
Fast Optical Flow Using Dense Inverse Search

Till Kroeger1(B), Radu Timofte1, Dengxin Dai1, and Luc Van Gool1,2

1 Computer Vision Laboratory, D-ITET, ETH Zurich, Zurich, Switzerland
{kroegert,timofter,dai,vangool}@vision.ee.ethz.ch
2 VISICS/iMinds, ESAT, KU Leuven, Leuven, Belgium

Abstract. Most recent works in optical flow extraction focus on the accu-
racy and neglect the time complexity. However, in real-life visual appli-
cations, such as tracking, activity detection and recognition, the time
complexity is critical. We propose a solution with very low time com-
plexity and competitive accuracy for the computation of dense optical
flow. It consists of three parts: (1) inverse search for patch correspon-
dences; (2) dense displacement field creation through patch aggregation
along multiple scales; (3) variational refinement. At the core of our Dense
Inverse Search-based method (DIS) is the efficient search of correspon-
dences inspired by the inverse compositional image alignment proposed by
Baker and Matthews (2001, 2004). DIS is competitive on standard optical
flow benchmarks. DIS runs at 300 Hz up to 600Hz on a single CPU core
(1024 × 436 resolution. 42 Hz/46Hz when including preprocessing: disk
access, image re-scaling, gradient computation. More details in Sect. 3.1.),
reaching the temporal resolution of human’s biological vision system. It is
order(s) of magnitude faster than state-of-the-art methods in the same
range of accuracy, making DIS ideal for real-time applications.

1 Introduction

Optical flow estimation is under constant pressure to increase both its quality
and speed. Such progress allows for new applications. A higher speed enables its
inclusion into larger systems with extensive subsequent processing (e.g. reliable
features for motion segmentation, tracking or action/activity recognition) and its
deployment in computationally constrained scenarios (e.g. embedded systems,
autonomous robots, large-scale data processing).

A robust optical flow algorithm should cope with discontinuities (outliers,
occlusions, motion discontinuities), appearance changes (illumination, chro-
maticity, blur, deformations), and large displacements. Decades after the pioneer-
ing research of Horn and Schunck [4] and Lucas and Kanade [5] we have solutions
for the first two issues [6,7] and recent endeavors lead to significant progress in
handling large displacements [8–21]. This came at the cost of high run-times
usually not acceptable in computationally constrained scenarios such as real-
time applications. Recently, only very few works aimed at balancing accuracy

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-46493-0 29) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part IV, LNCS 9908, pp. 471–488, 2016.
DOI: 10.1007/978-3-319-46493-0 29

http://dx.doi.org/10.1007/978-3-319-46493-0_29
http://dx.doi.org/10.1007/978-3-319-46493-0_29

472 T. Kroeger et al.

1000 Hz 100 Hz 10 Hz 1 Hz
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

 Run−time (Hz)

 A
v

g
.

e
n

d
−

p
o

in
t

e
rr

o
r

(p
x

)

 1

 2

 3

 93 × speed−up

 Our Method

Farneback

PCA−Flow

SparseFlow

DeepFlow

 Avg. EPE: 1.89, Our Method, 600 Hz

(1) DIS @ 600Hz
 Avg. EPE: 1.52, Our Method, 300 Hz

(2) DIS @ 300Hz
 Avg. EPE: 0.66, Our Method, 10 Hz

(3) DIS @ 10Hz
 Ground Truth Flow

Ground Truth

Fig. 1. Our DIS method runs at 10 Hz up to 600Hz on a single core CPU for an
average end-point pixel error smaller or similar to top optical flow methods at similar
speed. This plot excludes preprocessing time for all methods. Details in Sects. 3.1 and
3.3.

and run-time in favor of efficiency [19,22,23], or employed massively parallelized
dedicated hardware to achieve acceptable run-times [21,24,25]. In contrast to
this, recently it has been noted for several computer vision tasks [3,26–29], that
it is often desirable to trade-off powerful but complex algorithms for simple and
efficients methods, and rely on high frame-rates and smaller search spaces for
good accuracy. In this paper we focus on improving the speed of optical flow in
general, non-domain-specific scenarios, while remaining close to the state-of-the-
art flow quality. We propose two novel components with low time complexity,
one using inverse search for fast patch correspondences, and one based on multi-
scale aggregation for fast dense flow estimation. Additionally, a fast variational
refinement step further improves the accuracy of our dense inverse search-based
method. Altogether, we obtain speed-ups of 1–2 orders of magnitude over state-
of-the-art methods at similar flow quality operating points (Fig. 1). The run-
times are in the range of 10–600 Hz on 1024 × 436 resolution images, depending
on the selected trade-off between run-time and accuracy, by using a single CPU
core on a common desktop PC. The method reaches the temporal resolution
of human’s biological vision system [3]. To the best of our knowledge, this is
the first time that optical flow at several hundred frames-per-second has been
reached with such high flow quality on any hardware.

1.1 Related Work

Providing an exhaustive overview [30] of optical flow estimation is beyond the
scope of this paper. Most of the work on improving the time complexity (without
trading-off quality) combines some of the following ideas:

Fast Optical Flow Using Dense Inverse Search 473

While, initially, the feature descriptors of choice were extracted sparsely,
invariant under scaling or affine transformations [31], the recent trend in
optical flow estimation is to densely extract rigid (square) descriptors from local
frames [9,32,33]. HOG [34], SIFT [35], and SURF [36] are among the most popu-
lar square patch support descriptors. In the context of scene correspondence, the
SIFT-flow [33] and PatchMatch [37] algorithms use descriptors or small patches.
The descriptors are invariant only to similarities which may be insufficient espe-
cially for large displacements and challenging deformations [9]. Godot et al. [38]
learn descriptors appropriate for optical flow using siamese CNNs.

The feature matching usually employs a (reciprocal) nearest neighbor oper-
ation [9,35,37,38]. Important exceptions are the recent works of Weinzaepfel
et al. [17] (non-rigid matching inspired by deep convolutional nets), of Leordeanu
et al. [11] (enforcing affine constraints), and of Timofte et al. [12] (robust match-
ing inspired by compressed sensing). They follow Brox and Malik [9] and guide
a variational optical flow estimation through (sparse) correspondences from the
descriptor matcher and can thus handle arbitrarily large displacements. Xu et
al. [20] combine SIFT [35] and PatchMatch [37] matching for refined flow level
initialization at the expense of computational costs.

