
Fast Optimal Algorithms for Computing

All the Repeats in a String⋆

Simon J. Puglisi1, William F. Smyth2,3, and Munina Yusufu2

1 School of Computer Science & Information Technology,
RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia

sjp@cs.rmit.edu.au

2 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1

{smyth,yusufum}@mcmaster.ca
http://www.cas.mcmaster.ca/cas/research/algorithms.htm

3 Digital Ecosystems & Business Intelligence Institute
Curtin University, GPO Box U1987, Perth WA 6845, Australia

W.Smyth@curtin.edu.au

Abstract. Given a string x = x[1..n] on an alphabet of size α, and a threshold pmin ≥
1, we first describe a new algorithm PSY1 that, based on suffix array construction,
computes all the complete nonextendible repeats in x of length p ≥ pmin. PSY1
executes in Θ(n) time independent of alphabet size and is an order of magnitude faster
than the two other algorithms previously proposed for this problem. Second, we describe
a new fast algorithm PSY2 for computing all complete supernonextendible repeats
in x that also executes in Θ(n) time independent of alphabet size, thus asymptotically
faster than methods previously proposed. Both algorithms require 9n bytes of storage,
including preprocessing (with a minor caveat for PSY1). We conclude with a brief
discussion of applications to bioinformatics and data compression.

1 Introduction

A repeating substring u in a string x is a substring of x that occurs more than
once. A repeat in x is a set of repeating substrings u of x; it can be specified by
the length p ≥ 1 of u (what we call its period) and the locations at which u occurs.
Thus in x = abaababa, the tuple (3; 1, 4, 6) describes the repeat of u = aba (p = 3)
at positions 1, 4, 6.

Following [20] we say that a repeat (p; i1, i2, . . . , ik), k ≥ 2, is complete iff it
includes all occurrences of u in x; left-extendible (LE) iff

x[i1−1] = x[i2−1] = · · · = x[ik−1];

and right-extendible (RE) iff

x[i1+p] = x[i2+p] = · · · = x[ik+p].

A repeat is NLE iff it is not LE; NRE iff it is not RE; nonextendible (NE) iff it
is both NLE and NRE. A repeat is supernonextendible (SNE) iff it is NE and its
repeating substring u is not a proper substring of any other repeating substring of x.

⋆ The work of the first author was supported by the Australian Research Council, that of the second
and third authors by the Natural Sciences & Engineering Research Council of Canada.

Simon J. Puglisi, William F. Smyth, Munina Yusufu : Fast Optimal Algorithms for Computing All the Repeats in a String, pp. 161–169.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic



162 Proceedings of the Prague Stringology Conference 2008

In [8, p. 147] an algorithm is described that, given the suffix tree STx of x,
computes all the NE (called “maximal”) pairs of repeats in x in time O(αn+ q),
where q is the number of pairs output. [4] uses similar methods to compute all NE
pairs (p; i1, i2) such that i2−i1 ≥ gmin (or ≤ gmax) for user-defined gaps gmin, gmax.
[1] shows how to use the suffix array SAx of x to compute the NE pairs in time
O(αn+q). Since it may be that α ∈ O(n), all of these algorithms require O(n2) time
in the worst case, though in applications usually α = 4 (DNA alphabet). [7] uses the
suffix arrays of both x and its reversed string x = x[n]x[n−1] · · ·x[1] to compute
all the complete NE repeats in x in Θ(n) time. More recently, [17] describes suffix
array-based Θ(n)-time algorithms to compute all substring equivalence classes

— essentially the complete NE repeats — in x.
In this paper we first describe an algorithm PSY1 that computes all the complete

NE repeats in a given string x whose length (period) p ≥ pmin, where pmin ≥ 1 is
a user-specified minimum. PSY1 executes in Θ(n) time independent of alphabet size
and requires 5n bytes of storage, plus a stack, but its preprocessing includes suffix
array construction that raises the storage requirement to 9n bytes. PSY1 is an order
of magnitude faster than the complete repeats algorithms described in [7,17].

