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Abstract:

A new fast orthogonal estimation algorithm is derived for a wide class of nonlinear sto-
chastic models including training radial basis Junction neural networks. The selection of
significant regressors and the estimation of unknown parameters in the presence of non-
linear noise sources are considered and simulated examples are included to demonstrate
the efficiency of the new procedure.

1.0 Introduction

Modelling of nonlinear stochastic systems based on the Nonlinear Auto-Regressive Mov-
ing Average with eXogenous inputs (NARMAX) model has been extensively studied and
model identification algorithms have evolved from extended least squares, prediction error
to orthogonal estimators based on polynomial NARMAX expansions, rational model
forms and the training of neural networks (Billings and Voon 1984, Korenberg, Billings,
Liu and Mcllroy 1988, Billings, Korenberg and Chen 1988, Billings and Chen 1989, Bill-
ings and Chen 1989, Billings and Zhu 1991, Zhu and Billings 1993). All the algorithms
have been designed to provide unbiased estimates in the presence of nonlinear correlated
noise but the orthogonal based procedures offer added functionality, are upwardly extend-
able and can be applied to very complex model types.

The orthogonal routines can be used to sort through a library of possible model terms to
rank these in order of importance and to provide unbiased parameter estimates. If the
model form is a polynomial or extended model set expansion the term ranking can be
completed prior to noise modelling and this provides a very powerful procedure for deter-
mining concise model forms from large data sets. Estimation of the structure and the
parameters of rational models, defined as the ratio of two stochastic polynomial expan-
sions, is much more complex and an iterative procedure must be employed to remove bias
terms which are induced even when the noise is uncorrelated and white. Although the
exact formulation of the algorithm is different for each model form the basis of the orthog-
onal property ensures that model term can be processed one at a time based on a core esti-
mation routine. Hence m dimensional estimation problems can be broken down into m one
dimensional problems and this means that numerical ill conditioning can be avoided and
the algorithms are upwardly extendable to very complex model forms.

While previous studies have concentrated on formulations of the algorithm for different” * <. %,
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model forms, the need to determine model structure and avoid estimation bias very little
attention has been given to the properties of the core orthogonal routines. But since the
basis of the whole formulation is to re-enter the orthogonal module for each model term,
and this can amount to hundreds and often thousands of calls even for relatively simple
models, optimization of these routines should have considerable benefits to the overall
performance of the algorithms and this forms the basis of present study.

Previous work by Korenberg (1988), and Korenberg and Paarmann (1991) has considered
fast orthogonal algorithms but unfortunately these methods are restricted to model forms
with special properties. Because the NARMAX model and variants of this form include
time delayed nonlinear terms and transcendental terms which are frequently ordered or
processed in an irregular order Korenberg’s methods cannot be applied and alternatives
must be investigated. There are also a number of fast algorithms which are used in linear
system identification and signal processing. For example fast recursive least squares
(Ljung and Soderstrom 1983) and the fast transversal filter algorithm (Haykin 1986),
which effectively retain the advantages of ordinary recursive least squares but the compu-
tational complexity is reduced to a level comparable to that of the least mean squares algo-
rithm, are used in system identification. Another typical example is the fast computation
algorithms used in digital signal processing (Blahut 1985) which deal with the computa-
tional complexity of convolutions and transformations. However all these algorithms are
oriented to computations based on a prefixed linear model structure and cannot be directly
applied to select an optimal model from a large number of candidate models and to esti-
mate the associated unknown parameters.

The aim of the present paper therefore is to derive a generalized fast orthogonal algorithm
which maintains all the properties of the methods described above, which can be config-
ured to work for polynomial, extended model set, rational models and in the training of
neural networks. Two simulated examples are included to demonstrate the efficiency of
the new routine.

2.0 System identification

In this section a general model structure will be introduced as a basis to approximate a
wide range of systems and then the techniques of parameter estimation, structure detection
and model validity tests will be briefly presented. These results provide a fundamental
basis for the derivation of the new fast orthogonal algorithm and other studies in the fol-
lowing sections.

2.1 Model description

A wide class of linear or nonlinear stochastic systems can be described by a NARMAX
model defined as

y@ =L u e e (o)

(2.1)

where ¢ (t=1, 2, ...) is a time index, y(¢), u(¢) and €(7) denote the output, input and residual




sequences respectively, f{.) is a linear or nonlinear function and

Y= =1,y t=n)] W = w(=1), e (r=ny)]
= [e{t-1), oy B{E—n,) ]

(2.2)

are output, input and residual vectors with delayed elements from 1 to ny, ny and ng
respectively. Notice that the form of the model can be very wide and can include the linear
model, the Nonlinear AutoRegressive Moving Average with eXogenous input (NAR-
MAX) model (Billings and Chen 1989), a neural network expansion (Zhu and Billings
1994) etc.

