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Denef and Douglas have observed that in certain landscape models the problem of finding small values
of the cosmological constant is a large instance of a problem that is hard for the complexity class NP
(Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to
solve this problem by brute force search exceeds the estimated computational capacity of the observable
Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of
finding a small cosmological constant can be attacked by more sophisticated algorithms whose
performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case
complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order
107" in a randomly generated 10°-dimensional Arkani-Hamed-Dimopoulos—Kachru landscape.

DOI: 10.1103/PhysRevD.96.103512

I. INTRODUCTION AND SUMMARY

A. Cosmological constant problem and the landscape

According to the Standard Model of particle physics, the
energy density of the vacuum receives multiple contribu-
tions whose order of magnitude vastly exceeds the
observed value [1-3]

A= 1.5x 10712 M7}, (1)

[Below we will use units where the Planck mass is unity,
1 =Mp=(hc/G)"/?>~12x 10" GeV]. Both perturba-
tive and nonperturbative processes contribute, such as
vacuum fluctuations of all fields, and electroweak symmetry
breaking. The excess is by a factor of at least 10°° assuming a
new symmetry ataTeV (so far not found). It could be as large
as 10'?? with a Planck-scale cutoff. The observed small
value of A implies that the various contributions must cancel
against one another, or against further unknown contribu-
tions which must be at least as large, with a relative precision
of at least 107%° and perhaps 107!,

Consistency with well-established cosmological history
severely constrains large classes of approaches to this
problem. For example, it is not possible for the Universe
to dynamically select the “correct” vacuum energy at early
times. Only gravity couples to the absolute energy, and
gravity sees the total stress tensor. At the time of big bang
nucleosynthesis, characteristic energy densities were of
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order 1078, This is more than 30 orders of magnitude
greater than the observed value that would have to be
targeted by a putative adjustment mechanism. Attempts to
desensitize general relativity to the energy in vacuum
fluctuations run into conflict with tests of the equivalence
principle. These and other obstructions to nonanthropic
approaches are discussed in [4,5].

In a landscape model, a small cosmological constant is
selected by correlation with the location of observers. The
Universe can form large regions with many different
possible values of A. This is most natural in a theory with
extra dimensions, such as string theory. One finds that there
are generically exponentially many ways of constructing a
“vacuum,” i.e., a compactification to three large spatial
dimensions. If the vacuum energy A is, say, a random
number between —1 and 1, but there are N > 10!22
different vacua, it is likely that a small fraction but large
number 107'22\/ of vacua have small enough A to be
consistent with observation. Moreover, a great variety of
vacua are naturally produced by inflationary dynamics in
the early Universe. In specific models, the distribution of A
is not random. The above approach works as long as the
spectrum of A is sufficiently dense near 0. Consistency with
standard cosmological history is achieved if the potential
landscape is multidimensional, with neighboring vacua
generically having very different energies [6].

Typical spacetime regions would still have A ~ O(1), of
course. But in such regions any worldline has an event

© 2017 American Physical Society
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horizon of order the Planck area, and so contain only a few
bits of causally connected information [7,8]. Complex
structures such as observers necessarily find themselves
in a highly atypical region that allows for a larger
cosmological horizon with area (and hence, maximum
entropy) of order A~!. (The origin of the particular scale
107122 is not explained by this qualitative argument. See [9]
for an argument that assumes galaxies are needed or [10]
for a more robust argument).

B. Computational complexity

In 2007, Denef and Douglas brought a complexity
theoretic perspective to the cosmological constant problem
[11]. In particular, they pointed out that, in some formu-
lations, the problem of finding a vacuum with cosmological
constant compatible with observation is a large instance of
a NP-hard problem. Specifically, two simplified models
were considered in [11]: a version of the Arkani-Hamed—
Dimopoulos—Kachru (ADK) model [12] and the Bousso-
Polchinski (BP) model [6]. Here we focus on the ADK
model, which is the more simplified of the two, as it is
sufficient to capture the essential features that we wish to
address.

In the ADK model, the cosmological constant is
obtained by summing the energy contributions from a
large number of fields, each of which is subject to a double-
well potential. We assume the vacuum energy contributed
by either of the two minima of each field to be a random
number with mean zero' and standard deviation of order 1
in Planck units. (Thus it can be positive or negative.) Given
n such fields there are correspondingly N = 2" metastable

vacua, specified by an n-bit string f(j) € {0,1},
j=1,...,n. The cosmological constant in any vacuum
is given by

A =S ED, @)
=1

where EY) and EY are the two possible vacuum energies
contributed by the jth field.

If our Universe were described by this model, then with
appropriate technology, there would be no obstruction in
principle to measuring each of the n fields directly, and thus
determining which of its two vacua it occupies. This
requires only n measurements. Thus, we can in principle
identify which vacuum we live in, among all the vacua in
the ADK model. A similar argument applies to the BP
model: given good enough technology, one would simply
measure the fluxes on topological cycles in the extra
dimensions. We could probe each field experimentally
and read off the bit string f(j).

