of complexity that must be

handled to serialize droplet motion [31].

Fortunately, active-matrix addressing designs are emerging

which give independent control of (M×N) electrodes while

using only (M + N) control pins [17]. Active matrix ad-

dressing can scale without growing prohibitively expensive,

while maintaining the maximum level of flexibility and control

so that assays can be programmed with minimal levels of

algorithmic complexity. The online synthesis flow presented

in this paper is compatible with direct, cross-referencing, and

active-matrix addressing DMFBs.

II. Related Work

Here, we highlight some of the previous work in DMFB

synthesis for scheduling, placement and routing.

A. Scheduling

Su and Chakrabarty [26] present modified list scheduling

(MLS) and genetic algorithm (GA) heuristics, as well as an op-

timal integer linear programming (ILP) model for scheduling

microfluidic operations onto a DMFB. As expected, the ILP

implementation consumes a large amount of time to compute

optimal solutions. Although the GA finds optimal or near-

optimal results in much less time than ILP, its iterative nature

still results in large computation times. MLS produces sched-

ules comparable to GA in much less time. Other scheduling

algorithms such as Ricketts’ hybrid genetic algorithm [21] and

Maftei’s tabu search scheduler [16] are iterative improvement

algorithms which spend anywhere from four seconds to one

hour computing schedules. We chose list scheduling as the

base scheduler for our framework, but other fast schedulers

being developed now [11], [18], or in the future could be used

as well.

B. Placement

At the physical level, all electrodes are equally capable

of performing the basic microfluidic operations (i.e., merg-

ing, mixing, splitting, transport, storage). Hence, basic oper-

ations can be performed anywhere on a DMFB array. The

objective for most placers is to pack as many concurrent

operations/modules into as little area as possible. Several

direct-addressing placement and unified scheduling-placement

algorithms [27], [28], [33], [35] use simulated annealing,

which run in minutes or tens of seconds; in contrast, our online

flow completes in tens of milliseconds.

Griffith et al. [8] place a virtual topology onto the DMFB,

which dictates separate regions for assay operations and

droplet routing. However, they only present results for one

assay, and their implementation suffers from deadlocks dur-

ing droplet routing. Our approach is similar, but does not

suffer from deadlock; in the absolute worst case, our router

will transport one droplet at a time; however, we include a

compaction step to transport multiple droplets concurrently.

C. Routing

Böhringer [5] modeled droplet routing as an A* search, sim-

ilar to path planning in robotics, achieving an optimal-length

solution, when routable. Su et al. [29] route droplets sequen-

tially and redo placement when routing fails. BioRoute [34]

uses a min-cost max-flow algorithm to compute several routes



GRISSOM AND BRISK: FAST ONLINE SYNTHESIS OF DIGITAL MICROFLUIDIC BIOCHIPS 359

Fig. 5. Virtual topology imposed onto a DMFB.

Fig. 6. Entrance cells (I1/I2) and exit cells (O1/O2). (a) 3x3 module.
(b) 4x3 module. (c) 3x4 module.

at once, followed by negotiation-based detailed routing. Cho

and Pan [6] route droplets one-by-one and sort them based

on a by passability metric; if a deadlock occurs, droplets are

moved to concession zones to break the deadlock. Huang

and Ho [12] construct a system of global routing tracks,

which are aligned in the same direction as the majority of

droplets traveling on that tract. They use an entropy-based

equation to determine the order in which droplets are routed,

and finally, compact the routes using dynamic programming.

Since the aforementioned methods were designed for offline

routing, few mention runtimes [5], [6], [29]. Bio Route [34]

and Huang’s algorithm [12] both report runtimes below one

second on a desktop PC. The router used in our online

flow, a modified version of Roy’s maze router [22], achieves

comparable runtimes, while achieving deadlock freedom.

D. Combined Methods

Most work on synthesis has focused on the scheduling,

placement or routing problems in isolation. Several papers,

however, solve some of these problems together, using iterative

improvement heuristics [15], [27], [28], [33], [35], whose

runtime is prohibitive. These approaches address problems that

can arise when one stage of synthesis does not consider the

next. For instance, a placer can generate a valid placement that

is unroutable. Our virtual topology ensures routability by leav-

ing room for droplets to pass between adjacent modules where

mixing, storage, and other assay operations are performed.

III. Virtual Topology

Our online interpreter utilizes a virtual topology, as seen

in Fig. 5, and takes advantage of its order and structure to

yield fast algorithmic runtimes for scheduling, placement and

routing. First, we define a cell as the 2-D area covering

Fig. 7. Assay time-line showing that each fixed time-step (TS) is interleaved
with a variable-length routing phase (R).

an electrode. The virtual topology shows regularly spaced

modules (3x3 squares of cells) where basic droplet operations

(i.e., merge, mix, split, and store) are performed. If at least one

of a module’s cells is augmented with an external detector or

heater, the module can also perform detect or heat operations,

respectively. The white cells indicate the area of the DMFB

array used explicitly for routing droplets between modules

and I/O ports (not pictured); however, any cell can be used

for routing if a module is not in use. Dedicated routing cells

ensure there is a valid path between any source-destination

pair. A perimeter of interference region (IR) cells surrounds

each module [29], so that interference-free droplet routes can

be computed easily. This topology ensures that there is at least

one path between all DMFB inputs, modules, and outputs. The

inputs and outputs (not shown in Fig. 5) are on the perimeter

of the chip.

A. Module Topology and Synchronization

To help prevent droplet deadlock, droplets have well-defined

module entrance and exit locations, as seen in the 3x3 module

of Fig. 6(a). The two entrances are in the northwest and

southwest corners, while the exits are in the northeast and

southeast corners. By providing distinct entrances and exits,

we prevent droplet deadlock by allowing droplets leaving a

module to wait safely in their exit cells as long as necessary

to avoid deadlock in the routing cells. Fig. 6(b) and (c)

show that modules can be elongated along the x or y-axis to

accommodate larger 2x4 mixers, often used in literature [19],

[21].

As seen in Fig. 7, time-step stages of assay operations are

interleaved with routing stages until the entire schedule has

been processed. A time-step is the basic, minimum-resolution

unit of time used to schedule microfluidic operations. Time-

steps usually last one or two seconds, and are fixed in length

for the duration of the assay. The routing stages are variable

in length, depending on the routes that are generated, and can

even be instantaneous if no droplets are being routed between

time-steps.