An optimization problem is often at the core of the flow extraction meth-
ods. The flow is estimated by minimizing an energy that sums up match-
ing errors and smoothness constraints. While Horn and Schunck [4] proposed
a variational approach to globally optimize the flow, Lucas and Kanade [5]
solve the correspondence problem locally and independently for image patches.
Local [5,23,39] methods are usually faster but less accurate than the global ones.
Given location and smoothness priors over the image, MRF formulations are
used [40,41]. Recently full optimization over discrete grids has been successfully
applied [14,42].

Parallel computation is a natural way of improving the run-time of the
optical flow methods by (re)designing them for parallelization. The industry
historically favored specialized hardware such as FPGAs [43], while the recent
years brought the advance of GPUs [21,24,25,44]. Yet, multi-core design on the
same machine is the most common parallelization. However, many complex flow
methods are difficult to adapt for parallel processing.

Learning. Most of the optical flow methods exploit training images for para-
meter tuning. However, this is only a rough embedding of prior knowledge. Only
recently methods were proposed that successfully learn specific models from such
training material. Wulff et al. [19] assume that any flow field can be approxi-
mated by a decomposition over a learned basis of flow fields. Fischer et al. [21]
construct Convolutional Neural Networks (CNNs) to solve the optical flow esti-
mation. Gadot et al. [38] learn patch similarities using siamese CNNs.

Coarse-to-fine optimizations have been applied frequently to flow esti-
mation [9,45,46] to avoid poor local minima, especially for large motions, and
thus to improve the performance and to speed up the convergence.

Branch and bound and priority queues have been used to find smart
strategies to first explore the flow in the most favorable image regions and grad-

474 T. Kroeger et al.

ually refine it for the more ambiguous regions. This often leads to a reduction
in computational costs. The PatchMatch methods [37,38,46] follow a branch
and bound strategy, gradually fixing the most promising correspondences. Bao
et al. [24] propose an edge-preserving extension (EPPM) based on PatchMatch.

Dynamic Vision Sensors [47], asynchronously capturing illumination
changes at microsecond latency, have been used to compute optical flow. Benos-
man [3] and Barranco [29] note that realistic motion estimation, even with
large displacements, becomes simple when capturing image evidence in the
kilohertz-range.

1.2 Contributions

We present a novel optical flow method based on dense inverse search (DIS),
which we demonstrate to provide high quality flow estimation at 10–600 Hz
on a single CPU core. This method is 1–2 orders of magnitude times faster
than previous results [12,17,19] on the Sintel [48] and KITTI [49] datasets when
considering all methods at similar flow quality operating points. At the same
time it is significantly more accurate compared to existing methods running at
equal speed [5,22]. This result is based on two main contributions:

Fast inverse search for correspondences. Inspired by the inverse composi-
tional image alignment of [1,2] we devise our inverse search procedure (explained
in Sect. 2.1) for fast mining of a grid of patch-based correspondences between
two input images. While usually less robust than exhaustive feature matching,
we can extract a uniform grid of correspondences in microseconds.

Fast optical flow with multi-scale reasoning. Many methods assume sparse
and outlier-free correspondences, and rely heavily on variational refinement to
extract pixel-wise flow [12,17]. This helps to smooth-out small errors, and cover
regions with flat and ambigious textures, where exhaustive feature matching fails.
Other methods rely directly on pixel-wise refinement [24,25]. We chose a middle
ground and propose a very fast and robust patch-averaging-scheme, performed
only once per scale, after grid-based correspondences have been extracted. This
step gains robustness against outlier correspondences, and initializes a pixel-wise
variational refinement, performed once per scale. We reach an optimal trade-off
between accuracy and speed at 300 Hz on a single CPU core, and reach 600 Hz
without variational refinement at the cost of accuracy. Both operating points are
marked as (2) and (1) in Figs. 1, 4 and 5.

Related to our approach is [25]. Here, the inverse image warping idea [2] is
used on all the pixels, while our method optimizes patches independently. In
contrast to our densification, done once per scale, [25] relies on frequent flow
interpolations, requiring a high-powered GPU, and still is significantly slower
than our CPU-only method. The paper is structured as follows: In Sect. 2 we
introduce our DIS method. In Sect. 3 we describe the experiments, separately
evaluate the patch-based correspondence search, and analyse the complete DIS
algorithm with and without the variational refinement. In Sect. 4 we conclude
the paper.

Fast Optical Flow Using Dense Inverse Search 475

2 Proposed Method

In the following, we introduce our dense inverse search-based method (DIS) by
describing: how we extract single point correspondences between two images in
Sect. 2.1, how we merge a set of noisy point correspondences on each level s of
a scale-pyramid into a dense flow field Us in Sect. 2.2, how we refine Us using
variational refinement in Sect. 2.3, and possible extensions of DIS in Sect. 2.4.

2.1 Fast Inverse Search for Correspondences

The core component in our method to achieve high performance is the efficient
search for patch correspondences. In the following we will detail how we extract
one single point correspondence between two frames.

For a given template patch T in the reference image It, with a size of θps×θps

pixels, centered on location x = (x, y)T , we find the best-matching sub-window of
θps ×θps pixels in the query image It+1 using gradient descent. We are interested
in finding a warping vector u = (u, v) such that we minimize the sum of squared
differences over the sub-window between template and query location:

u = argmin
u

′

∑
x

[It+1(x + u′) − T (x)]
2
. (1)

Minimizing this quantity is non-linear and is optimized iteratively using the
inverse Lukas-Kanade algorithm as proposed in [2]. For this method two steps
are alternated for a number of iterations or until the quantity (1) converges. For
the first step, the quantity (2) is minimized around the current estimate u for
an update vector Δu such that

Δu = argmin∆u
′

∑
x

[It+1(x + u + Δu′) − T (x)]
2
. (2)

The first step requires extraction and bilinear interpolation of a sub-window
It+1(x + u) for sub-pixel accurate warp updates. The second step updates the
warping u ← u + Δu.