We also describe a new fast algorithm PSY2 that computes all the complete SNE
repeats in x in time Θ(n+α). This improves on the algorithm described in [8, p. 146]
that does the same calculation (of “supermaximal” repeats) in time O(n log α) using
a suffix tree, as well as on the algorithm described in [1, p. 59] that uses a suffix array
and requires O(n+α2) time. For α ∈ O(n) these times become O(n log n) and O(n2),
respectively, whereas PSY2 remains Θ(n).

In Section 2 we describe our algorithms. Section 3 summarizes the results of ex-
periments that compare the algorithms with each other and with existing algorithms.
Section 4 discusses these results, including the strategy of computing complete (NE
and SNE) repeats in the context of applications to bioinformatics and data compres-
sion.

2 Description of the Algorithms

We suppose that a string x = x[1..n] is given, defined on an ordered alphabet A of
size α (where if there is no explicit bound on alphabet size, we suppose α ≤ n). We
refer to the suffix x[i..n], i ∈ 1..n, simply as suffix i. Then the suffix array SAx is

an array [1..n] in which SAx[j] = i iff suffix i is the jth in lexicographical order among
all the suffixes of x. Let lcpx(i1, i2) denote the longest common prefix of suffixes
i1 and i2 of x. Then LCPx is an array [1..n+1] in which LCPx[1] = LCPx[n+1] = −1,
while for j ∈ 2..n,

LCPx[j] =
∣

∣

∣
lcpx

(

SAx[j−1], SAx[j]
)

∣

∣

∣
.

SAx can be computed in Θ(n) worst-case time [9,12], though various supralinear
methods [16,14] are certainly much faster, as well as more space-efficient, in practice
[18], in some cases requiring space only for x and SAx itself. Given x and SAx,
LCPx can also be computed in Θ(n) time [11,15]: the first algorithm described in
[15] requires 9n bytes of storage and is almost as fast in practice as that of [11], which
requires 13n bytes. (For space calculations, we make throughout the usual assumption
that an integer occupies four bytes, a letter one.) When the context is clear, we write
SA for SAx, LCP for LCPx.



S. J. Puglisi et al.: Fast Optimal Algorithms for Computing All the Repeats in a String 163

We also define the Burrows-Wheeler Transform BWTx or BWT [5]: for SA[j] > 1,
BWT[j] = x

[

SA[j]−1
]

, while for j such that SA[j] = 1, BWT[j] = $, a sentinel letter
not equal to any other in x. We set BWT[n+1] = $. BWT can clearly be computed
in linear time from SA; since it occupies only n rather than 4n bytes, we use BWT
rather than SA if there is a choice. Examples of these standard data structures follow:

1 2 3 4 5 6 7 8 9

x = a b a a b a b a $
SAx = 8 3 6 1 4 7 2 5

LCPx = -1 1 1 3 3 0 2 2 -1
BWTx = b b b $ a a a a $

Here as in the Introduction the repeating substring u = aba of length 3 occurs in
positions 6, 1, 4 of x; our algorithms report this fact as a complete repeat (it is both
NE and SNE) in the form (3; 3, 5) with period p = 3, where 3, 5 is a range identifying
SA[3] = 6, SA[4] = 1, SA[5] = 4. Note that p = LCP[4] = LCP[5].

All of the algorithms described in this paper make direct use of LCP and BWT
(or equivalent), but not of SA, and therefore require only 5n bytes of storage (plus
relatively small stack space in the case of PSY1). However, the calculation [15] of LCP
requires SA, a further 4n bytes, and so, as noted above, the total space requirement
is 9n. The output of both algorithms is a range i..j of positions in SA that specifies
a complete repeat (NE for PSY1, SNE for PSY2).

PSY1

Given a threshold pmin ≥ 1, PSY1 outputs all the complete NE repeats in a given
string x, each one a triple (p; i, j) specifying a period p ≥ pmin and a range i..j in
SA such that the suffixes SA[i], SA[i+1], . . . , SA[j] form a maximal set with the same
longest common prefix of length

p (lcp) = LCP[i+1] = LCP[i+2] = · · · = LCP[j].