Droplets are required to enter/exit a module at one of the

two entrances/exits. When a droplet travels to a new module,

it must enter the module during the routing phase at one of

the module-entrance cells and wait until the time-step officially

begins. The droplet is then processed (e.g., split, mixed, stored)

during the time-step phase. If a droplet leaves the module

after the current time-step, it must position itself at one of the

module-exit cells before the end of the time-step. In Fig. 6(a)

droplets 1 and 2 (D1/D2) enter a module to be processed while

droplets 3 and 4 (D3/D4) exit to be processed elsewhere. If



360 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fig. 8. Intramodule droplet processing/routing for microfluidic operations.

D1 and D2 arrive before D3 and/or D4 exit, there will be no

conflict since the entrance and exit cells are sufficiently spaced

to avoid droplet interference. When the time-step begins, D1

and D2 can move freely within the module, as D3 and D4 are

at their respective destinations. This synchronization scheme

prevents intermodule deadlocks because there is always an

open spot at the destination module’s entrances for every

incoming droplet at every module.

Fig. 8 shows how a module can perform each assay oper-

ation. For each operation, the droplet(s) enters at one of the

entrance cells and then waits for the time-step to begin. When

the time-step begins, any droplets that were waiting in the exit

cells are now gone, and thus, any remaining droplets in the

module are free to move about the entire module to perform

an operation. If the droplet(s) leaves the module at the end

of the time-step, it moves to an exit cell before the time-step

ends. Once the time-step is complete, during the subsequent

routing stage, the droplet(s) exits the module. If a droplet is

scheduled to begin a new operation in the same module at the

next time-step, it maneuvers itself to an entrance cell before

the time-step ends (not shown in Fig. 8); this eliminates the

need for a droplet to exit and then reenter the same module.

IV. Fast Online Synthesis

In this section, we show how the virtual topology presented

in Section III can be leveraged to create fast online synthesis

methods for scheduling, placement and routing.

Fig. 9. Two DMFB scenarios with droplets that are going to be split (Sp)
or detected (D) during the next time-step. (a) Sp6 can move and occupy the
open space in another module, allowing D1 and Sp5 to swap so D1 can be
detected in the detect-module. (b) There is no way to isolate a single droplet
and since no droplets will be mixed next time-step, the assay cannot continue.

A. Scheduling

In this section we describe the definitions and constraints

that must be observed during the scheduling phase. For online

scheduling, a number of fast schedulers can be used with our

topology that maintain the constraints defined in this section.

An assay is given to the scheduler in the form of a DAG,

G = (V, E), where the vertices (V ) and edges (E) represent

assay operations and operation dependencies, respectively. If

the given DMFB is an ax×ay array of cells and each module

is mx×my cells, then the total number of modules, Nm, can

be calculated as seen in (1). We add cells to the module

dimensions to encapsulate the IR cells and the routing cells to

the right (for the X dimension) of each module (Fig. 5)
⌊

(ax − 1)

(mx + 3)

⌋

×

⌊

(ay − 3)

(my + 1)

⌋

= Nm. (1)

Once the virtual topology is placed, modules with external

devices above their cells are considered to be special modules

(e.g., detect module and heat module). All other modules are

considered to be basic modules. The array is initially populated

based on the virtual topology. An array called availMods[]

contains the number of modules of each module-type (e.g.,

basic module, detect module, and so on), and satisfies the

following condition:

numModTypes
∑

i=1

availMods[i] = Nm. (2)

We define sm to be the number of droplets a module can

store and dmax to be the maximum number of droplets we

allow on the DMFB during any time-step. Since each module

has two entrance and two exit cells, a module can store two

droplets during a time-step (i.e., sm = 2). Consider Fig. 9(a)

in which all but one of the modules is at maximum capacity.

Since the northeast module has room for one droplet, droplets

can be shuffled around so that any single droplet on the array

can be isolated in any chamber, allowing the assay to continue.

However, if all modules are at maximum capacity [Fig. 9(b)],

then deadlock may arise because it is impossible to process

more operations unless some of the droplets are scheduled

to output or mix with each other next time-step. To reduce

the likelihood of scheduling deadlock, we set the maximum



GRISSOM AND BRISK: FAST ONLINE SYNTHESIS OF DIGITAL MICROFLUIDIC BIOCHIPS 361

Fig. 10. (a) Randomly-bound sequencing graph for a simple assay requiring
six droplet routes. (b) Sequencing graph with intelligent module selection
requiring only three droplet routes. (c) Compressed sequencing graph.

number of droplets permitted on the DMFB during any time-

step (dmax) as follows:

dmax = (Nm×sm) − 1. (3)

In our experimental section, we have successfully applied

these constrains to two fast schedulers: list scheduling (LS)

[26] and path scheduling (PS) [11]. LS is a greedy, constructive

algorithm in which each operation (node) in an assay (DAG)

is scheduled exactly once. LS is much faster than iterative

improvement algorithms, which randomly compute numerous

schedules [16], [21], [26] or optimal algorithms based on

integer linear programming [26]; however, these approaches

generally do produce higher quality schedules than LS. PS is

another scheduler that attempts to schedule DAGs one path at

a time (as opposed to a single node at a time). PS’s runtimes

have been found competitive to LS and produces superior

schedules for assays with high fan-out. These schedulers were

used because their fast runtimes allow them to be used in the

context of online synthesis.

B. Placement

Microfluidic placement is NP-complete [27]; the virtual

topology limits the reconfigurable capabilities of the DMFB

by preplacing the location of modules. In our framework,

operations are bound to preplaced modules in accordance with

the schedule that has been computed a priori. The scheduler

assigns operations to module-types (e.g., basic or specialized),

but does not select a specific module for each operation; this

is the job of the binder.

1) Path-Based Binding Algorithm: In this section, we

present a more-intelligent, path-based binding algorithm that

is inspired by Tseng’s binding procedure for flow-based mi-

crofluidic biochips in which continuous operations are bound

to the same component to reduce the amount of valve switch-

ing and overall assay completion time [30]. Tseng’s algorithm

was used for flow-based microfluidic devices, which are fun-

damentally different than DMFBs, and thus, is not directly

Fig. 11. Pseudocode for our path-based binder.

applicable to DMFBs; however, the key principle that binding

contiguously scheduled operations to the same component will

reduce fluid transfers (droplet routes in the case of DMFBs)

can be applied to both classes of microfluidic devices. This

principle of spatial locality for contiguous operations was

applied to path binder as described in the following sections

to reduce droplet routing times.