"This assumption differs from the model mainly studied by
ADK, but it is adequate for our analysis.
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Denef and Douglas consider a different task: suppose we
are given only the total value of the cosmological constant
~107'22 (for example from observation), but not the
vacuum configuration f(j) of the n fields. We wish to
identify a vacuum in the ADK model compatible with this
value. Then we would have to sift through the 2" allowed
vacua to find a combination of positive and negative
numbers, each of order 1, that add up to 107'?2. Such
combinations clearly constitute a small fraction of all the 2"
vacua. However, in simple statistical models, e.g., where
EE)U , EEI), E8">, E<1"> are each independently drawn uni-
formly at random from [—1, 1], such combinations will
exist with high probability provided \/n2™" < 107122 [13],
i.e., n 2 407. Furthermore, for n larger than this, the
number of vacua with A < 107122 will be roughly 107122 x
21/y/n [14,15].

In [11] it was pointed out that the problem of finding
such vacua in the ADK model is a variant of the number
partitioning problem, which is NP-complete. Consequently,
under the widely held complexity-theoretic assumption that
P # NP, no classical algorithm can solve worst-case
instances of this problem in time scaling polynomially
with n. Furthermore, under the stronger but also widely
held assumption that NPZBQP, no quantum algorithm can
solve worst-case instances of this problem in polynomial
time either.

The physical significance of the Denef-Douglas obser-
vation is not immediately clear. Here, we posit that its
significance lies in the contrast between the NP-complete
hardness of finding a vacuum with small A by studying the
theory, on the one hand; and on the other hand, the ease
with which we can read off a solution to this problem (our
own vacuum), by measuring the n bits directly as discussed
above. This implies that we get to read off the answer to an
instance of a NP-hard problem that nature has already
solved for us. And we get to do this for anthropic reasons:
complex structures exist only in regions with A <« 1. Our
mere status as observers gives us immediate access to the
solution of a hard problem. How is this possible?

It is instructive to consider the cosmological dynamics
that had to solve the “hard” problem and produce the small-
A region we occupy. There are two valid and largely
equivalent [16] viewpoints, global and local. In the global
viewpoint, the Universe is exponentially expanding and
constantly producing new regions. In this case gravity
supplies exponential resources for solving the hard prob-
lem. No one can observe the whole Universe, because
regions are shielded from one another by event horizons.
But observers necessarily find themselves in the regions
where the problem has been solved.

In the local viewpoint, one considers the different decay
chains through the landscape that might be realized in a
single causally connected region (causal patch). The patch
decoheres rapidly every time a vacuum transition takes
place. This trades the multiverse for “many worlds” [17].
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Observers find themselves in a branch of the decay chain
that produced a vacuum with small A. The situation is
comparable to solving a hard problem by sitting down in
front of a robot that points a gun at you. The robot takes one
random guess (generated by some quantum measurement)
and secretly checks it in polynomial time. If the guess
solves the problem, the robot tells you the solution, but if it
fails, it shoots you. Necessarily, if you survive, you will
have gained the solution very quickly.2

We do not claim that from either of those viewpoints, our
easy access to a solution of a hard problem constitutes a
logical contradiction. Yet, the ability to utilize exponential
unobservable resources or an exponentially large branching
tree of decoherent histories would be a surprising and
perhaps troubling circumstance. Therefore, in this paper,
we will posit a computational censorship hypothesis: by
physical measurements we must not be accessing the
solution to a hard problem, i.e., a problem so hard that
it could not have been solved by the physical resources in
the observable Universe.

By “resources,” we mean the number of elementary gates
in a computation. There is some ambiguity about how to
quantify an upper bound on this for the observable
Universe. Possible candidates include (in natural units)
the Einstein-Hilbert-matter action [20]; the energy of the
Universe times its age [21]; the maximum entropy of the
visible Universe [8,22] or of any universe with the observed
value of A [23] (which is given by the horizon area of
empty de Sitter space [7]); or lastly the amount of entropy
that has been produced in our past light cone. All but one
of these definitions give a number of gates of order A= ~
10'22 for our Universe in the present era. (The final
definition gives a somewhat lower answer [24] if event
horizons are not included.) Thus, for the purposes of this
paper, we will take the available resources to be

Rmax ~A! (3)

quantum gates. (Whereas this estimate takes an elementary
quantum gate to be the notion of computational step
relevant to our Universe, other more speculative possibil-
ities have been considered elsewhere [25-29]).

We note that making the computational censorship
hypothesis precise is a difficult problem that we do not
claim to have solved. The central difficulty is that our
Universe provides us with the solution to one instance of a
hard problem, whereas computational complexity is
defined only for asymptotic families of instances. For
any instance of a problem there always exists an efficient
algorithm which has the solution to that instance hardwired
in.? In an intuitive sense, it is clear that the existence of such
algorithms is not of interest in determining the difficulty of

*This method of solving NP-complete problems seems to have
been first proposed in [18]; see also [19].
*We thank S. Aaronson for stressing this point to us.
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the instance. Instead we take the complexity of the instance
to be the number of steps required by the most efficient
general-purpose algorithm that solves it. The distinction
between general-purpose algorithms and ones with answers
hard-wired seems difficult to formalize, but is typically
easy to make in practice.