As shown in Figure 1, PSY1 performs a single left-to-right scan of LCP, inspecting
each position j from 1 to n. During the scan, whenever a position lb (initially lb = j)
is found for which the LCP value increases, an entry is pushed onto a stack LB.
LB specifies the Left Boundary lb and period p of a repeat that must be NRE,
but that may or may not be NLE: lb marks the leftmost occurrence in SA of a
repeating substring of length p = LCP[lb+1] > LCP[lb], thus the left boundary of a
repeat. In fact, a triple (p, lb, bwt) is pushed onto the stack, where bwt is a letter that
determines the left-extendibility of the repeat: initially bwt equals the sentinel letter
$ if BWT[lb] 6= BWT[lb+1], and otherwise equals BWT[lb]. This is the calculation
performed repeatedly by the function LEletter. Thus bwt = $ if the repeat is NLE
(and so eventually should be printed), but assumes a regular letter value if the repeat
(so far at least) is LE.

Since the pushes to LB occur in increasing order of position lb, the pops occur
in decreasing order of lb: the most recently pushed triple is popped when a position
j is reached for which LCP[j+1] < top(LB).lcp. Then j is the right boundary for
the popped triple (p, i, prevbwt) and a repeat (p; i, j) is identified. Observe that this
repeat is NRE: if the same letter followed each occurrence of the repeating substring
of length p, then p could not be maximum, contradicting the definition of LCP.



164 Proceedings of the Prague Stringology Conference 2008

— Preprocessing: compute SA, BWT & LCP
— in Θ(n) time and 9n bytes of space.

lcp← LCP[1]; lb← 1; bwt1← BWT[1]
push(LB; lcp, lb, bwt1)
for j ← 1 to n do

lb← j; lcp← LCP[j+1]
— Compute LEletter of BWT[j] and BWT[j+1].

bwt2← BWT[j+1]; bwt← LEletter(bwt1, bwt2); bwt1← bwt2
while top(LB).lcp > lcp do

pop(LB; p, i, prevbwt)
if prevbwt = $ and p ≥ pmin then

output(p; i, j)
lb← i

top(LB).bwt← LEletter(prevbwt, top(LB).bwt)
bwt← LEletter(prevbwt, bwt)

if top(LB).lcp = lcp then

top(LB).bwt← LEletter(top(LB).bwt, bwt)
else

push(LB; lcp, lb, bwt)

function LEletter(ℓ1, ℓ2)
if ℓ1 = $ or ℓ1 6= ℓ2 then return $
else return ℓ1

Figure 1. Algorithm PSY1: compute all NE repeats of period p ≥ pmin as ranges in
SA

It remains to determine whether or not the popped triple is NLE. For this the
popped value prevbwt needs to be inspected to determine whether it is $ — that is,
whether the repeat is NLE, whether it should be output. To ensure that top(LB).bwt
is maintained correctly, we use a simple property of ranges of repeats: two ranges are
either disjoint (empty common prefix) or else one range contains the other (common
prefix over the longer range). It follows that if top(LB).bwt = $ for a contained range,
then for every range that encloses it, we must also have top(LB).bwt = $. Moreover,
if for some letter λ ∈ A, a contained range is LE with bwt = λ, then the enclosing
range will be LE only if every other contained range also has bwt = λ. In PSY1
the correct bwt value for the enclosing range is maintained by invoking LEletter to
update top(LB).bwt whenever LCP[j+1] ≤ top(LB).lcp. For LCP[j+1] < top(LB).lcp,
LEletter is used again to update the current bwt based on the prevbwt just popped.