In a previous work, Grissom and Brisk [10] present a fast

binding solution based on the left-edge algorithm. When com-

pared to the left-edge binder, the path-based binder is faster

and performs binding in such a way that reduces route lengths.

The left-edge binder does not take into account module-types

or the locations of parent/child modules, instead, binds each

operation to the first available module it finds with a matching

module-type. Pathbinder takes parent/child module locations

into consideration (reducing routing distances) and although it

does use left-edge binding, performs preprocessing to reduce

the graph, which eases algorithmic runtimes.

Fig. 10(a) shows a simple sequencing graph with seven

nodes (for clarity, we will call these basic nodes for the

remainder of this section). The edges denote operation prece-

dence (e.g., N5 can only begin after N1 and N2 have com-

pleted); since each successive basic node has a different

module location than its parent, the edges in Fig. 10(a) also

denote droplets needing to be routed. Fig. 10(b) shows that

certain routes can be eliminated if the binder selects the same

module location for successive basic nodes(a key idea for

path binder), allowing the router to sometimes produce shorter

droplet routes because it will have less droplets to route.

Furthermore, Fig. 10(c) shows that if successive nodes have

the same module-type and location, they can be combined

into path nodes, which contain a contiguous sub-set of basic

nodes from the original sequencing graph (e.g. PN1 contains

the sub-path N1, N5 and N7). When compared to the simple

left-edge binder, the use of path nodes reduces the overall

number of nodes in the sequencing graph, reducing the size

of the problem and allowing for shorter algorithmic runtimes.



362 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fig. 12. Pseudocode for the GeneratePathCompressedGraph() function.

Fig. 13. Pseudocode for the SelectModuleLocations() function.

Fig. 11 presents high-level pseudocode for path binder. The

binder is given a scheduled sequencing graph (line 2); at this

point, each basic node/vertex,V , has a start time-step, stop

time-step and module-type (e.g. mix module, detect module,

etc.), but has not been bound to a particular module location.

lines 3–5 obtain lists of important operation types (inputs,

outputs and storage nodes); lines 7–10 initialize path-based

variables.

Lines 12–14 construct the path-compressed graph, Gp. First,

the initial path leaders are found, which are nodes whose

parent nodes consist exclusively of input/dispense nodes (line

13); nodes with no parents (i.e., dispense nodes) are not

included in this list. In line 14, the path leaders are passed

to the GeneratePathCompressedGraph() function, which, at

a high level, combines as many successive basic nodes as

possible into larger path nodes, resulting in a new graph of

path nodes. This function does not bind nodes to a particular

module. We provide more details of this function in the

following sub-section.

Lines 20–26 carry out all the binding. Line 22 performs a

simple left-edge bind on the non-storage path nodes in Gp as

performed in Grissom and Brisk’s previous implementation of

left-edge binding (except it is binding path nodes, instead of

basic nodes) [10]. When a path node is bound to a particular

module location, each basic node the path node contains

is bound to that same module location. Inputs and outputs

are bound (lines 22–23) as in the left-edge binder. Finally,

lines 24–26 bind the storage nodes and complete the path

binding algorithm; these functions are detailed in later sub-

sections.

a) Generating Path-Compressed Graph: In order to

reduce the work load of the binder and eliminate droplet routes

for the subsequent routing stage, the sequencing graph is

compressed such that a single path node contains one or more

basic nodes, as demonstrated in Fig. 10(b) and (c). Eligible

basic nodes can be compressed into a single path node if they

form a path through the original sequencing graph (no gaps

of time between basic nodes); an eligible node is a basic node

that has not already been added to a path node in Gp, has

the same resource-type as its path-parent, and is not an I/O

or storage node. Ineligible nodes cannot be compressed into

the current path node because, although they have not been

added to Gp, they are of a different resource-type than their

path-parent or are storage nodes. During the scheduling phase,

non-storage operations are assigned a specific resource-type;

since storage is extremely flexible, it is scheduled based on

examining the number of free resources, but it is not assigned

a specific resource-type. Thus, storage nodes are not path-

compressed at this point because they will be broken up at a

later stage to fit into any available resources.

Fig. 12 presents pseudocode for the path compression algo-

rithm (Fig. 11, line 14). The resultant graph, Gp, is composed

of a number of path nodes which each contain one or more

basic nodes that can be bound to the same module location.

Lines 4–34 show that each path leader is iterated through

until there are no more path leaders, at which point the entire

assay will be compressed. Each path leader (a path node) will

initially contain exactly one basic node, which is examined in

lines 5 and 6. Since storage is the most flexible operation and

is designed to fit wherever other operations are not located,

they are added to a new path node and added to the graph

with no compression (lines 6–8).

Lines 9–33 attempt to traverse a path and compress eligible

basic nodes into a single path node; lines 11–32 show that

a path can be traversed while there are unvisited basic nodes

(i.e., basic nodes not yet added to a path node in Gp) in the

most-recently-added node’s (n′s) children. If n has multiple

children (e.g., split operation), then only the first eligible child

(randomly selected) is added to the current path node, p;

a new path node is created for each remaining eligible and

ineligible child and inserted into Gp and the path leaders list

(lines 14–19). Similarly, if n only has one unvisited child, the

child is either added to the current path node, p (if eligible),

or used to create a new path node (if ineligible), as seen in

lines 20–25. This loop (lines 11–32) continues until there are

no more eligible children on the path.

b) Selecting Storage Module Location: Fig. 13 presents

pseudocode to show how module locations are selected for

storage nodes. Given a list of storage operations, lines 3–12



GRISSOM AND BRISK: FAST ONLINE SYNTHESIS OF DIGITAL MICROFLUIDIC BIOCHIPS 363

Fig. 14. Pseudocode for the BindStorageToHolders() function (Fig. 11, line
26) with references (a)–(k) to pictorial pseudocode transformations in Fig. 15.

loop through and choose a module location for each storage

operation, sn. In line 6, GetLongestFreeModLocs() examines

all of the module locations and returns a list of one or more

module locations with the longest uninterrupted availability,

starting at sn’s starting time (sn.start). The main idea is to

keep a droplet stored in a single location as long as possible

since this minimizes the number of times a droplet needs to

be routed. Next, in line 7, if there is more than one potential

module location to choose from, GetClosestModLoc() selects

the module location with the minimum distance to the storage

node’s already-bound parent or child, reducing any necessary

routing lengths. Distance is computed as the Manhattan Dis-

tance between the top-left corners of the potential module

location and the parent’s/child’s module location. Finally, if

the selected module location was not free long enough to cover

the entire length of sn, it is split and the second half is added

to storageOps to be bound later (lines 8–10).