In the remainder of this paper we will describe various
general-purpose number partitioning algorithms that set
upper bounds on the complexity of number partitioning
problems. Different algorithms provide the best upper
bound in different parameter regimes. In all regimes we
find that the complexity of the cosmological constant
problem within the ADK model is well within the computa-
tional capacity of the observable Universe and therefore,
contrary to initial appearances based on brute force search,
it does not pose a challenge to the computational censorship
hypothesis. In some regimes the speedup over brute search
achieved by more sophisticated algorithms is quite dra-
matic; for instances in which the ADK model has 10° fields
we are able to find a cosmological constant of order 107120
in a few hours on a single processor.

In [30] a model was recently proposed involving a large
number of axions, which has the feature that solutions with
small cosmological constant are relatively easy to compute.
The model of [30] thus provides a way to avoid the
computational complexity problems associated with the
cosmological constant. Our work shows that, even in models
originally cited for their computational difficulty, the com-
plexity problem s less severe than one might naively assume.

Note that the computational Censorship Hypothesis is
quite minimal. We require only that some algorithm exists
that can solve the problem (e.g., identify a suitable vacuum)
in 10'%2 steps or less. We do not require that this algorithm
bear any relation to the (largely known) cosmological
dynamics that would have produced our Universe. By
contrast, recent work of Denef er al. explores computa-
tional complexity as a possible restriction on the dynamics
[31,32]. A related but distinct principle was proposed by
Aaronson [19], that NP-complete problems should not be
solvable with polynomial resources by any physical means.
Recent applications of this and related principles include
[29,33,34].

C. An apparent paradox and its resolution

Imposing the computational Censorship Hypothesis
leads to an apparent paradox in light of the Denef-
Douglas result. To see this, we must quantify the hard
problem and show that it requires resources larger than
Ryax ~ A7'. Indeed, as shown in Sec. II B, the number of
elementary computational steps (quantum gates) required
to find a solution with A ~ 107!22 by brute force search of
the landscape scales as

Rbrute ~ A_l (10g2 A_l )3/2’ (4)
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which is asymptotically larger than the computational
capacity A~! in the limit of small A. For the particular
value of A~ 107122, A~'(log, A™')%/? exceeds A~! by
several orders of magnitude.

If the complexity of brute force search were the correct
measure of the complexity of the number partitioning
problem, then by measuring which vacuum we are in
(which is in principle possible, as argued above) we would
obtain the solution to an instance of a computational
problem which could not be solved within our observable
Universe, in violation of the computational censorship
hypothesis. Furthermore, this violation does not necessarily
require any measurements beyond present-day capabilities.
The decision version of the number partitioning problem, of
determining whether a solution with residue smaller than a
given threshold exists, is already NP-hard, even without
demanding that the explicit solution be produced. Thus,
if we knew the S ec1ﬁcs of the problem instance
(Eé , 1 b EO" VE| ") ), then the astronomical observa-
tions that have already been made, indicating that A =
107122 already tells us that a residue of that magnitude
exists among the solutions to this instance of number
partitioning, thereby learning the solution to a large
instance of a NP-hard problem.

In the remainder of the paper we will examine how this
apparent paradox can be resolved. Our key observation is
that modern algorithms can solve the number partitioning
problem using far fewer computational steps than are
required by brute-force search. The fastest known classical
algorithm for general instances of the number partitioning
problem runs in R ~ O(2°2°!") time [35] and the fastest
known quantum algorithm runs in R ~ O(2°241") time [36].
For n < 1300 these algorithms place the instance of number
partitioning arising in the ADK model within the estimated
computational capacity of the observable Universe, but far
outside the capacity of even the largest supercomputers.

Interestingly, for very large n, the problem becomes
solvable with high probability by the Karmarkar-Karp
heuristic, which runs in polynomial time,

Rgx ~nlogn, (5)

provided that the number of numbers is sufficiently large,

log B
n -z exp { K] , c~0.7, (6)
c
where B is the typical magnitude of the numbers. In the
application to the ADK model,

B~A"'~1022. (7)

By exploiting the Karmarkar-Karp algorithm, we show in
Sec. IV that vacua with A ~ 10729 can in fact be found in
the ADK model in under 3 hours on a standard workstation,
provided

PHYSICAL REVIEW D 96, 103512 (2017)
nz10°. (8)

While the worst case remains NP-hard, Monte Carlo
generated average cases can be solved in polynomial time,
provided the number of fields is sufficiently large.

In this work we have focused on the ADK model of the
landscape, which leads to number partitioning as the under-
lying computational problem. Karmarkar-Karp is a powerful
algorithm against this problem, but it does not generalize to
more complex models easily. It will be interesting to
investigate the constraints imposed by the computational
censorship hypothesis on other toy models, such as the
lattice model of BP, which is not amenable to a Karmarkar-
Karp-style algorithm. Eventually one would hope to con-
sider a concrete landscape arising from a complete theory,
which would dictate both the structure of the partitioning
problem and the statistical distribution of the input. For
example, the full string landscape [6,37], when its structure
becomes better understood, should provide data analogous
to the concrete distribution of charges in the BP model.