The original Lukas-Kanade algorithm [5] required expensive re-evaluation of
the Hessian of the image warp at every iteration. As proposed in [2] the inverse

objective function
∑

x [T (x − Δu) − It+1(x + u)]
2

can be optimized instead of
(2), removing the need to extract the image gradients for It+1(x + u) and to
re-compute the Jacobian and Hessian at every iteration. Due to the large speed-
up this inversion has been used for point tracking in SLAM [50], camera pose
estimation [51], and is covered in detail in [2] and our supplementary material.

In order to gain some robustness against absolute illumination changes, we
mean-normalize each patch. One challenge of finding sparse correspondences
with this approach is that the true displacements cannot be larger than the
patch size θps, since the gradient descent is dependent on similar image con-
text in both patches. Often a coarse-to-fine approach with fixed window-size but
changing image size is used [50,51], firstly, to incorporate larger smoothed con-
texts at coarser scales and thereby lessen the problem of falling into local optima,
secondly, to find larger displacements, and, thirdly, to ensure fast convergence.

476 T. Kroeger et al.

Algorithm 1. Dense Inverse Search (DIS)

1: Set initial flow field Uθss+1 ← 0
2: for s = θss to θsf do
3: (1.) Create uniform grid of Ns patches
4: (2.) Initialize displacements from Us+1

5: for i = 1 to Ns do
6: (3.) Inverse search for patch i

7: (4.) Densification: Compute dense flow field Us

8: (5.) Variational refinement of Us

2.2 Fast Optical Flow with Multi-scale Reasoning

We follow such a multi-scale approach, but, instead of optimizing patches inde-
pendently, we compute an intermediate dense flow field and re-initialize patches
at each level. We do this because of two reasons: (1) the intermediate dense flow
field smooths displacements and provides robustness, effectively filtering outliers
and (2) it reduces the number of patches on coarser scales, thereby providing a
speed-up. We operate in a coarse-to-fine fashion from a first (coarsest) level θss

in a scale pyramid with a downscaling quotient of θsd to the last (finest) level
θsf . On each level our method consists of five steps, summarized in Algorithm 1,
yielding a dense flow field Us in each iteration s.

(1.) Creation of a grid: We initialize patches in a uniform grid over the image
domain. The grid density and number of patches Ns is implicitly determined by
the parameter θov ∈ [0, 1) which specifies the overlap of adjacent patches and is
always floored to an integer overlap in pixels. A value of θov = 0 denotes a patch
adjacency with no overlap and θov = 1− ǫ results in a dense grid with one patch
centered on each pixel in the reference image.

(2.) Initialization: For the first iteration (s = θss) we initialize all patches with
the trivial zero flow. On each subsequent scale s we initialize the displacement
of each patch i ∈ Ns at its location x with the flow from the previous (coarser)
scale: ui,init = Us+1(x/θsd) · θsd.

(3.) Inverse search: Optimal displacements are computed independently for
all patches, as detailed in Sect. 2.1. The search time required for each patch lies
in the range of 1–2 μs, as detailed in the supplementary material.

(4.) Densification: After step three we have updated displacement vectors
ui. For more robustness against outliers, we reset all patches to their initial flow
ui,init for which the displacement update ‖ui,init−ui‖2 exceeds the patch size θps.
We create a dense flow field Us in each pixel x by applying weighted averaging
to displacement estimates of all patches overlapping at x in the reference image:

Us(x) =
1

Z

Ns∑
i

λi,x

max(1, ‖di(x)‖2)
· ui, (3)

Fast Optical Flow Using Dense Inverse Search 477

where the indicator λi,x = 1 iff patch i overlaps with location x in the reference
image, di(x) = It+1(x + ui) − T (x) denotes the intensity difference between
template patch and warped image at this pixel, ui denotes the estimated dis-
placement of patch i, and normalization Z =

∑
i λi,x/max(1, ‖di(x)‖2).

(5.) Variational energy minimization of flow Us, as detailed in Sect. 2.3.

2.3 Fast Variational Refinement

We use the variational refinement of [17] with three simplifications: (i) We use
no feature matching term, (ii) intensity images only, and (iii) refine only on the
current scale. The energy is a weighted sum of intensity and gradient data terms
(EI , EG) and a smoothness term (ES) over the image domain Ω:

E(U) =

∫
Ω

σ Ψ(EI) + γ Ψ(EG) + α Ψ(ES) dx (4)

We use a robust penalizer Ψ(a2) =
√

a2 + ǫ2, with ǫ = 0.001 for all terms
as proposed in [52]. We use a separate penalization of intensity and gradient
constancy assumption, with normalization as proposed in [53]: With the bright-
ness constancy assumption (∇T

3 I)u = 0, where ∇3 = (∂x, ∂y, ∂z)T denotes the
spatio-temporal gradient, we can model the intensity data term as EI = uT J̄0 u.
We use the normalized tensor J̄0 = β0 (∇3I)(∇T

3 I) to enforce brightness con-
stancy, with normalization β0 = (‖∇2I‖2 + 0.01)−1 by the spatial derivatives
and a term to avoid division by zero as in [53].

Similarly, EG penalizes the gradient constancy: EG = uT J̄xy u with J̄xy =
βx(∇3Idx)(∇T

3 Idx) + βy(∇3Idy)(∇T
3 Idy), and normalizations βx = (‖∇2Idx‖2 +

0.01)−1 and βy = (‖∇2Idy‖2 + 0.01)−1. The smoothness term is a penalization
over the norm of the gradient of displacements: ES = ‖∇u‖2 + ‖∇v‖2. The
non-convex energy E(U) is minimized iteratively with θvo fixed point iterations
and θvi iterations of Successive-Over-Relaxation for the linear system, as in [54].

2.4 Extensions

Our method lends itself to five extensions as follows:
i. Parallelization of all time-sensitive parts of our method (step 3, 5 in

Sect. 2.2) is trivially achievable, since patch optimization operates independently.
In the variational refinement the linear systems per pixel are solved indepen-
dently in each inner iteration. With OpenMP we receive an almost linear speed-
up with number of cores. Since the overhead of thread creation and management
is significant for fast run-times, we use only one core in all experiments.

ii. Using RGB color images, instead of intensity only, boosts the score in
most top-performing optical flow methods. In our experiments, we found that
using color is not worth the observed increase of the run-time.

iii. Merging forward-backward flow estimations increases the accuracy.
We found that the boost is not worth the observed doubling of the run-time.

478 T. Kroeger et al.

10
0

10
1

10
2

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Log. run−time (ms)

A
v
g
.