c) Binding Storage To Holders: Binding of storage

nodes into storage holders is performed differently than in the

left-edge binder. In the left edge binder, the minimal number

of storage holders is created each time-step and each bound to

a free module location (first free location in the list is selected

Fig. 15. (a)–(k) Transformations that take place at the corresponding times
in the pseudocode in Fig. 14. RS denotes the rStart (running start) variable.
An alignment of a storage (gray box) and holder (white box) node indicate
that the storage node is bound to the overlapping holder node (after binding).

if there is more than one available location); storage nodes

(droplets) are then bound to a storage holder’s location with

no concern to the droplet’s location. Path binder differs in

that it first binds each storage node to a particular module

location, and then creates storage-holders to accommodate

these storage nodes. Thus, if resources permit, it is possible to

have more than one module location being used to store less

than sm droplets. This uses more space (which would otherwise

be unused) in exchange for spatial locality, which results in

shorter droplet routes in the next stage.

Fig. 14 presents pseudocode for the BindStorageToHold-

ers() function (Fig. 11, line 26). Instead of adding further

pseudocode, Fig. 14 contains links (a)–(k) to pictorial trans-

formations (Fig. 15) to more clearly explain the binding

algorithm. Storage nodes are passed in and are already sorted

by module location (line 1); holders are created by examining

the storage nodes in one location at a time (line 4).

The algorithm attempts to bind each storage node, s, to any

of the already-existing holders, h (lines 9–44), already created

for that location (initially there are none). It does this by

examining each holder’s position relative to the storage node

currently being examined. For example, case (a) shows the



364 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

case where there are no holders for that module location; thus,

Fig. 15 illustrates that a new holder, h, is created to contain

s. Lines 12–43 detail how storage is handled when there

are holder nodes in existence. In these cases, s may overlap

portions of one or more holders, and thus, the algorithm binds

portions of s, from s.start to s.end, until the entire storage node

is bound (possibly being split in the process) to some number

of storage holders. Fig. 14 shows that we hold a running-start

variable (rStart) to denote that any portion of a storage node

before rStart has already been bound. Fig. 15 shows how much

of the storage node is bound in each case by examining the

before/after positions of the running-start (RS).

Examining Figs. 14 and 15, (b) and (c) handle the cases

when a storage node’s unbound portion begins before a holder;

(d)–(f) handle the cases when a storage node’s unbound

portion begins at the same time as a holder; (g)–(i) handle

the cases when a storage node’s unbound portion begins in

the middle of a holder. Finally, (j)–(k) handle the cases when

the storage node’s unbound portion starts after the last holder.

If none of these cases apply, s is compared against the next

holder until a case does apply.

In Fig. 15, storage and holder nodes named with suffixes

(Pre, Beg, End and Post) show that new nodes were created

during the binding process. In these cases, the original nodes in

question (s or h) may have been shortened in length. A node’s

suffix (e.g., “Pre” in hPre) describes its position in relation

to the original node with the name of the prefix (“h” in hPre).

For example, as seen in Fig. 15(b) [Fig. 15(j)], after binding,

a new node called hPre(hPost) is created and exists entirely

before (after) h’s original position before binding; likewise, a

node called hBeg(hEnd) is one that spans a time-range, after

binding, which was originally spanned by the beginning (end)

of the prebound h.

C. Routing

To complete the synthesis flow, we use a simplified version

of an existing droplet router by Roy et al. [22]. We created a

number of routing methods that restricted routes to the cells in

between modules, but found that Roy’s maze-routing approach

produced shorter routes in only a few more milliseconds of

computation time compared to the alternatives. As in Roy’s

router, we use Soukup’s fast maze router [23] to produce

sequential routes for droplets and then compact the routes

together, adding stalls in the middle of the routes to avoid

droplet interference.

The routing algorithm by Roy et al. that we have imple-

mented here, does not support rip-up and reroute. We chose

this algorithm because it offers a good trade-off between

runtime and route quality. Roy’s algorithm works in two

phases: 1) compute routes for all droplets using a variation

of Soukup’s VLSI routing algorithm (initially assuming that

droplets are routed one-by-one) and 2) use a greedy algorithm

to compact the droplets so that they can be routed concurrently

without interfering. The routes are compacted in time, not

space, and the pathways chosen in step 1) are never changed.

In principle, step 2) could be improved by adding the

capability to rip-up and reroute certain droplet pathways,

but that would require a longer runtime. Since our focus

Fig. 16. (a) Interference region (IR) for a droplet at the beginning of a
droplet-actuation cycle. (b) IR at the end of a cycle.

Fig. 17. Droplets 1 and 2 are traveling from source 1 and 2 (S1/S2) to target
1 and 2 (T1/T2), respectively. The red and blue (blue also underlined for
clarity) numbers are time-stamps for droplets 1 and 2, respectively). The top
scenario shows that deadlock can occur when routes 1 and 2 are compacted
and stalls are added mid-route. The bottom scenario shows that both routes
are safely completed if droplet 2 stalls at its source location until droplet 1
is safely out of the way.

is online synthesis, where a premium is placed on runtime,

we determine Roy’s algorithm to be a reasonable solution.

In the online context, the extra time spent performing these

computations would be greater than the savings in execution

time that is obtained from shorter routes.

The router receives a scheduled and placed DAG, from

the placer. Throughout the routing process, all droplets in

motion must maintain static and dynamic spacing constraints

to prevent interference, as shown in Fig. 16. Droplet routes

are computed one routing sub-problem at a time. As seen

in Fig. 17, a routing sub-problem (or phase) is the problem

of routing a number of droplets from their source (input or

module) to their destination (module or output); routing sub-

problems occur between the end of one time-step and the

beginning of the subsequent time-step.

During a routing sub-problem, blockages are created and

must be avoided. For a particular routing sub-problem t,

any persisting module, m, that is performing operations (i.e.,

m.Start < t < m.End) is considered a blockage (includ-

ing its interference region). In addition, for each droplet di,



GRISSOM AND BRISK: FAST ONLINE SYNTHESIS OF DIGITAL MICROFLUIDIC BIOCHIPS 365

the source and target (including their interference regions, a

3x3 blockage) for any droplet dj also being routed during the

same sub-problem are considered as blockages for di. Due to

the virtual topology, the sources/targets for all dj will never

interfere with di, and thus, deadlock-freedom is guaranteed.