Our results show that landscape models remain a viable
approach to the cosmological constant problem even if the
computational censorship hypothesis is adopted. But for
now, at least, we cannot confront the hypothesis specifically
with the landscape of string theory, for three main reasons.
First, the ADK model is purely a toy model; we know of no
evidence that it arises from string theory. Second, the string
landscape is understood only in a few corners of the theory,
where small parameters are available and statistical esti-
mates are arguably under control. In particular, the oft-
quoted number 10°% of vacua is likely an underestimate
[38], and we do not know of a reliable upper bound. Third,
even if we did know the structure of the landscape, and
supposing that we knew of no general purpose algorithm that
satisfied the computational censorship hypothesis, this
would not imply that no such algorithm exists.

Outline. In Sec. II we relate the ADK model to number
partitioning and estimate the brute force cost of finding a
small value of A. In Sec. III we review the Karmarkar-Karp
and other fast algorithms and discuss their range of
applicability. In Sec. IV we report an empirical test of
the Karmarkar-Karp algorithm. We demonstrate that it can
find a value of A consistent with observation in randomly
generated instances of an ADK model with nearly 10°
fields [and so by Eq. (5), in a few hours on a desktop
computer]. We find that sieves are less efficient but still
suffice to demonstrate consistency with the computational
censorship hypothesis.

II. COMPLEXITY OF THE ADK MODEL

In this section, we show that the problem of finding a
small cosmological constant A in the ADK model can be
reduced to the standard number partitioning problem. We
then demonstrate that the cost of a brute force search
exceeds A~! by a factor (log, A~!)%/2. Therefore a brute

103512-4
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force search is incompatible with the computational censor-
ship hypothesis.

A. Reduction to number partitioning

The number partitioning problem is, given a list of
positive integers §, ..., 5,, to find

j=1

where s; € {+1,—1}. The number partitioning problem is
NP—complete4 and in fact was a member of the list of 21
problems shown to be NP-complete in the 1972 paper of
Karp [40], which together with Cook’s 1971 paper [41] is
credited with founding the theory of NP-completeness.
The problem of finding vacua in the ADK model with
cosmological constant 10~!?? differs superficially from the
number partitioning problem in its standard form, but can
easily be converted. To do so, first note that we can choose

our labels so that for each j, E(lj ) > Eéj >. Then, for each
j=1,...nlet

5= (EY) - EY)/2 (10)
C(EY) 4 U /0 11
Hj ( 1t Eg )/ ( )

In this notation, (2) becomes
n
A=8+Y ;5 (12)
j=1

where

6y = Zﬂj- (13)

=1

It is clear that finding a solution to (12) is very closely
related to the number partitioning problem. There are three
technical differences. First, the numbers involved are reals
rather than integers. This is inconsequential, as reals can be
scaled up and rounded to integers, with the scale factor
determined by the needed level of precision. Henceforth,
we will refer to both the problem of obtaining residue A
starting with real inputs of order 1 and the problem of
obtaining residue 1 starting with integers of order A~! as
number partitioning, as will be clear from context.

4Technically, NP is a class of decision problems. The NP-
complete version of the partitioning problem is to decide whether
a solution to (2) exists. However, by standard arguments [39],
the decision and search versions of the problem are essentially
equivalent; the complexity of finding a solution exceeds the
complexity of deciding whether one exists by at most a factor
of n.

PHYSICAL REVIEW D 96, 103512 (2017)

A second difference is that in many works on integer
partitioning, one wishes to find a partition in which the
residue is zero, rather than merely small. Third, in the
problem arising from the ADK model, there is no variable
so € {—1,+1} multiplying &,. Nevertheless, algorithms
that were designed for solving the standard number
partitioning problem can be easily adapted to this slight
variant of the problem, as we now illustrate.

B. Cost of brute force search

Consider the number partitioning problem on real num-
bers, where problem instances are generated by drawing n
numbers independently at random from the uniform dis-
tribution on [0, 1]. In [13] it was proven that the median
optimal residue is ®(y/n27"). (The big-® notation indicates
that the asymptotic scaling as n — oo is /n2™" up to
constant factors.) Thus, for a solution with residue A to
exist, one needs /n2™" < A. One can show that asymp-
totically, this means the minimum viable value of n scales as

1
n~log, A7 + Elogz log, AL (14)

To find aresidue of size A one needs to perform all arithmetic
with at least

b ~log, A7 (15)

bits of precision.

A naive method for brute force search would be to
increment through all 2" possible choices of sign
S1y oSy € {+1,—1} and for each one, compute the
corresponding sum, and compare it against the threshold
for sufficient smallness (e.g., 107'??). Such an algorithm
would perform n2" addition (or subtraction) operations,
each on b bits. Addition or subtraction of a pair of b-bit
numbers can be done by a quantum circuit of O(b)
elementary gates [42—47]. Thus the total complexity of
this algorithm is O(nb2").