E
P

E

θ
sf

= 3

↓

θ
sf

= 3

↓

2

↓

2

↓

1

↓

1

↓

0

↓

0

↓

DeepFlow

SparseFlow

PCA−Flow

Eppm (GPU)

Our Method + Ref.

Our Method − Ref.

10
0

10
1

10
2

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

θ
it
= 4

↓

θ
it
= 4

↓

8

↓

8

↓

16

↓

16

↓

32

↓

32

↓

64

↓

64

↓

128

↓

128

↓

Log. run−time (ms)

A
v
g
.

E
P

E

10
0

10
1

10
2

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

← θ
ps

= 4

θ
ps

= 4

↓

← 8

8

↓

← 12

12

↓

← 16

16

↓

← 20

20

↓

Log. run−time (ms)

A
v
g
.

E
P

E

10
0

10
1

10
2

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

θ
ov

= 0.1

↓

θ
ov

= 0.1

↓

0.3

↓

0.3

↓

0.5

↓

0.5

↓

0.7

↓

0.7

↓

0.9

↓

0.9

↓

Log. run−time (ms)

A
v
g
.

E
P

E

Fig. 2. Optical Flow result on Sintel with changing parameters. We set θsf = 2,
θit = 8, θps = 8, θov = 0.3, marked with a black circle in all plots. From the left to
right we vary the parameters θsf , θit, θps, and θov independently in each plot.

iv. Robust error norms, such as L1 and the Huber-norm [55], can be used
instead of the L2-norm, implicit in the optimization of (1). Experimentally, we
found that the gained robustness is not worth the slower convergence.

v. Using DIS for stereo depth, requires the estimation of the horizontal
pixel displacement. Removing the vertical degree of freedom from DIS is trivial.

See the supplementary material for experiments on i.-v.

3 Experiments

In order to evaluate the performance of our method, we present three sets
of experiments. Firstly, we conduct an analysis of our parameter selection in
Sect. 3.1. Here, we also study the impact of variational refinement in our method.
Secondly, we evaluate the inverse search (step 3 in Algorithm 1) in Sect. 3.2 with-
out densification (step 4). The complete pipeline for optical flow is evaluated in
Sects. 3.3 and 3.4. Thirdly, since the problem of recovering large displacements
can also be handled by higher frame-rates combined with lower run-time per
frame-pair, we conduct an experiment in Sect. 3.5 to analyse the benefit of higher
frame-rates.

3.1 Implementation and Parameter Selection

We implemented1 our method in C++ and run all experiments and baselines on
a Core i7 CPU using a single core, and a GTX780 GPU for the EPPM [24] base-
line. For all experiments on the Sintel and KITTI training datasets we report
timings from which we exclude all operations which, in a typical robotics vision
application, would be unnecessary, performed only once, or shared between mul-
tiple tasks: Disk access, creation of an image pyramid including image gradients
with a downsampling quotient of 2, all initializations of the flow algorithms. We
do this for our method and all baselines within their provided code. For EPPM,
where only an executable was available, we subtracted the average overhead
time of our method for fair comparison. Please see the supplementary mater-
ial for variants of these experiments where preprocessing times are included for

1 Source code available: http://www.vision.ee.ethz.ch/∼kroegert/OFlow/.

http://www.vision.ee.ethz.ch/~kroegert/OFlow/

Fast Optical Flow Using Dense Inverse Search 479

Table 1. Parameters of our method. Parameters in bold have a significant impact on
performance and are cross-validated in Sect. 3.1.

Parameter Function

θsf Finest scale in multi-scale pyramid

θit Number of gradient descent iterations per patch

θps Rectangular patch size in (pixel)

θov Patch overlap on each scale (percent)

θsd Downscaling quotient in scale pyramid

θss Coarsest scale in multi-scale pyramid

θvo, θvi Number of outer and inner iterations for variational refinement

δ, γ, α Intensity, gradient and smoothness weights for variational refinement

all methods. Our method requires 20 ms of preprocessing, spent on disk access
(11 ms), image scaling and gradients (9 ms, unoptimized). For experiments on
the Sintel and KITTI test datasets (Tables 3 and 4) we include this preprocessing
time to be comparable with reported timings in the online benchmarks.

Parameter selection. Our method has four main parameters which affect
speed and performance as explained in Sect. 2: θps size of each rectangular patch,
θov patch overlap, θit number of iterations for the inverse search, θsf finest and
final scale on which to compute the flow. We plot the change in the average end-
point error (EPE) versus run-time on the Sintel (training, final) dataset [48] in
Fig. 2. We draw three conclusions: Firstly, operating on finer scales (lower θsf),
more patch iterations (higher θit), higher patch density (higher θov) generally
lowers the error, but, depending on the time budget, may not be worth it. Sec-
ondly, the patch size θps has a clear optimum at 8 and 12 pixels. This also did
not change when varying θps at lower θsf or higher θit. Thirdly, using varia-
tional refinement always significantly reduced the error for a moderate increase
in run-time.

In addition we have several parameters of lower importance, which are fixed
for all experiments. We set θsd = 2, i.e. we use an image pyramid, where the
resolution is halved with each downscaling. We set the coarsest image scale
θss = 5 for Sect. 3.3 and θss = 6 for Sect. 3.4 due to higher image resolutions.
For different patch sizes and image pyramids the coarsest scale can be selected
as θss = logθsd

(2 · width)/(f · θps) and raised to the nearest integer, to capture
motions of at least 1/f of the image width. For the variational refinement we
fix intensity, gradient and smoothness weights as δ = 5, γ = 10, α = 10 and keep
iteration numbers fixed at θvo = 1 ·(s+1), where s denotes the current scale and
θvi = 5. In contrast to our comparison baselines [12,17,19], we do not fine-tune
DIS for a specific dataset. We use a 20 percent subset of Sintel training to develop
our method, and only the remaining training material is used for evaluation. All
parameters are summarized in Table 1. If the flow is not computed up to finest
scale (θsf = 0), we scale-up the result (linearly interpolated) to full resolution
for comparison for all methods. More details on implementation and timings of
all parts of Algorithm 1 are provided in the supplementary material.

480 T. Kroeger et al.

Table 2. Error of sparse correspondences (pixels).
Columns left to right: (i) average end-point error over
complete flow field, (ii) error in displacement range
< 10 px., (iii) 10–40 px., (iv) > 40 px.