For a specific sub-problem, individual routes are first com-

puted for each droplet using Soukup’s fast maze routing

algorithm [23]. Soukup’s maze router works by routing around

blockages; it routes straight to its destination until it hits a

blockage (e.g., existing module or droplet), at which point it

attempts to route around it.

We do modify Roy’s router, however, taking advantage of

the virtual topology to avoid deadlock (i.e., when droplets form

a dependency cycle and cannot move forward until one of the

droplets in the dependency cycle concedes).

Route compaction is the process of taking a number of

sequential routes and causing the droplets to move in parallel

at the same time. However, the original routes are not created

with concern to other droplet routes and caution must be taken

when compacting to prevent routes from intersecting in time

and space. When compacting routes, droplets may not enter

any cell that is adjacent to any other droplet or the droplets

will interfere (merge) with one another. To prevent this, a

static interference region (IR) is created around each droplet

at the beginning of each droplet-actuation cycle, as seen in

Fig. 16(a). As a droplet moves from one cell to the next,

the IR is stretched dynamically to include the union of the

static IRs of the beginning and end cells [see Fig. 16(b)].

In general, a droplet may not enter any other droplet’s IR

while routing. Static and dynamic droplet interference rules

are formally defined in [29].

It is possible that deadlock may occur during compaction if

two (or more) droplets are waiting for each other to move. In

this case, stalling cannot resolve the deadlock (e.g., consider

the case where two droplets are attempting to enter the same

cell but cannot because it would cause a head-on collision).

Roy’s router attempts to recover from deadlock by moving

one of the droplets backward [22]. We simplify the process by

taking advantage of our virtual topology. With our module syn-

chronization, described in Section III-A, droplets have desig-

nated sources (module exits) and destinations (module entries)

that do not interfere with any other sources and destinations

in a given time-step (i.e., a droplet source will never interfere

with another droplet’s destination). Thus, a droplet can stay

at its source as long as necessary, until all other droplets are

safely off its path, and then commence its route. By employing

this method, we are guaranteed to avoid deadlock.

With this in mind, the router keeps track of the number of

stalls added to any route r. If the number of stalls added to

route r reaches some threshold, stallThresh, all of the stalls

added to any route thus far in the sub-problem are removed.

Then, the entire sub-problem is compacted again, except this

time, stalls are added to the beginning of the routes instead

of the middle. In this case, droplets do not leave the safety

of their source cell until they are guaranteed an unobstructed

path in space and time to their destination.

Consider Fig. 17 in which droplets 1 and 2 are being routed

from their sources (S1 and S2) to their target cells (T1 and T2).

TABLE I

Assay Benchmark Table

Table of Benchmarks Showing the Number of Different Operation Types and
Dispense Times

As seen in the top scenario, if the routes start at the same time,

deadlock will occur at cycle 3 as droplet 1, at cell (4, 4), and

droplet 2, at cell (7, 4), cannot move forward without merging.

No amount of mid-route stalls will resolve this deadlock since

they are heading straight toward each other; it is not a matter

of allowing one droplet to pass. The bottom scenario shows

that if droplet 2 is allowed to stay in its source until droplet

1 is safely off its route, droplet 1 can reach its target. Since

the cells around S2 are considered as blockages to droplet 1,

droplet 2 is safe to wait at S2 as long as necessary because

droplet 1 will never attempt to pass through that area, even if

its destination is to the east of S2.

Adding stalls to the beginning of a path will always work

and will never result in deadlock, as can occur when inserting

stalls mid-route; however, we discovered empirically that

inserting stalls mid-route tends to yield shorter routes, and

rarely results in deadlock. Thus, we employ the mid-route-

stall compaction method first and revert to the preroute-stall

compaction method only when a deadlock occurs.

V. Experiments

A. Benchmarks

We used three benchmark families: PCR, in-vitro diag-

nostics, and a protein assay (see Table I), whose base

DAGs have been made publicly available by researchers at

Duke University [25]; we also used the provided module

libraries to obtain operation timings. We used a 4 × 2 mixing

times (3s) for all PCR mixing operations. In-vitro diagnostics

is a family of assays that mixes and detects up to four samples

with four reagents (e.g., up to 16 mix-and-detect operations).

We use the five in-vitro assays, along with mixing/detection

times, as listed in [24, Table I].

We also use the protein-split benchmark, described in [11],

which represents the traditional protein assay with varying

levels of splitting from one to seven (the traditional protein

has three levels, with 23 = 8 output droplets); all operation

timings are the same as the protein assay. These assays are

used as large problem instances to push the synthesis flow’s

capabilities. For the protein assay, we used 4 × 2 dilution times



366 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

(5 s) and 4 × 2 mixing times (3 s) for all dilute and mixing

operations, respectively; all 2-input, 2-output dilute operations

in the protein assay were implemented using a mix operation,

followed by a split operation, which took 5 s in total.

We assume a droplet actuation frequency of 100 Hz [34]

and all droplet input times are assumed to be two seconds in

length. The Protein Split assays in Experiments 1 and 2 were

all scheduled using path scheduler [11]. All assays in Experi-

ment 3 were scheduled with list scheduler [26]. Furthermore,

although the virtual topology uses 4 × 2 mix and dilution

times, it still uses 4 × 3 modules for module synchronization

purposes; the 4 × 2 module was the largest/fastest module

described in the Duke benchmark document that would fit

inside our standard 4 × 3 module [25]. The free placer in

Experiment 3 uses 4 × 2 mixing times in a 4 × 2 module since

it does not need the extra space for module synchronization.

B. Implementation Details

All code was implemented in C + + using the University of

California, Riverside’s (UCRs) DMFB Synthesis Framework

[9]. We evaluated performance on a 64-bit Windows 7 desktop

PC, with 4GB of RAM and an Intel Core i7TM CPU operating

at 2.8 GHz. This platform represents a typical use case for a

controlled laboratory setting.

C. Experiment 1: Left-Edge Binding Versus Path Binding

We first compared the left-edge binder with the path binder,

both described in Section IV-B, on a 15W × 19H DMFB with

the basic topology described in Fig. 5 with 4 × 3 modules such

that 6 modules could safely be placed onto the DMFB. The

objective was to experimentally verify that the use of path

binder leads to shorter routes and algorithmic times, despite

the seemingly-added complexity of path binder and its prepro-

cessing computations. We evaluate the two algorithms on the

ProteinSplit family of assays, as they provide increasingly-

larger problem instances as the number of split-levels is

increased from 1–7 (14 nodes to 1022 nodes). Table II shows

the results for left-edge and path binding. For ProteinSplit 1–5,

the problem instances are too small to really see a difference

in computation time. However, as the assays grow larger

(ProteinSplit 6 and 7) path binder’s improvements are clearly

seen since it produces a valid binding 10 × faster than the left-

edge binder.