However, there is a somewhat more efficient algorithm
that still arguably qualifies as brute force search. Rather
than summing up the residue from scratch with each new
choice of signs, one could use the residue from the previous
calculation and add or subtract 26; for each j in which the
sign has changed. For any n there always exists an ordering
of the 2" bit strings of length n such that each bit string is
obtained from the previous one by only flipping a single bit.
These orderings are called Gray codes, and they can
furthermore be generated by efficient classical algorithms
[48]. By ordering the choices of sign according to a Gray
code one thus has to do n additions on the first step, and
only one addition or subtraction on each of the subsequent
2" —1 steps. This brings the total complexity of the
algorithm down to O(b2") elementary quantum gates.

103512-5
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By (14) and (15) this yields a total complexity of order
A~'(logy A=1)*2 quantum gates.’

III. ALGORITHMS FOR NUMBER PARTITIONING

In this section, we discuss efficient algorithms for the
number partitioning problem.

The number partitioning problem is NP-complete.
Assuming P # NP this implies that no polynomial-time
classical algorithm can solve all instances of number
partitioning in time scaling polynomially in n. However,
this does not forbid the existence of parameter regimes in
which classical algorithms can solve the problem in
polynomial time. In fact, for many NP-complete problems,
including the canonical example of 3-SAT, randomly
generated instances are efficiently solvable generically;
exponentially hard instances require fine-tuning [49].

Random instances of number partitioning have been well
studied using methods of statistical mechanics. The stan-
dard ensemble of instances most typically studied is to set
some magnitude parameter B and then choose n integers
o1, ...,0, independently uniformly at random from the
range {1,2,...,B}. If >7" | §;=1mod2 then any sum
of the form » ", &6; will be odd, and it is impossible for a

solution to (9) to exist. Thus, it is conventional to define a
perfect partition as a solution to (9) in the case that Z;?Zl 0;

is even, and as a solution to ;?: 1 8;6; = 1 in the case that

Zf;zl 0; is odd. Whether a perfect partition exists for an
instance of number partitioning sampled from the standard
ensemble depends on the relationship between n and B. If n
is too small relative to B then the system is overconstrained
and is likely to have no perfect partitions, whereas if n is
sufficiently large relative to B then the system is under-
constrained and is likely to have many perfect partitions.
More precisely, as shown in [50], in the limit of large n,
randomly generated number partitioning problems will
have no perfect partitions for B > 2"+0(027) and will have
exponentially many partitions for B < 2"+00ogn) Ag is the
case for many NP-complete problems, the number parti-
tioning problem becomes easier for instances sufficiently
far from the phase transition.

For example, the Karmarkar-Karp algorithm solves
number partitioning in time O(nlogn) for B < ncog”,

which is to say when n > exp|y /IO%B] for some constant c.

s = 0.721...

suffices. In Sec. IV we empirically achieve success with
¢ = 0.662, which is in rough agreement with the empirical

It was proven rigorously in [51] that ¢ =

’In a more realistic model, the contributions to the vacuum
energy from various fields have to be recomputed in every
vacuum, adding further overhead to the calculation. Since the
matter sector can be more complex for a small cosmological
constant, one expects this overhead to grow at least weakly
with A1,

PHYSICAL REVIEW D 96, 103512 (2017)

1 8
8 5 4
sort
55— =4 3 2 >\
2 2 2 1 1 >\
4 1 1 1 1 0
FIG. 1. An example of the Karmarkar-Karp algorithm. At the

first step the numbers are sorted. At each subsequent step, the
largest two numbers are replaced by their difference, which is
then inserted into the appropriate location in the list so that it
remains sorted. The sequence of moves in the example shown
finds the solution 1 — (2 — (4 — (8 —=5))) =0.

testing in [52]. Nonetheless, the statistical mechanics
arguments in [52] suggest that ¢ = 0.721 is the true
asymptotic value as n — oo.

A. The Karmarkar-Karp algorithm

The Karmarkar-Karp algorithm is based on the intuition
that the largest numbers should be given opposite signs in
order to achieve cancellation. The Karmarkar-Karp strategy
is to commit to giving the largest two numbers opposite
signs without specifying which should be positive and
which should be negative. This reduces the problem to a
new instance of integer partitioning with one fewer number:
the largest two numbers have been replaced by their
difference. This is then treated in the same manner, until
only one number is left, which is the final residue
>, 5;6;,. An example is given in Fig. 1.

The initial sorting step has complexity O(nlogn) by
standard algorithms. Inserting a number into the correct
location in an ordered list can be achieved with complexity
O(log n) using a standard data structure called a heap [53].
There are exactly n — 1 differencing-and-insertion steps
needed to arrive at a final residue. Thus the total complexity
of the algorithm is O(nlogn).