EPE all s0–10 s10–40 s40+

NN 32.06 13.64 53.77 101.00

DIS w/o Densification 7.76 2.16 8.65 37.94

DIS 4.16 0.84 4.98 23.09

DeepMatching [17] 3.60 1.27 3.91 16.49

0 0.5 1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

Error threshold (px)

P
e
rc

e
n
t
o
f
m

a
tc

h
e
s
 w

it
h
 e

rr
o
r

>
 X

Nearest Neighbor (NCC)

DIS w/o Densification

DIS

DeepMatching

Fig. 3. Percent of sparse
correspondences above error
threshold.

3.2 Evaluation of Inverse Search

In this section we evaluate the sparse point correspondences created by inverse
search on the Sintel training dataset. For each frame pair we initialized a sparse
grid (given by Deep Matching [17]) in the first image and computed point cor-
respondences in the second image. The correspondences are computed by (i)
exhaustive Nearest Neighbor search on normalized cross-correlation (NCC), (ii)
our method where we skip the densification step between each scale change (DIS
w/o Densification), (iii) our method including the densification step (DIS), and
using (iv) DeepMatching [17]. The results are shown in Fig. 3 and Table 2.

We have four observations: (i) Nearest Neighbor search has a low number of
incorrect matches, but precise correspondences and is very prone to outliers. (ii)
DeepMatching has a high percentage of erroneous correspondences (with small
errors), but is very good at large displacements. (iii) In contrast to this, our
method (DIS w/o Densification) generally performs well in the range of small
displacements, but is strongly affected by outliers. This is due to the fact that
the implicit SSD (sum of squared differences) error minimization is not invariant
to changes in orientation, contrast, and deformations. (iv) Averaging all patches
in each scale (DIS), taking into account their photometric error as described in
Eq. (3), introduces robustness towards these outliers. It also decreases the error
for approximately correct matches. Furthermore, it enables reducing the number
of patches at coarser scales, leading to lower run-time.

3.3 MPI Sintel Optical Flow Results

Following our parameter evaluation in Sect. 3.1, we selected four operating
points:

(1) θsf = 3, θit = 016, θps = 08, θov = 0.30, at 600/462 Hz,
(2) θsf = 3, θit = 012, θps = 08, θov = 0.40, at 300/42 Hz,
(3) θsf = 1, θit = 016, θps = 12, θov = 0.75, at 10/8.3 Hz,
(4) θsf = 0, θit = 256, θps = 12, θov = 0.75, at 0.5/0.5 Hz,

2 Without/with image preprocessing: disk access, image gradients and re-scaling.

Fast Optical Flow Using Dense Inverse Search 481

10
0

10
1

10
2

10
3

10
4

10
5

3

4

5

6

7

8

9

10

11

12

Log. run−time (ms)

A
v
g

.
E

P
E

 1

 2

 3

 4

DeepFlow

SparseFlow

PCA−Flow

EPPM (GPU)

Farneback

LK Flow

Our Method

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

 1

 2

 3
 4

Log. run−time (ms)

A
v
g

.
E

P
E

 −
 D

1
0

10
0

10
1

10
2

10
3

10
4

10
5

4

6

8

10

12

14

16

18

 1

 2

 3

 4

Log. run−time (ms)

A
v
g

.
E

P
E

 −
 D

1
0

−
4

0

10
0

10
1

10
2

10
3

10
4

10
5

25

30

35

40

45

50

55

60

65

70

 1

 2

 3

 4

Log. run−time (ms)

A
v
g

.
E

P
E

 −
 D

4
0

EPE, full range. EPE for < 10 px. EPE for 10 − 40 px. EPE for > 40 px.

Fig. 4. Sintel-training results: average end-point error (EPE, in pixels) versus run-time
(millisecond) on various displacement ranges.

Table 3. Sintel test errors in pixels (http://sintel.is.tue.mpg.de/results), retrieved on

25th of July 2016 for final subset. Run-times are measured by us, except: †self-reported,
and ‡on other datasets with same or smaller resolution.

EPE all s0–10 s10–40 s40+ Time (s) CPU GPU

FlowFields [16] 5.81 1.16 3.74 33.89 18 †
�

DeepFlow [17] 7.21 1.28 4.11 44.12 55 �

SparseFlow [12] 7.85 1.07 3.77 51.35 16 �

EPPM [24] 8.38 1.83 4.96 49.08 0.31 �

PCA-Flow [19] 8.65 1.96 4.52 51.84 0.37 �

LDOF [9] 9.12 1.49 4.84 57.30 60 †‡
�

Classic+NL-fast [52] 10.09 1.09 4.67 67.81 120 †‡
�

DIS-Fast 10.13 2.17 5.93 59.70 0.023 �

SimpleFlow [23] 13.36 1.48 9.58 81.35 1.6 †‡
�

We compare our method against a set of recently published baselines running
on a single CPU core: DeepFlow [17], SparseFlow [12], PCA-Flow [19]; two
older established methods: Pyramidal Lukas-Kanade Flow [5,56], Farneback’s
method [22]; and one recent GPU-based method: EPPM [24]. Since run-times
for optical flow methods are strongly linked to image resolution, we incrementally
speed-up all baselines by downscaling the input images by factor of 2n, where n
starting at n = 0 is increased in increments of 0.5. We chose this non-intrusive
parameter of image resolution to analyse each method’s trade-off between run-
time and flow error. We bilinearly interpolate the resulting flow field to the
original resolution for evaluation. We also experiment with temporal instead of
spatial downsampling for the same purpose, as described in Sect. 3.5.

We run all baselines and DIS for all operating points on the Sintel [48] final
training (Fig. 4) and testing (Table 3) benchmark. On the testing benchmark
we report operating point (2) for DIS. As noted in Sect. 3.1, run-times for all
methods are reported without preprocessing for the training dataset to facilitate
comparison of algorithms running in the same environment at high speed, and
with preprocessing for the online testing benchmark to allow comparison with
self-reported times. From the experiments on the testing and training dataset,

http://sintel.is.tue.mpg.de/results

482 T. Kroeger et al.

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

Log. run−time (ms)

A
v
g
.
E

P
E

 1

 2

 3
 4

DeepFlow

SparseFlow

PCA−Flow

EPPM (GPU)

Farneback

LK Flow

Our Method

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

 1

 2

 3
 4

Log. run−time (ms)

A
v
g
.
E

P
E

 −
 D

1
0

Fig. 5. KITTI (training) result. Average end-point error (px) versus run-time (ms) for
all (left) and small displacements (right, s0–10). See supplementary material for large
displacement errors.