Table II also shows the total length of the droplet routes

generated by the router stage (described in Section IV-C) when

given the bindings for each benchmark. The results show that

the routing lengths are shorter for all but the smallest bench-

mark (ProteinSplit1), saving up to 3.8 s on the largest assay.

It should also be noted that, although not seen in Table II, the

computation time for routing is decreased due to the spatial

enhancements of path binder; from ProteinSplit 1–7, the router

saves from 2 ms to 6.4 s, respectively, further adding to the

time savings when using pathbinder. For the remainder of this

paper, we use path binder as our binder of choice.

D. Experiment 2: Topology Exploration

Here, we explore several topological configurations and the

effects on routing. Fig. 18 shows three different configurations

TABLE II

Left-Edge Binding Versus Path Binding

Results showing the route lengths (RL) and computation times for left-edge
and path binding performed on seven ProteinSplit (PS) benchmarks on a
15W×19H DMFB.

Fig. 18. Three different topologies showing modules stacked vertically
(2W×4H). (a) No horizontal routing channels (HRC, the white cells between
modules) between modules. (b) One HRC between every two modules.
(c) One HRC between every module.

with horizontal routing channels (HRCs) interspersed at vary-

ing regularities between vertical groups of modules. An HRC

is a group of contiguous horizontal cells that extends from

side to side and will never be occupied by a module or its

interference region. Fig. 18(a) shows the tightest configuration,

which is the case where there are no HRCs. Fig. 18(b) and (c)

illustrate the cases where there is a single HRC between every

two modules and every module, respectively. The design seen

in Fig. 18(c) allows for maximum routability and provides the

fewest blockages (at the cost of using more space). Fig. 18(a)

is the tightest design (with the most blockages for routing);

Fig. 18(b) presents a compromise between the two.

In Tables III and IV, we show how the topologies affect

schedule length and routing times. Table III presents results

for the ProteinSplit assays when the DMFB size is fixed.

This shows that certain topologies, which make less room

for routing, can fit more modules in some instances. For

example, as seen in Table III, the tight topology with no

HRCs [similar to that seen in Fig. 18(a)] could fit ten modules

on a 15W × 23H DMFB, while the topology with one HRC

between each module [similar to that seen in Fig. 18(c)] could

only fit six modules. The results are clearly seen in that, as

the number of modules increases, the schedule lengths are

reduced.

Table IV gives results for the ProteinSplit assays when the

number of resources are fixed (eight modules), in order to

show the results on routing. In this case, the DMFB topologies



GRISSOM AND BRISK: FAST ONLINE SYNTHESIS OF DIGITAL MICROFLUIDIC BIOCHIPS 367

TABLE III

Schedule Length (s) For Fixed-Size DMFB (15W × 23H)

Results showing the number of modules that can fit and the resultant schedule
lengths of three topologies with different horizontal routing channel (HRC)
spacing; each topology is placed onto a 15W×23L DMFB.

TABLE IV

Total Route Length (s) for Fixed-Module-Count (eight Mods)

Results showing the sizes of the DMFBs and resultant route lengths for three
topologies with different horizontal routing channel (HRC) spacing; each
DMFB is sized to fit eight modules with the given topology.

and sizes are exactly those seen in Fig. 18. The purpose of the

HRCs is to create shortcuts for droplets that must otherwise

travel all the way to the north/south border and around the

entire stack of modules to get to its destination (the extreme

cases) if all modules are busy. As seen in Table IV, the

most compact topology (with no HRCs) produces the shortest

overall routes for every benchmark. Thus, these results show

that the elimination of occasional worst-case routing situations

does not offset the constantly shorter distances droplets travel

between modules in the most compact topology with no HRCs.

Furthermore, as stated in Section III, droplets can cut through

inactive modules (essentially creating a temporary HRC) to

reduce routing times. Hence, Tables III and IV show that

the topology with no HRCs [Fig. 18(a)] uses the least space

(which can lead to greater utilization and shorter schedules)

and yields the shortest routing lengths.

E. Experiment 3: Comparison To Fast Free Placer

In this section, we highlight the key benefits of the virtual

topology and binder by comparing Path Binding to a fast

free placement algorithm known as Keep All Maximal Empty

Rectangles (KAMER) placement [4], [16]. The KAMER

placer works by quickly computing all the maximal empty

rectangles (MERs) (i.e., the empty rectangles that cannot be

contained within another empty rectangle) and then placing

a module within one of the MERs. We chose KAMER

placement as a fair comparison because it is very fast and

used in other online synthesis works [3].

We compare the KAMER placer (KP) to path binding (PB)

with the virtual topology seen in Fig. 18(a) (no HRCs), both on

an identical 15W×19H DMFB, such that eight mixers could

be accommodated. Both synthesis flows used list scheduling

[26] and Roy’s maze router [22], described in Sections IV-A

and IV-C, respectively. The schedules, computed as input to

the KAMER placer and path binder, were identical.

We experimented with two and three storage droplets

(PB−2/KP−2 and PB−3/KP−3) per module for the two meth-

ods/flows. For PB−2, storage is handled as described in Fig. 8

(storage enters via I1/I2 and leaves via O1/O2). For PB−3,

when three droplets were allowed to be stored per module, we

allowed the router to break the module I/O synchronization

rules by allowing the third droplet to enter via O1; the

two droplets that entered via I1 and I2 remained there and

also exited via I1 and I2. All modules used by PB were

4×3 cells; KP was able to use smaller 4×2 modules since

it does not need to enforce droplet synchronization rules.

For storage, KP−2/KP−3 places two/three single-cell (1×1)

modules (which is the common storage-module size for free

placement [26]) instead of storing two/three droplets in a larger

4×2 mixing module.

Table V shows the results for ten runs of PCR, InVitro1-5

and ProteinSplit 1–6 for PB and KP for two and three storage

droplets per module; PB−2 is the solution presented in this

paper. The first section shows that, in 10 runs, PB−2 has no

failures until ProteinSplit 6, when list scheduling fails because

there are not enough resources for it to schedule such a large

assay. PB−3 fails completely on routing on ProteinSplit 4–6.