In view of this discussion, we claim the correctness of PSY1. Execution time is
Θ(n), since the number of executions of the while loop is at most the number of
triples pushed onto LB, thus O(n). Space required is 5n bytes plus maximum stack
size at 9 bytes per entry (four bytes each for lb and lcp, plus a byte for bwt). The
largest number of entries in LB is exactly the maximum depth of the suffix tree —
in fact n for x = an — but expected depth on an alphabet of size α > 1 is 2 logα n
[10]. Thus even for α = 2, expected space for LB is 18 logα n bytes — if n = 220, 360
bytes. On strings arising in practice, LB requires negligible space (Section 4).

PSY2

The SNE (“supermaximal”) repeats algorithm described in [1] does not deal explicitly
with the problem of determining whether or not a complete super NRE (SNRE) repeat
is also SNLE. This determination requires that the left extensions (BWT values) of



S. J. Puglisi et al.: Fast Optimal Algorithms for Computing All the Repeats in a String 165

— Preprocessing: compute SA, LAST & LCP.

j ← 0; p← −1; q ← 0
while j < n do

high← 0
repeat

j ← j+1; p← q; q ← LCP[j+1]
if q > p then high← q; i← j

until p > q

if high > 0 and SNLE(i, j,LAST) then

output(p; i, j)

function SNLE(start, end,LAST)
k ← end−start+1
if k > α then return FALSE

else

for h← start+1 to end do

if h−LAST[h] > start then return FALSE

return TRUE

Figure 2. Algorithm PSY2 with a simplified SNLE function using LAST

the k positions in the repeat be pairwise distinct. The approach apparently proposed
by the authors requires at most

(

k

2

)

letter comparisons, where k can be order n, thus
leading to O(n2) time in the worst case. A perhaps more efficient approach would
be to use a bit map B[1..α] to determine if any letter in the alphabet has occurred
more than once as a left extension over the range of the repeat. However, this would
require initializing the α positions in B for each of O(n) candidate repeats, and since
possibly α ∈ O(n), the time required could again be O(n2). Our proposed algorithm
PSY2 (Figure 2) incorporates two improvements, one to decrease execution time in
practice, the other to reduce asymptotic complexity to O(n+α).

We observe first that the cardinality k of an SNE repeat cannot exceed the al-
phabet size α. Thus as shown in function SNLE of Figure 2, a single test suffices to
eliminate candidate SNRE repeats of cardinality greater than α, thus substantially
reducing processing time in many cases. We now describe a more sophisticated ap-
proach that reduces worst-case complexity to Θ(n+α) with a negligible effect on
actual processing time.

Instead of BWTx, we compute an array LAST = LAST[1..n] in which for every
j ∈ 1..n, LAST[j] is the offset between the BWT letter corresponding to the current
position j in SA and the position jprev of the rightmost previous occurrence in SA of
the same BWT letter — if jprev does not exist or if j−jprev ≥ α, then LAST[j]←
α−1. However, if jprev exists and satisfies j−jprev < α, we set LAST[j]← j−jprev−1,
so that LAST[j] takes values in the range 0..α−2. See Figure 3. Then when function
SNLE processes a possibly supernonextendible repeat consisting of end−start+1
substrings of x, for every position h ∈ start+1..end, the value of BWT[h] will be
unique within the range if and only if h−LAST[h] > start. See Figure 2.

In general it is possible that the offsets stored in LAST could be integers of
size O(n). But offsets of magnitude greater than α−1 need not be stored, since if
the interval start..end actually is an SNE repeat, it can contain no more than α
positions. Thus LAST requires the same amount of storage as BWT, which stores
letters that are also restricted to be at most α−1 in magnitude. The method can be
implemented for any finite α, but with the usual convention that each letter in the



166 Proceedings of the Prague Stringology Conference 2008

— Initialize an array storing rightmost positions of each letter.

for ℓ← 1 to α do

lastpos[ℓ]← 0
— Compute LAST in a single left-to-right scan of SA.