Table 4. KITTI test results (http://www.cvlibs.net/datasets/kitti/eval flow.php),
retrieved on 25th of July 2016, for all pixels, at 3px threshold.

Out-Noc Out-All Avg-Noc Avg-All Time (s) CPU GPU

PH-Flow [57] 5.76 % 10.57 % 1.3 px 2.9 px 800 �

DeepFlow [17] 7.22 % 17.79 % 1.5 px 5.8 px 17 �

SparseFlow [12] 9.09 % 19.32 % 2.6 px 7.6 px 10 �

EPPM [24] 12.75 % 23.55 % 2.5 px 9.2 px 0.25 �

PCA-Flow [19] 15.67 % 24.59 % 2.7 px 6.2 px 0.19 �

eFolki [25] 19.31 % 28.79 % 5.2 px 10.9 px 0.026 �

LDOF [9] 21.93 % 31.39 % 5.6 px 12.4 px 60 �

FlowNetS+ft [21] 37.05 % 44.49 % 5.0 px 9.1 px 0.08 �

DIS-Fast 38.58 % 46.21 % 7.8 px 14.4 px 0.024 �

RLOF [39] 38.60 % 46.13 % 8.7 px 16.5 px 0.488 �

we draw several conclusions: Operating point (2) points to the best trade-off
between run-time and flow error. For the average EPE of around 6 pixels, DIS
is approximately two orders of magnitude faster than the fastest CPU baseline
(PCA-Flow [19]) and also more than one order of magnitude faster than the
fastest GPU baseline (EPPM [24]). DIS can be further sped-up by removing the
variational refinement as in operating point (1) while maintaining reasonable flow
quality (see Fig. 6). We also tested using only the variational refinement without
sparse initialization (θit = 0), and found experimentally that the result is close to
the trivial zero-flow solution. Finer resolution changes over scales and more iter-
ations for the refinement will yield better results at significantly increased cost.
Operating point (3) is comparable with the performance of EPPM, but slightly
better for small displacements and worse for large displacements. If we use all
available scales, and increase the number of iterations, we obtain operating point
(4). At the run-time of several seconds per frame pair, more complex methods,
such as DeepFlow, perform better, in particular for large displacements. The
supplementary material includes variants of Figs. 4 and 5, where preprocessing

http://www.cvlibs.net/datasets/kitti/eval_flow.php

Fast Optical Flow Using Dense Inverse Search 483

times are included, and flow error maps on Sintel, where typical failure cases of
DIS at motion discontinuities and frame boundaries are observable.

3.4 KITTI Optical Flow Results

Complementary to the experiment on the synthetic Sintel dataset, we ran our
method on the KITTI Optical Flow benchmark [49] for realistic driving scenarios.
We use the same experimental setup and operating points as in Sect. 3.3. The
result is presented in Figs. 5, 7 (training) and Table 4 (testing). Our conclusions
from the Sintel dataset in Sect. 3.3 also apply for this dataset, suggesting a stable
performance of our method, since we did not optimize any parameters for this
dataset. On the online test benchmark, for which we include our preprocessing
time, we are on par with RLOF [39] and the recently published FlowNet [21].
Even though both take advantage of a GPU, we are still significantly faster
at comparable performance. In the supplementary material we include plots of
more operating points on the training set of Sintel and KITTI, as well as the
same plots as Figs. 4 and 5 where all preprocessing times are included.

3.5 High Frame-Rate Optical Flow

Often, a simpler and faster algorithm, combined with a higher temporal reso-
lution in the data, can yield better accuracy than a more powerful algorithm,
on lower temporal resolutions. This has been analysed in detail in [26] for the
task of visual odometry. As noted in [3,29] this is also the case for optical flow,
where large displacements, due to low-frame rate or strong motions are signif-
icantly more difficult to estimate than small displacements. In contrast to the
recent focus on handling ever larger displacements [9,12,14,17,20,46], we want
to analyse how decreasing the run-time while increasing the frame-rate affects
our algorithm. For this experiment we selected a random subset of the Sintel
training dataset, and synthesized new ground truth flow for lower frame-rates

600 Hz 300 Hz 10 Hz 0.5 Hz Ground truth
 Avg. EPE: 8.36, Our Method, 600 Hz Avg. EPE: 5.37, Our Method, 300 Hz Avg. EPE: 4.50, Our Method, 10 Hz Avg. EPE: 4.22, Our Method, 0.5 Hz Ground Truth Flow

 Avg. EPE: 12.96, Farneback, 600 Hz Avg. EPE: 10.23, Farneback, 300 Hz Avg. EPE: 9.16, PCA−Flow, 10 Hz Avg. EPE: 3.26, DeepFlow, 0.5 Hz

 Avg. EPE: 24.03, Our Method, 600 Hz Avg. EPE: 18.08, Our Method, 300 Hz Avg. EPE: 14.88, Our Method, 10 Hz Avg. EPE: 15.56, Our Method, 0.5 Hz Ground Truth Flow

 Avg. EPE: 29.26, Farneback, 600 Hz Avg. EPE: 32.18, Farneback, 300 Hz Avg. EPE: 27.40, PCA−Flow, 10 Hz Avg. EPE: 11.73, DeepFlow, 0.5 Hz

Fig. 6. Examplary results on Sintel (training). In each block of 2 × 6, top row, left to
right: Our method for operating points (1)–(4), Ground Truth. Bottom row: Farneback
600Hz, Farneback 300Hz, PCA-Flow 10Hz, DeepFlow 0.5 Hz, Original Image.