The Karmarkar-Karp algorithm is heuristic in the sense
that for some problem instances for which a perfect partition
exists, the Karmarkar-Karp algorithm will fail to find it. On
the other hand, as mentioned earlier, for random instances of
integer partitioning with B < n®72!1°¢" " the Karmarkar-
Karp algorithm will succeed with probability going to 1
asn — oo [51]. Korf [54] has introduced an extension of the
Karmarkar-Karp algorithm, which initially proceeds iden-
tically to the Karmarkar-Karp algorithm and terminates if
this yields a perfect partition. However, if it fails to find a
perfect partition it continues searching by backtracking and
trying assignments in which the largest two numbers are
given the same sign. The details of Korf’s algorithm are such
that it is guaranteed to find a perfect partition provided one
exists. For B < n¢!°¢" Korf’s algorithm matches the per-
formance of the Karmarkar-Karp algorithm, but for B >
ncl°e” it may have an exponentially long runtime.

Other heuristic algorithms derived from Karmarkar-Karp
were studied in [55], where it was empirically found that, in
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the regime where Karmarkar-Karp finds a residue much
larger than the optimal residue, modest improvements in
residue size can be obtained by exhaustively or stochas-
tically searching for solutions “near” the Karmarkar-Karp
solution, if the notion of nearness is carefully chosen.
However, other than near the Karmarkar-Karp solution, the
optimization landscape in number partitioning problems
was found to be hard to distinguish from random, based on
any of the neighborhood notions that were investigated.
Thus there appears to be little structure in the problem for
general-purpose optimization heuristics such as simulated
annealing or genetic algorithms to exploit. This is cor-
roborated by the relatively modest performance improve-
ments obtained by such heuristics on number partitioning
in other studies [56-58].

In analyzing the performance of the Karmarkar-Karp
algorithm it is standard to consider the ensemble of
instances where the 6, ..., d, are independent, identically
distributed random variables, typically sampled from a
uniform distribution on some range 0 to B. The instances of
number partitioning arising in the context of the ADK
model may slightly differ from this. In particular, from
Egs. (10) through (13), one sees that if £y, ..., E, are each
of order B, then 9y, ...,0, will be of order B, but §, will
generically be of order \/nB. It is easy to see that this makes
only a small difference to the performance of the
Karmarkar-Karp algorithm. The first ~y/n differencing
steps will all be used to difference from §,. After that,
one is left with a standard instance of integer partitioning in
which all the numbers are of similar magnitude, and the
Karmarkar-Karp algorithm performs as it would on the
standard ensemble. Thus, whereas for the standard ensem-

ble, one would have required a minimum of nd =

exp[4/ logé\il], the minimum number of fields in the ADK

; . yADK st std
case may be slightly larger: nl;>® = njs + 1/ n5c .

In Sec. IV we give the results of some computer
experiments on the performance of the Karmarkar-Karp
algorithm, confirming the predictions of the statistical
analyses referenced above and giving a quantitative sense
of the practical performance of the algorithm. For simplic-
ity, and to facilitate comparison with the existing literature,
the experiments in Sec. IV are performed using a standard
ensemble of instances of number partitioning.

B. Dynamic programming

The computational difficulty of the number partitioning
problem depends on the number of numbers n, and their
magnitudes. In the regime where the B = max;§; is only
polynomially large, i.e., the number of bits needed to
represent the numbers scales only as some power of
log n, the number partitioning problem can be solved in
polynomial time on classical computers using a standard
technique called dynamic programming. Specifically, as is

PHYSICAL REVIEW D 96, 103512 (2017)

described nicely in Sec. IV.2 of [59], dynamic programming

solves the number partitioning problem in time O(nD),
where D = 27=1 6;. Problems such as number partitioning
that can be solved in polynomial time when all the input
numbers are restricted to polynomial magnitude (rather than
allowing them to be polynomially many bits long) are said to
be pseudopolynomial [60].

C. Adapting algorithms for subset sum

Number partitioning, subset sum, and knapsack problems
are all variants of essentially the same problem. Algorithms
for one are often applicable, with minor modification, to the
others. For example, a straightforward meet-in-the-middle
tree search [61] applies to all these problems and succeeds in
finding the optimal residue in time ~2%>". At present, the
asymptotically best upper bound on the classical complexity
of finding the optimal solution to number partitioning
problems is given by the algorithm of [35], which is
guaranteed to succeed in time O(2%%°!"). The asymptoti-
cally best upper bound on the quantum complexity of this
problem is given by the quantum algorithm of [36], which is
guaranteed to find the optimum using a number of elemen-
tary steps (quantum gates) at most O(2°2*1") (This quantum
algorithm is based on quantum walks. An adiabatic quantum
algorithm for this problem has also been analyzed, but its

T T T T T T T T T
s = 5.000372°

8 A exponential input
—10 - § o uniform input |

m
N
o —20 -
o
=1
b
@»
9]
g
w
o 30 A
2
—40 | i

1 1 1 1 1 1 1 1 1

10 15 20 25 30 35 40 45 50
b (Block size)

FIG. 2. Expected relative optimal residue size versus input size
for number partitioning problems on a block of b random
numbers with the specified distribution. For each block size b
in this given range, mean size for 1000 experiments is shown.
Each experiment generated high precision floating point input
data with mean one and a complete NPP solver produced the
optimal residue. Assuming the distribution of optimal residues is
exponential, the maximum likelihood estimator of the mean is
biased; hence the least square error estimator was used to find the
mean in each case. The model parameters with residue size s =
5.0h%3727? were generated by linear regression on the data with
uniformly distributed inputs.
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runtime is not known. Numerical calculations in [62]
suggest a runtime scaling as 20", The adiabatic algorithm
may also be limited in its capacity to accommodate large B).