α′ ← α−1
for j ← 1 to n do

i← SA[j]−1
if i← 0 then

LAST[j]← α′

else

letter ← x[i]; jprev ← lastpos[letter]
if jprev = 0 or j−jprev ≥ α then

LAST[j]← α′

else

LAST[j]← j−jprev−1
lastpos[letter]← j

Figure 3. Preprocessing for Algorithm PSY2 — computing LAST

alphabet is confined to a single byte (α ≤ 256), the array LAST becomes an array
of bytes, just like BWT. (In fact, in order to take advantage of the CPU cache, our
implementation of this algorithm actually computes BWT first, then makes a pass
over BWT to convert it into LAST — an approach that turns out to be 2–3 times
faster than a straightforward implementation of the preprocessing algorithm.)

3 Experimental Results

Experiments were conducted on a diverse selection of files (see Table 1) chosen
from http://www.cas.mcmaster.ca/∼bill/strings/ . Tests were conducted using
a 2.6 GHz Opteron 885 processor with 2 GB main memory available, under Red Hat
Linux 4.1.2–14. The compiler was gcc with the -O3 option. The run times used were
the minima over four runs, not including input/output.

File Type Name No. Bytes Description
highly periodic fibo35 9,227,465 Fibonacci

fibo36 14,930,352 Fibonacci
fss9 2,851,443 run-rich [6]
fss10 12,078,908 run-rich [6]

random rand2 8,388,608 α = 2
rand21 8,388,608 α = 21

DNA ecoli 4,638,690 escherichia coli genome
chr22 34,553,758 human chromosome 22
chr19 63,811,651 human chromosome 19

Genbank protein database prot-a 16,777,216 sample
prot-b 33,554,432 sample

English bible 4,047,392 King James bible
howto 39,422,105 Linux howto files
mozilla 51,220,480 Mozilla source code

Table 1. Files used for testing.

Test results are shown in Table 2, where the vertical line separates preprocessing
from processing. For SA construction the KS algorithm was used [9] — the fastest



S. J. Puglisi et al.: Fast Optimal Algorithms for Computing All the Repeats in a String 167

such algorithm is perhaps MP2 [14] that, based on experiments documented in [14,18],
would perform 5–10 times faster on average, using about 5.2n bytes of storage. For
LCP construction the algorithm of Kasai et al. [11] was used, the fastest one known
— according to experiments documented in [15], the first Manzini variant runs almost
as fast. Table 2 compares PSY1 with the algorithm of [17]. The algorithm of [7] was
not tested because it computes SA twice, and so could not be competitive. Not shown
in the table are tests against three variants of PSY1, two of them using heuristics
designed to speed up processing, another using a different approach that also achieves
Θ(n) worst case time: on each of the test files listed in Table 1, PSY1 is at least as fast
as any of the three. Note that for each program tested, the number of microseconds
per letter is generally stable within each file type and not highly variable overall.
Averages are not weighted by file size. Tests shown for PSY1 used pmin = 1; as
expected, for larger pmin run time was unchanged.

File SA LCP BWT LAST PSY1 [17] PSY2
fibo35 0.898 0.169 0.025 0.031 0.012 0.448 0.009
fibo36 0.886 0.170 0.027 0.033 0.012 0.475 0.007
fss9 0.826 0.154 0.026 0.031 0.014 0.330 0.007
fss10 0.958 0.177 0.025 0.032 0.013 0.469 0.008
periodic AVG 0.892 0.168 0.026 0.032 0.013 0.430 0.008
rand2 0.947 0.188 0.026 0.031 0.017 0.215 0.012
rand21 1.135 0.199 0.025 0.031 0.012 0.122 0.012
random AVG 1.041 0.193 0.025 0.031 0.015 0.169 0.012
ecoli 1.413 0.175 0.025 0.031 0.015 0.155 0.011
chr22 1.635 0.285 0.035 0.040 0.016 0.278 0.012
chr19 1.873 0.333 0.044 0.053 0.016 0.242 0.012
DNA AVG 1.754 0.309 0.035 0.041 0.016 0.225 0.012
prot-a 1.778 0.222 0.027 0.032 0.013 0.211 0.012
prot-b 1.971 0.277 0.034 0.039 0.013 0.247 0.012
protein AVG 1.874 0.249 0.030 0.036 0.013 0.229 0.012
bible 1.417 0.151 0.024 0.030 0.015 0.168 0.012
howto 1.912 0.214 0.035 0.039 0.016 0.219 0.012
mozilla 1.815 0.187 0.032 0.036 0.013 0.139 0.011
English AVG 1.417 0.151 0.024 0.035 0.014 0.175 0.012
AVERAGE 1.390 0.207 0.029 0.035 0.014 0.266 0.011