The third section shows the schedule length and total assay

time (which includes routing); this section shows that PB−2

and PB−3s schedules did not differ until ProteinSplit 4–6.

Thus, the scheduler did not need 3 droplets per module until

ProteinSplit 4, showing that routing failed for PB−3 as soon

as the system attempted to actually bind three droplets to a

single module.

KP−2 shows that, even with only two storage droplets per

mix module being scheduled, placement and routing errors oc-

cur often; KP−3 shows similar results. Thus, although allowing

for three droplets per module produces better schedules, it is

clear from the results that doing so yields more congestion,

making it difficult to produce valid routing solutions for both

binding and free placement. This suggests that it is unwise

to attempt scheduling more than two droplets per (4×2/4×3)

mix module.

The middle section of Table V shows the synthesis times

for placement and routing of the first successful run of the

ten runs, if any existed. The results show that both placers are

extremely fast (milliseconds), with PB being slightly faster or

equal to KP in all comparable instances, making it suitable for

online synthesis. Finally, as seen in the third section of Table V,

when comparing PB−2 versus KP−2 and PB−3 versus KP−3

(since both pairs have the same schedule), PB produces overall

shorter routing times than KP since it reduces the number

of droplets that need to be routed by binding contiguous

operations to the same module (location) when possible.

Overall, Table V supports our decision to limit storage to

two droplets per module and shows that, even though more

droplets could be placed in our modules, they cannot be

reliably routed. The results also demonstrate that, although KP



368 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

TABLE V

Path Binding (PB) With Virtual Topology Versus KAMER Placer (KP)

Results showing path binding (PB) Versus KAMER placement (KP) with two and three storage droplets per mixing module on a 15W×19L DMFB. The first
section shows the number of scheduling/placement/routing failures (SF/PF/RF) in ten runs (’-’ means no failures). The second section shows the computation
time of placement and routing for the first successful run (’-’ means all ten runs were failures and no timing was measured) of each flow. The third section
shows the schedule length and the total length of the assay (which includes the routing time).

uses less space for modules, the chaotic and super-compact

placements make it difficult-to-impossible for routing. We

should note that we also tried a version of KP which left addi-

tional space around modules to improve routability; however,

this configuration of KP performed worse than the version

presented in Table V, often failing on placement because there

was not enough room to randomly place the modules freely

with the extra space.

VI. Conclusion

The online synthesis flow introduced in this paper can run in

real-time on a typical laboratory desktop system, as typified by

the Intel i7 processor used in our experiments. Empirically, this

paper has shown that a virtual topology coupled with a binding

algorithm can greatly simplify the placement problem, ease

the router’s job and lead to better droplet routes. We present a

basic left-edge binder and a more-intelligent path-based binder

which bind assay operations to module locations. The first

simply computes a valid binding solution, while the latter takes

spatial and temporal locality into account to produce better

solutions.

The topology is designed to facilitate basic microfluidic op-

erations and ensure that any droplet’s source-destination pair

can be quickly computed without fail on the first try. These

features are vital in an online environment where recomputing

synthesis stages will be felt by the user as he or she waits. We

demonstrate that a compact topology produces better results

both in scheduling and routing than sparse topologies designed

to allow more room for routing. We also show tiling modules

vertically, with a width-to-height ratio slightly below zero,

yields the best routing results.

Our future work will extend the online synthesis flow to

account for control flow operations that cannot be predicted

at compile-time, including variable-latency assay operations,

and runtime fault detection and recovery; of particular interest

is the ability to dynamically reconfigure the virtual topology

when permanent errors are detected; when this occurs, the on-

line flow will be invoked to resynthesize the assay at runtime.

References

[1] D. Grissom and P. Brisk. (2012). UCR Microfluidics lab [Online].
Available: http://www.microfluidics.cs.ucr.edu

[2] M. Alistar, E. Maftei, P. Pop, and J. Madsen, “Synthesis of biochemical
applications on digital microfluidic biochips with operation variability,”
in Proc. DTIP MEMS/MOEMS, 2010, pp. 350–357.

[3] M. Alistar, P. Pop, and J. Madsen, “Online synthesis for error recovery
in digital microfluidic biochips with operation variability,” in Proc. DTIP

MEMS/MOEMS, 2010, pp. 350–357.
[4] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement

for reconfigurable computing,” IEEE Design and Test of Computers,
vol. 17, no. 1, pp. 68–83, Jan.–Mar. 2000.

[5] K. F. Böhringer, “Modeling and controlling parallel tasks in
droplet-based microfluidic systems,” IEEE Trans. Computer-Aided

Design Integr. Circuits Syst., vol. 25, no. 2, pp. 334–344, Feb.
2006.

[6] M. Cho and D. Z. Pan, “A high-performance droplet routing algo-
rithm for digital microfluidic biochips,” IEEE Trans. Computer-Aided

Design Integr. Circuits Syst., vol. 27, no. 10, pp. 1714–1724, Oct.
2008.

[7] S.-K. Fan, C. Hashi, and C.-J. Kim, “Manipulation of multiple droplets
on NxM grid by cross-reference EWOD driving scheme and pressure-
contact packaging,” in Proc. IEEE MEMS, 2003, pp. 694–697.

[8] E. J. Griffith, S. Akella, and M. K. Goldberg, “Performance charac-
terization of a reconfigurable planar-array digital microfluidic system,”
IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 25, no. 2,
pp. 345–357, Feb. 2006.

[9] D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao,
et al., “A digital microfluidic biochip synthesis framework,” in Proc.

VLSI-SoC, 2012, pp. 177–182.
[10] D. Grissom and P. Brisk, “Fast online synthesis of generally pro-

grammable digital microfluidic biochips,” in Proc. CODES + ISSS, 2012,
pp. 413–422.

[11] D. Grissom and P. Brisk, “Path scheduling on digital microfluidic
biochips,” in Proc. DAC, 2012, pp. 26–35.

[12] T. Huang and T. Ho, “A fast routability- and performance-driven droplet
routing algorithm for digital microfluidic biochips,” in Proc. IEEE ICCD,
2009, pp. 445–450.

[13] T. Ho, K. Chakrabarty, and P. Pop, “Digital microfluidic biochips: Recent
research and emerging challenges,” in Proc. CODES + ISSS, 2011,
pp. 335–343.

[14] C. Liao and S. Hu, “Multiscale variation-aware techniques for high-
performance digital microfluidic lab-on-a-chip component placement,”
IEEE Trans. NanoBiosci., vol. 10, no. 1, pp. 51–58, Mar. 2011.