As discussed in Sec. II B, the minimum value of n such that
the number partitioning problem is likely to have a solution of
order A is asymptotically log, A~ + %logz log, A=!. The
algorithm of [35] could solve a problem of this size with
runtime of order (A~1)%%!(log, A~1)%-146,

D. Adapting lattice sieves

Here we explore a very simple sieve mechanism for
solving the number partitioning problem inspired by “lattice
sieves” [63]. The Karmarkar-Karp algorithm can be viewed
as a form of the Gauss sieve [64] for a one-dimensional
lattice. Curiously, while more sophisticated lattice sieves
easily outperform the Gauss sieve on high-dimensional
lattices [65-69], here we find that this is seemingly not
the case for the number partitioning problem. The simple
sieve we present here is similar in spirit to the “tuple sieve” of
[69], but cannot match the performance of the Karmarkar-
Karp algorithm as we will show. Nonetheless, the key
advantage of this style of sieve is that it is not restricted
to the number partitioning problem and so could be easily
adapted to other models of the landscape.

PHYSICAL REVIEW D 96, 103512 (2017)

In general, a sieve consists of several stages. For us, the
input to a stage is a collection of numbers; these are
partitioned into small blocks of size b and on each of these
blocks the number partition problem is solved for the
optimal residue. This collection of residues is the output of
the sieve stage, which then becomes the input for the next
stage. There are a number of algorithms to solve for the
optimal residue, some of which are illustrated in the
previous sections. All of these take work 2°+°(%) As long
as the distribution of the input data is sufficiently well
behaved, the optimal residues will be exponentially dis-
tributed with expected size 27°t°(P), asymptotically

O(v/b27%) [13-15]. In Fig. 2, we validate this scaling
for small b but recover a smaller power in the polynomial
factor in this formula. In Fig. 3, we also validate that the
distribution of the residues is well modeled as exponential
with the parameter A estimated from the data.

If our input is n fields producing mean energy
differences §; ~ 1, the first sieve stage involves solving
n/b; number partition problems, each of size b,. The work

for this stage is zbiIZ"‘bl and the output is b residues

exponentially distributed with mean size ~27"1. The second
sieve stage partitions these into blocks of size b, and solves

the number partition problem on each to produce h

residues of size ~2~(17%2) and so on.

T T T T T T

1H & data (exponential) 1H data (exponential) —
- model (exponential) model (exponential)
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o 05 0.5 - N
2
=
]
=
g
=
]

o - 0 .

| | | | | |
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log, Size log, Size
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1H A data (exponential) 1+ A data (exponential) —
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< - — —  model (uniform) - — —  model (uniform)
g b =30 b =40
— = =
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FIG. 3.

Plots of cumulative likelihood of observing the optimal residue versus (log) size of the optimal residue. The model is the

cumulative distribution function of the exponential distribution where the single parameter 4 is computed from the data using the least
squares estimator. For block sizes b = 10, 20, 30, 40, each plot was generated from high precision floating point input data (uniformly or
exponentially distributed) with mean one and a complete solver produced the optimal residue.
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TABLE 1. Example sieves for k=2,...,8 stages with overall
expected residue 27'~274%, The sizes of the blocks (n;,n,,...)
are selected so the overall work in each stage is approximately
equal. In this range as the number of layers increases, the required
number of input fields »n increases, and the overall work of the
sieve 2" decreases. However, at smaller block sizes (for instance
b; =16 for k=8), variations in the size of the resulting residues
are large and so the work estimates given are less accurate.

k n t w (ny,ny,...)

2 422x10*% 400.0 107.62 (198, 213)

3 265x10° 400.8 78.32 (124, 139, 154)

4 1.19x10% 400.8 65.07 (85,98, 113, 126)

5 3.96x10° 400.0 58.14 (59, 72, 85, 98, 112)

6 1.03x10'! 400.3 54.53 (41, 53, 65, 77, 91, 104)

7 1.97x102 400.8 52.70 (27, 38, 49, 61, 74, 87, 100)

8 2.54x10B 400.5 51.88 (16, 26, 36, 48, 59, 72, 85, 98)

The goal is that after k sieve stages we produce a single
residue of expected length 2~ ~ 2~(1++5:) The optimal
work is given when we follow an “equipartition principle”
and balance the amount of work done on each sieve stage.
For example, the first sieve stage involves solving many
more number partition problems than the second stage, and
so we should choose b, > b, so as to balance the amount of
work done during the first stage with that done in the
second. Specifically, in stage j < k of the sieve, we solve
n/(by---b;) number partition problems with an overall
work of n/(by - - - b;)2°%, which we balance with the work
in stage j — 1:

Dabj_y 16
. 16

Therefore we select b; implicitly by solving
1

The overall work of the sieve is then ~ ’l;—’ll 2901 Examples of

sieves for k = 2, ..., 8 stages, @ = 0.5, all targeting residues
of size #2749 are given in Table 1.