Table 2. Microseconds per letter used by each run.

4 Discussion

We make the following observations:

∗ Both new algorithms are very fast, especially on strings that arise in practice: even
if SA were to execute 10 times faster, still each algorithm would require less than
5 % of total SA/LCP time.
∗ Computing LAST for PSY2 requires about 20 % more time than computing BWT

for PSY1. Both requirements are small compared to SA/LCP computation time.
∗ For PSY1 we have computed maximum stack size for each of the test files: for
prot-a (the worst case) the maximum storage for LB was less than 0.1 % of the
5n bytes required for LCP and BWT.



168 Proceedings of the Prague Stringology Conference 2008

∗ The algorithm of [17] appears to execute 10–15 times slower than PSY1 on real-
world files, while requiring 12n bytes of storage (SA, inverse of SA, and LCP).
(The timing facilities for this algorithm were included in the code kindly provided
by the authors.)
∗ Assuming the use of a fast space-efficient SA construction algorithm, LCP con-

struction turns out to be the main obstacle to further improvement, due to both
its time and its space requirements.

The output of PSY1 and PSY2 can be used in various ways and for various
purposes. For offline data compression the output can be used for phrase selection
[2,13,21]. It is also useful for duplicate text/document detection [3]. If the user requires
positions in x to be output, this can trivially be achieved, since SA is available, by
postprocessing that replaces i..j by SA[i], SA[i+1], . . . , SA[j]. In applications to protein
sequences, such as the detection of low-complexity regions, the use of either PSY1 or
PSY2 will provide significant algorithmic speed-up over currently-proposed methods
[19] that are effective but slow. In the context of genome analysis the postprocessing of
interest may be to compute NE pairs as in [8,4,1]. Assuming an integer alphabet 1..α,
this can be accomplished as follows for each range i..j. Introduce a new array BWT′ =
BWT′[1..n], where for SA[h] < n, BWT′[h] = x[SA[h]+1], otherwise BWT′[h] = $.

(1) Perform a radix sort on the pairs

(BWT[i], BWT′[i]), (BWT[i+1], BWT′[i+1]), . . . , (BWT[j], BWT′[j])

into bins that are accessed from an array B = B[1..α, 1..α]. As a byproduct of the
sort, positions in a Boolean array E = E[1..α] are set: E[b] = TRUE if and only if
row b of B is empty.

(2) For every nonempty row b1 of B, and for every b2 ∈ 1..α, perform the following
simple processing:

for h1 ← b1+1 to α do

if not E[h1] then

for h2 ← (1 to b2−1) and (b2+1 to α) do

output all pairs B(b1, b2) with B(h1, h2)

This approach requires checking at most α2(α−1)2/2 positions in B for each range
processed; in the DNA case with α = 4, this amounts to at most 72 (that is, α3+2α)
positions, but will for most ranges be much less. Otherwise the time required is
proportional to the number of pairs output. Due to cache effects, we believe this will
be an efficient algorithm for computing NE pairs: it depends only on i, j, BWT, BWT′.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced

suffix arrays. Journal of Discrete Algorithms, 2(1) 2004, pp. 53–86.
2. A. Apostolico and S. Lonardi: Off-line compression by greedy textual substitution. Pro-

ceedings of the IEEE, 88(11) 2000, pp. 1733–1744.
3. Y. Berstein and J. Zobel: Accurate discovery of co-derivative documents via duplicate text

detection. Information Systems, 31 2006, pp. 595–609.
4. G. S. Brodal, R. B. Lyngso, C. N. S. Pederesen, and J. Stoye: Finding maximal pairs

with bounded gap. Journal of Discrete Algorithms, 1 2000, pp. 77–103.