484 T. Kroeger et al.

600 Hz 300 Hz 10 Hz 0.5 Hz Ground truth
 Avg. EPE: 3.81, Our Method, 600 Hz Avg. EPE: 3.52, Our Method, 300 Hz Avg. EPE: 1.57, Our Method, 10 Hz Avg. EPE: 1.21, Our Method, 0.5 Hz Ground Truth Flow

 Avg. EPE: 7.09, Farneback, 600 Hz Avg. EPE: 7.33, Pyramidal LK, 300 Hz Avg. EPE: 7.56, PCA−Flow, 10 Hz Avg. EPE: 1.02, DeepFlow, 0.5 Hz

 Avg. EPE: 10.44, Our Method, 600 Hz Avg. EPE: 13.73, Our Method, 300 Hz Avg. EPE: 10.87, Our Method, 10 Hz Avg. EPE: 9.11, Our Method, 0.5 Hz Ground Truth Flow

 Avg. EPE: 19.39, Farneback, 600 Hz Avg. EPE: 19.26, Pyramidal LK, 300 Hz Avg. EPE: 15.44, PCA−Flow, 10 Hz Avg. EPE: 4.53, DeepFlow, 0.5 Hz

Fig. 7. Same as Fig. 6 but for KITTI (training) with Pyramidal LK as 300 Hz baseline.

1 2 4 6 8 10
0

5

10

15

20

25

30

35

 Step size to next frame

 A
v
e
ra

g
e
.
E

P
E

DeepFlow − skipped frames, 0.5 Hz, EPE s40+

DeepFlow − all frames, 0.5 Hz, EPE s40+

DIS − all frames, 10 Hz, EPE s40+

DeepFlow − skipped frames, 0.5 Hz, EPE s0−10

DeepFlow − all frames, 0.5 Hz, EPE s0−10

DIS − all frames, 10 Hz, EPE s0−10

DeepFlow − skipped frames, 0.5 Hz, EPE all

DeepFlow − all frames, 0.5 Hz, EPE all

DIS − all frames, 10 Hz, EPE all

Fig. 8. Flow result on Sintel with low temporal resolution. Accuracy of DeepFlow
on large displacements versus DIS on small displacements, tracked through all inter-
mediate frames. As baseline we included the accuracy of DeepFlow for tracking small
displacements. Note: While we use the same frame pairs to compute each vertical set
of points, frame pairs differ over stepsizes.

Fig. 9. Optical flow on Sintel with lower temporal resolution. In each block of 3 × 4:
Rows, top to bottom, correspond to step sizes 1 (original frame-rate), 6, 10 frames.
Columns, left to right, correspond to new ground truth, DeepFlow result, DIS result
(through all intermediate frames), original images. Large displacements are signifi-
cantly better preserved by DIS through higher frame-rates.

Fast Optical Flow Using Dense Inverse Search 485

from the one provided in the dataset. We create new ground truth for 1/2 to
1/10 of the source frame-rate from the original ground truth and the additionally
provided segmentation masks to invalidate occluded regions. We compare Deep-
Flow at a speed of 0.5 Hz on this lower temporal resolution against DIS (operat-
ing point (3), 10 Hz), running through all intermediate frames at the original,
higher frame-rate. Thus, while DeepFlow has to handle larger displacements in
one frame pair, DIS has to handle smaller displacements, tracked through mul-
tiple frames and accumulates error drift. We observe (Fig. 8) that DIS starts to
outperform DeepFlow when running at 2× the original frame-rate, notably for
large displacements, while still being 10× faster. Figure 9 shows examples of the
new ground truth, results of DeepFlow and DIS. We conclude, that it is advan-
tageous to choose DIS over DeepFlow, aimed at recovering large displacements,
when the combination of frame-rate and run-time per frame can be chosen freely.

4 Conclusions

In this paper we presented a novel and simple way of computing dense optical
flow. The presented approach trades off a lower flow estimation error for large
decreases in run-time: For the same level of error, the presented method is two
orders of magnitude faster than current state-of-the-art approaches, as shown in
experiments on synthetic (Sintel) and realistic (KITTI) optical flow benchmarks.
In the future we will address open problems with our method: Due to the coarse-
to-fine approach small and fast motions can sometimes get lost beyond recovery.
A sampling-based approach to recover over-smoothed object motions at finer
scales may alleviate this problem. The implicit minimization of the L2 matching
error in our method is not invariant to many modes of change, such as in contrast,
deformations, and occlusions. More robust error metrics may be helpful here.
Furthermore, a GPU implementation may yield another significant speed-up.

Acknowledgments. This work was supported by ERC VarCity (#273940) and SNF
Tracking in the Wild (CRSII2 147693/1), and a NVIDIA GPU grant. We thank
Richard Hartley for his pertinent input on this work.

References

1. Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms.
In: CVPR (2001)

2. Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. In: IJCV
(2004)

3. Benosman, R., Clercq, C., Lagorce, X., Ieng, S.H., Bartolozzi, C.: Event-based
visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 407–417 (2014)

4. Horn, B.K., Schunck, B.G.: Determining optical flow. In: Proceedings of SPIE 0281,
Techniques and Applications of Image Understanding (1981)

5. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. IJCAI 81, 674–679 (1981)

486 T. Kroeger et al.

6. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric
and piecewise-smooth flow fields. In: CVIU (1996)

7. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic
flow computation with theoretically justified warping. IJCV 67(2), 141–158 (2006)

8. Steinbrucker, F., Pock, T., Cremers, D.: Large displacement optical flow compu-
tation without warping. In: ICCV (2009)

9. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in vari-
ational motion estimation. IEEE Trans. PAMI 33(3), 500–513 (2011)

10. Braux-Zin, J., Dupont, R., Bartoli, A.: A general dense image matching framework
combining direct and feature-based costs. In: ICCV (2013)

11. Leordeanu, M., Zanfir, A., Sminchisescu, C.: Locally affine sparse-to-dense match-
ing for motion and occlusion estimation. In: ICCV (2013)

12. Timofte, R., Van Gool, L.: Sparseflow: Sparse matching for small to large displace-
ment optical flow. In: WACV, pp. 1100–1106, January 2015

13. Kennedy, R., Taylor, C.J.: Optical flow with geometric occlusion estimation and
fusion of multiple frames. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.)
EMMCVPR 2015. LNCS, vol. 8932, pp. 364–377. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-14612-6 27

14. Menze, M., Heipke, C., Geiger, A.: Discrete optimization for optical flow. In: Gall,
J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 16–28. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24947-6 2

15. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: EpicFlow: edge-preserving
interpolation of correspondences for optical flow. In: CVPR (2015)

16. Bailer, C., Taetz, B., Stricker, D.: Flow fields: Dense correspondence fields for
highly accurate large displacement optical flow estimation. In: ICCV (2015)

17. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displace-
ment optical flow with deep matching. In: ICCV (2013)

18. Wills, J., Agarwal, S., Belongie, S.: A feature-based approach for dense segmenta-
tion and estimation of large disparity motion. IJCV 68, 125–143 (2006)

19. Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a
learned basis and layers. In: CVPR, pp. 120–130 (2015)

20. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation.
IEEE Trans. PAMI 34(9), 1744–1757 (2012)

21. Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., van der
Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional
networks. In: ICCV (2015)

22. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370.
Springer, Heidelberg (2003). doi:10.1007/3-540-45103-X 50

23. Tao, M., Bai, J., Kohli, P., Paris, S.: Simpleflow: A non-iterative, sublinear optical
flow algorithm. In: Computer Graphics Forum, vol. 31, pp. 345–353. Wiley Online
Library (2012)

24. Bao, L., Yang, Q., Jin, H.: Fast edge-preserving patchmatch for large displacement
optical flow. IEEE Trans. Image Process. 23(12), 4996–5006 (2014)

25. Plyer, A., Le Besnerais, G., Champagnat, F.: Massively parallel lucas kanade opti-
cal flow for real-time video processing applications. J. Real-Time Image Proc.
11(4), 1–18 (2014)

26. Handa, A., Newcombe, R.A., Angeli, A., Davison, A.J.: Real-Time camera tracking:
when is high frame-rate best? In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 222–235. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33786-4 17

http://dx.doi.org/10.1007/978-3-319-14612-6_27
http://dx.doi.org/10.1007/978-3-319-24947-6_2
http://dx.doi.org/10.1007/3-540-45103-X_50
http://dx.doi.org/10.1007/978-3-642-33786-4_17

Fast Optical Flow Using Dense Inverse Search 487

27. Dai, D., Kroeger, T., Timofte, R., Van Gool, L.: Metric imitation by manifold
transfer for efficient vision applications. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2015)

28. Srinivasan, N., Roberts, R., Dellaert, F.: High frame rate egomotion estimation.
In: Chen, M., Leibe, B., Neumann, B. (eds.) ICVS 2013. LNCS, vol. 7963, pp.
183–192. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39402-7 19

29. Barranco, F., Fermuller, C., Aloimonos, Y.: Contour motion estimation for asyn-
chronous event-driven cameras. Proc. IEEE 102(10), 1537–1556 (2014)

30. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation:
a survey. Comput. Vis. Image Underst. 134, 1–21 (2015). Image Understanding
for Real-world Distributed Video Networks

31. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffal-
itzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. IJCV
65, 43–72 (2005)

32. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: CVPR
(2008)

33. Liu, C., Yuen, J., Torralba, A.: SIFT flow: Dense correspondence across scenes and
its applications. TPAMI 33(5), 978–994 (2011)

34. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR (2005)

35. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2),
91–110 (2004)

36. Baya, H., Essa, A., Tuytelaarsb, T., Van Gool, L.: Speeded-up robust features
(surf). CVIU 110(3), 346–359 (2008)

37. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patch-
match correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.)
ECCV 2010. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15558-1 3

38. Gadot, D., Wolf, L.: Patchbatch: a batch augmented loss for optical flow. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016

39. Senst, T., Eiselein, V., Sikora, T.: Robust local optical flow for feature tracking.
IEEE Trans. Circ. Syst. Video Technol. 22(9), 1377–1387 (2012)

40. Heitz, F., Bouthemy, P.: Multimodal estimation of discontinuous optical flow using
markov random fields. TPAMI 15(12), 1217–1232 (1993)

41. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods
for markov random fields with smoothness-based priors. TPAMI 30(6), 1068–1080
(2008)

42. Chen, Q., Koltun, V.: Full flow: optical flow estimation by global optimization
over regular grids. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016

43. Pauwels, K., Tomasi, M., Alonso, J.D., Ros, E., Van Hulle, M.: A comparison of
FPGA and GPU for real-time phase-based optical flow, stereo, and local image
features. IEEE Trans. Comput. 61(7), 999–1012 (2012)

44. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1
optical flow. In: Annual Symposium on German Association Pattern Recognition
(2007)

45. Enkelmann, W.: Investigations of multigrid algorithms for the estimation of optical
flow fields in image sequences. Comput. Vis. Graph. Image Process. 43, 150–177
(1988)

http://dx.doi.org/10.1007/978-3-642-39402-7_19
http://dx.doi.org/10.1007/978-3-642-15558-1_3
http://dx.doi.org/10.1007/978-3-642-15558-1_3

488 T. Kroeger et al.

46. Hu, Y., Song, R., Li, Y.: Efficient coarse-to-fine patchmatch for large displacement
optical flow. In: The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016

47. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128×128 120 db 15 µs latency asyn-
chronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576
(2008)

48. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33783-3 44

49. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. In: IJRR (2013)

50. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
ISMAR (2007)

51. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual
odometry. In: ICRA, pp. 15–22, May 2014

52. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their princi-
ples. In: CVPR (2010)

53. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. IJCV 93, 368–388
(2011)

54. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow esti-
mation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV
2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24673-2 3

55. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.:
Anisotropic huber-L1 optical flow. In: BMVC (2009)

56. Bouguet, J.Y.: Pyramidal implementation of the affine lucas kanade feature tracker
description of the algorithm. Intel Corporation 5, 1–10 (2001)

57. Yang, J., Li, H.: Dense, accurate optical flow estimation with piecewise parametric
model. In: CVPR, pp. 1019–1027 (2015)

http://dx.doi.org/10.1007/978-3-642-33783-3_44
http://dx.doi.org/10.1007/978-3-540-24673-2_3
http://dx.doi.org/10.1007/978-3-540-24673-2_3

	Fast Optical Flow Using Dense Inverse Search
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Proposed Method
	2.1 Fast Inverse Search for Correspondences
	2.2 Fast Optical Flow with Multi-scale Reasoning
	2.3 Fast Variational Refinement
	2.4 Extensions

	3 Experiments
	3.1 Implementation and Parameter Selection
	3.2 Evaluation of Inverse Search
	3.3 MPI Sintel Optical Flow Results
	3.4 KITTI Optical Flow Results
	3.5 High Frame-Rate Optical Flow

	4 Conclusions
	References