This table indicates that only the sieves with k = 2, 3, 4
can outperform Karmarkar-Karp in terms of the number of
fields, which requires n ~ 8 x 10® to produce residues of
size ~274%0 At this size Karmarkar-Karp takes work
roughly 2%, well below that of any of these sieves. To
outperform Karmarkar-Karp with this style of sieve, the
algorithm that solves number partitioning on the blocks
would need to have a < 0.22, and even then lower-order
terms not counted in the asymptotic expression would
likely dominate the work.

IV. COMPUTER EXPERIMENTS

In this section, we apply fast algorithms to the problem
of finding a small cosmological constant in an ADK

PHYSICAL REVIEW D 96, 103512 (2017)
success fraction
1.0f
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FIG. 4. Ateach value of n, 200 instances of number partitioning
are generated with each of the n numbers independently sampled
uniformly from {0,1,2,...,2%4% — 1}. The fraction of instances
in which the Karmarkar-Karp algorithm found a residue smaller

than 23 is shown for each n. The theoretically predicted success
probability of 1 —exp [— e;ﬁfo)z} is also shown, with ¢ = 0.6615
determined by fitting to the data. The asymptotic value of ¢ as

n — oo is predicted to be 1/v/2 = 0.7071.

landscape. We show that they allow the computational
censorship hypothesis to be satisfied.

A. Karmarkar-Karp

To empirically test the Karmarkar-Karp algorithm in a
regime relevant to the cosmological constant problem, we
generated random instances of the number partitioning
problem, at various values of n, in which each of the n
numbers are independently sampled uniformly from
{0,1,2,...,2¥9 — 1}. In Fig. 4, we plot the fraction of
instances on which the Karmarkar-Karp algorithm was
successful with » numbers, where we defined success as
achieving residue less than 23°. In the context of finding a
small cosmological constant within the ADK model, one
starts with real numbers of order 1 and seeks to find a
residue of order 107!%2, Here we have scaled up the
numbers by a factor of 2*° and represented them as
integers. This use of fixed-point arithmetic is strictly for

TABLE II. Predicted parameters of a four stage sieve for the
number partition problem. Upon input of 1.2 x 10° numbers
uniformly distributed on [0, 1], four stages of sieving outputs a
single number of expected magnitude 27'>!3, The sieve is
balanced so that the amount of computation spent during each
stage is roughly equal.

Inputs Number
Stage b distribution of NPPs  Work  E[s]
1 20 1200000 uniform 60000 2259 2-16.1
2 30 60000 exponential 2000 2260 413
3 40 2000 exponential 50 2256 97764
4 50 50 exponential 1 2250 -1213
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FIG. 5.

PHYSICAL REVIEW D 96, 103512 (2017)
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Plots of cumulative likelihood of observing the optimal residue versus (log) size of the optimal residue for a four-stage sieve.

Input to stage 1 was n = 1.20 x 10° mean one uniformly distributed numbers. Stage 1 combined b; = 20 numbers in each number
partitioning problem to produce 60000 optimal residues, forming the input to stage 2. Stage 2 combined b, = 30 numbers in each
problem to produce 2000 optimal residues. Stage 3 combined b3 = 40 numbers to produce 50 optimal residues. Finally stage 4
combined these b, = 50 numbers to produce an overall residue of 6.54 x 10738, This final residue was slightly smaller than the

predicted 27'213. The sieve completed in 152 seconds on a standard desktop computer.

computational convenience. Our definition of success
corresponds to achieving a residue that is smaller than
the magnitude of the initial numbers by a factor of 2400 =
10"% and thus corresponds to finding a cosmological
constant close to that observed for our Universe.” The
extra 30 bits of precision are to ensure that “numerical
noise” should be small.

By the analysis of [52], if the Karmarkar-Karp algorithm
is applied to real numbers uniformly distributed on [0, 1],
the size of the final residue should be exponentially
distributed. That is, the probability that the residue lies
between y and y + dy should be le™* dy, where

) = g—clog’n

(18)

and ¢ is asymptotically equal to 1/v2 as n — oo.
Empirical studies at finite n consistently observe values
of ¢ smaller than 1/+/2 [52]. By defining success to be a
reduction factor of ¢ =249 we should obtain the
success probability

As one can see from Fig. 4, the observed success fraction
from our trials of the Karmarkar-Karp algorithm on
random instances agrees well with this prediction if
we take ¢ = 0.6615.

B. Sieves

The predicted work of a sieve to produce a residue of
length 2749 is not so large that the Universe would be unable
to compute it, but it is large enough to require significant
effort with current hardware. As a simple proof of concept,
we will tackle a scaled down version with four sieve stages of
block sizes (by, by, by, by) = (20,30,40,50), and use a
simple meet-in-the-middle algorithm (@ = 0.5) to solve
the number partitioning problem [61]. The profile of the
experiment can be found in Table II, which predicts an
expected size of the final residue output at sieve stage 4 to
be E[s] = 271213,

The result of the experiment is captured in Fig. 5.
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