S. J. Puglisi et al.: Fast Optimal Algorithms for Computing All the Repeats in a String 169

5. M. Burrows and D. J. Wheeler: A block sorting lossless data compression algorithm, Tech.
Rep. 124, Digital Equipment Corporation, Palo Alto, California, 1994.

6. F. Franek, J. Simpson, and W. F. Smyth: The maximum number of runs in a string, in
Proceedings of the 14th Australasian Workshop on Combinatorial Algorithms, M. Miller and
K. Park, eds., Seoul, Korea, 2003, pp. 36–45.

7. F. Franek, W. F. Smyth, and Y. Tang: Computing all repeats using suffix arrays. Journal
of Automata, Languages and Combinatorics, 8(4) 2003, pp. 579–591.

8. D. Gusfield: Algorithms on Strings, Trees, and Sequences : Computer Science and Computa-

tional Biology, Cambridge University Press, Cambridge, United Kingdom, 1997.
9. J. Kärkkäinen and P. Sanders: Simple linear work suffix array construction, in Proceedings

of the 30th International Colloquium Automata, Languages and Programming, vol. 2971 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2003, pp. 943–955.

10. S. Karlin, G. Ghandour, F. Ost, S. Tavare, and L. J. Korn: New approaches for

computer analysis of nucleic acid sequences. Proceedings of the National Academy of Science,
80(18) September 1983, pp. 5660–5664.

11. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park: Linear-time longest-common-

prefix computation in suffix arrays and its applications, in Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching, A. Amir and G. M. Landau, eds., vol. 2089 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2001, pp. 181–192.

12. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays, in Proceedings of
the 14th Annual Symposium on Combinatorial Pattern Matching, R. Baeza-Yates, E. Chávez,
and M. Crochemore, eds., vol. 2676 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2003, pp. 200–210.

13. J. Larsson and A. Moffat: Off-line dictionary-based compression. Proceedings of the IEEE,
88(11) 2000, pp. 1722–1732.

14. M. A. Maniscalco and S. J. Puglisi: Faster lightweight suffix array construction, in Pro-
ceedings of 17th Australasian Workshop on Combinatorial Algorithms, J. Ryan and Dafik, eds.,
2006, pp. 16–29.

15. G. Manzini: Two space saving tricks for linear time LCP computation, in Proceedings of 9th
Scandinavian Workshop on Algorithm Theory (SWAT ’04), T. Hagerup and J. Katajainen, eds.,
vol. 3111 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2004, pp. 372–383.

16. G. Manzini and P. Ferragina: Engineering a lightweight suffix array construction algorithm.
Algorithmica, 40 2004, pp. 33–50.

17. K. Narisawa, S. Inenaga, H. Bannai, and M. Takeda: Efficient computation of substring

equivalence classes with suffix arrays, in Proceedings of the 18th Annual Symposium on Combi-
natorial Pattern Matching, B. Ma and K. Zhang, eds., vol. 4580 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2007, pp. 340–351.

18. S. J. Puglisi, W. F. Smyth, and A. Turpin: A taxonomy of suffix array construction

algorithms. ACM Computing Surveys, 39(2) 2007, pp. 1–31.
19. S. W. Shin and S. M. Kim: A new algorithm for detecting low-complexity regions in protein

sequences. Bioinformatics, 21(2) 2005, pp. 160–170.
20. B. Smyth: Computing Patterns in Strings, Pearson Addison-Wesley, Essex, England, 2003.
21. A. Turpin and W. F. Smyth: An approach to phrase selection for offline data compression, in

Proceedings of the 25th Australasian Computer Science Conference, M. Oudshoorn, ed., 2000,
pp. 267–273.