[15] Y. Luo, K. Chakrabarty, and T. Ho, “A cyberphysical synthesis approach
for error recovery in digital microfluidic biochips,” in Proc. DATE, 2012,
pp. 1239–1244.

[16] E. Maftei, P. Pop, and J. Madsen, “Tabu search-based synthesis of dy-
namically reconfigurable digital microfluidic biochips,” in Proc. CASES,
2009, pp. 195–203.



GRISSOM AND BRISK: FAST ONLINE SYNTHESIS OF DIGITAL MICROFLUIDIC BIOCHIPS 369

[17] J. H. Noh, J. Noh, E. Kreit, J. Heikenfeld, and P. Rack, “Toward
active-matrix lab-on-a-chip: Programmable electrofluidic control en-
abled by arrayed oxide thin film transistors,” Lab Chip, vol. 12, no. 2,
pp. 353–360, Dec. 2011.

[18] K. O’Neal, D. Grissom, and P. Brisk, “Force-directed list scheduling for
digital microfluidic biochips,” in Proc. VLSI-SoC, 2012, pp. 177–182.

[19] P. Paik, V. Pamula, and R. Fair, “Rapid droplet mixers for digital
microfluidic systems,” Lab Chip, vol. 3, no. 4, pp. 253–259, Sep. 2003.

[20] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based
actuation of droplets for integrated microfluidics,” Lab Chip, vol. 2,
no. 2, pp. 96–101, 2002.

[21] A. J. Ricketts, K. Irick, N. Vijaykrishnan, and M. J. Irwin, “Priority
scheduling in digital microfluidics-based biochips,” in Proc. DATE,
2006, pp. 329–334.

[22] P. Roy, H. Rahaman, and P. Dasgupta, “A novel droplet routing algorithm
for digital microfluidic biochips,” in Proc. GLSVLSI, 2010, pp. 441–446.

[23] J. Soukup, “Fast maze router,” in Proc. DAC, 1978, pp. 100–102.
[24] F. Su and K. Chakrabarty, “Architectural-level synthesis of digital

microfluidics-based biochips,” in Proc. ICCAD, 2004, pp. 223–228.
[25] F. Su and K. Chakrabarty. (2006) Benchmarks for digital

microfluidic biochip design and synthesis [Online]. Available:
http://www.ee.duke.edu/fs/Benchmark.pdf

[26] F. Su and K. Chakrabarty, “High-level synthesis of digital microflu-
idic biochips,” ACM J. Emerg. Technol. Comput. Syst., vol. 3, no. 4,
pp. 16.1–16.32, Jan. 2008.

[27] F. Su and K. Chakrabarty, “Module placement for fault-tolerant
microfluidics-based biochips,” ACM Trans. Design Autom Electron Syst,
vol. 11, no. 3, pp. 682–710, Jul. 2006.

[28] F. Su and K. Chakrabarty, “Unified high-level synthesis and module
placement for defect-tolerant microfluidic biochips,” in Proc. DAC,
2005, pp. 825–830.

[29] F. Su, W. Hwang, and K. Chakrabarty, “Droplet routing in the synthesis
of digital microfluidic biochips,” in Proc. DATE, 2006, pp. 323–328.

[30] K.-H. Tseng, S.-C. You, W. H. Minhass, T.-Y. Ho, and P. Pop, “A
network-flow based valve-switching aware binding algorithm for flow-
based microfluidic biochips,” in Proc. ASP-DAC, 2013, pp. 213–218.

[31] Z. Xiao and E. F. Y. Young, “Placement and routing for cross-referencing
digital microfluidic biochips,” IEEE Trans. Computer-Aided Design

Integr. Circuits Syst., vol. 30, no. 7, pp. 1000–1010, Jul. 2011.
[32] T. Xu and K. Chakrabarty, “Broadcast electrode-addressing for pin-

constrained multi-functional digital microfluidic biochips,” in Proc.

DAC, 2008, pp. 173–178.
[33] T. Xu and K. Chakrabarty, “Integrated droplet routing in the synthesis

of microfluidic biochips,” in Proc. DAC, 2007, pp. 948–953.
[34] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “BioRoute: A network-

flow-based routing algorithm for the synthesis of digital microfluidic
biochips,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst.,
vol. 27, no. 11, pp. 1928–1941, Nov. 2008.

[35] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of defect-tolerant
digital microfluidic biochips using the T-tree formulation,” ACM J.

Emerg. Technol. Comput. Syst., vol. 3, no. 3, pp. 13.1–13.32, Nov. 2007.

Daniel T. Grissom received the B.S. degree in
computer engineering from the University of Cincin-
nati, Cincinnati, OH, USA, in 2008, and the M.S.
degree in computer science from the University of
California (UCR), Riverside, CA, USA, in 2011. He
is currently pursuing the Ph.D. degree in computer
science at UCR.

He has published seven papers, one journal, and
filed one provisional patent. His current research
interests include languages, synthesis, and hardware
interfacing for digital microfluidic biochips.

Mr. Grissom was the recipient of the National Science Foundation’s Grad-
uate Research Fellowship Program Award in 2010, and is a member of the
ACM and ACM SIGBED.

Philip Brisk (M’09) received the B.S., M.S., and
the Ph.D. degrees, all in computer science, from
University of California, Los Angeles, LA, USA, in
2002, 2003, and 2006, respectively.

From 2006–2009, he was a Post-Doctoral Scholar
in the Processor Architecture Laboratory in the
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne, Lau-
sanne, Switzerland. He is currently an Assistant
Professor with the Department of Computer Science
and Engineering, Bourns College of Engineering,

University of California, Riverside, CA, USA. His current research inter-
ests include FPGAs, compilers, and design automation and architecture for
application-specific processors.

Dr. Brisk was a recipient of the Best Paper Award at the International
Conference on Compilers, Architecture, and Synthesis, in 2007, and the
International Conference on Field Programmable Logic and Applications, in
2009. He is a member of the program committees of several international
conferences and workshops, including Design Automation and Test in Europe,
the IEEE Symposium on Application-Specific Processors, the International
Workshop on Software and Compilers for Embedded Systems, and the
Reconfigurable Architecture Workshop. He was also the General Chair of
the 4th IEEE Symposium on Industrial Embedded Systems, in 2009, and
the General Co-Chair of the 8th IEEE Symposium on Application Specific
Processors, in 2010.