When the function f{.) takes the form of a polynomial y(#) can be expressed as

y() = Zp, (1) 8;+e (1)
j=1
(2.3)
where p; (r) = p; (y'~ 1, u _1, ~1) is defined as a term which is a linear or nonlinear
function of past outputs inputs and residual sequences, 0; is the associated unknown

parameter. Notice that for nonlinear models there may be cross product terms involving y,
u and €.

2.2 Parameter estimation

First consider an extended least squares parameter estimation (Ljung 1987) of (2.3)

O = [dTd] oY

(2.4)
where
O=16,..61"
Py (1) cu: Py (1)
o= ... ... ..
py(N) ... p,y (N)
Y=1[y(1)...y(N)]
(2.5)

Given a known model structure the extended least squares algorithm can be readily




applied and delivers unbiased parameter estimates. However in practice the terms which
should be included in the model are seldom known a priori and so it becomes necessary to
consider how to determine those terms or the model structure. This is critically important
in the case of nonlinear systems because the number of candidate model terms is often
very large. Orthogonal least squares algorithms can deal with this problem by transform-
ing the cross correlated normal matrix [®7®] into an orthogonal matrix so that the solu-
tion of m coupled equations becomes equivalent to solving m independent equations. An
optimal model term selection procedure can then be developed to exploit the orthogonal
property and to determine if each term is significant or not.

The orthogonal parameter estimation algorithm for the model of (2.3) is summarized
below. Consider an orthogonal transformation of (2.3) to yield

y(0) = Y wi(ng+e(r)

J=l
(2.6)
where the parameters can be estimated by
z A -1
G= 128,07 = (Ww]™ wly
(2.7)
and
Wi (l) . W, (1)
w=oa™=|
wi (N) ... w, (N)
(2.8)
is an orthogonal regression matrix with the properties
1 :
E’WTW =diag {w% (1) w;"n (6)}
1 < T
2 2 2w _ ;
wi () = N,EIWJE (1) w, (Hw (1) = N;lwk (1),w(e) =0, k#i
(2.9)
The parameter estimates in the model of (2.3) can be recovered by computing
©=4a"'G
(2.10)




where @ is defined in (2.5) and A is the orthogonal transform expressed as

1G(l'.’ alm
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2.11)

which is a unit upper triangular matrix. There are several approaches of computing the ele-
ments of A such as Gram-Schmidt, modified Gram-Schmidt, Householder or Givens trans-
formations (Chen, Billings and Luo 1989).

A model is said to have been satisfactorily identified when the model residual is reduced
to an unpredictable sequence so that the parameter estimate is unbiased

E[G-G] =0
(2.12)

where G is the true parameter vector of (2.6) and E[.] denotes expected value. The covari-
ance of the parameter estimate is given by

Cov(G) = E[(G-G) (6-G)] = o (wiw) ™"

(2.13)

where Gg is the residual variance and throughout all sequences are assumed to be ergodic.
From (2.10) the covariance of the parameter estimate © is given by

cov(®) = A Cov (G) AT

(2.14)

2.3 Structure detection

The identification based on the model of (2.3) includes the selection of m model terms pj(®)
from a full model set of M ( » m) terms (typically several hundreds or even thousands of
terms) and the estimation of the parameters B;. It has been shown previously that the
orthogonal algorithms can be employed to select the model structure and estimate the
parameters simultaneously (Billings, Korenberg and Chen 1988).

The orthogonal term selection is formulated using the error reduction ration (ERR) defined

as
. I
ERR, = [err,...err 1T = GLTWQ
Y'Y

(2.15)




To find m optimal model terms a stepwise procedure is applied to the full model set. At
each step the model term with the maximum err; value from all of the full model terms
excluding previously selected terms is selected. The selection procedure is terminated at
the mth step when

m
1= Z err;
j=1
(2.16)
is less than a desired tolerance. The final orthogonal model is selected as (2.6) and the
parameter estimation associated with this model was described in section 2.2. The term
selection procedure can be recognized as a series of steps to reduce the model residual or

residual to output ratio. The justification for this can be seen by taking time average of the
square of (2.6) and utilizing the orthogonality properties to yield

1 X y & 1 Y
Brsi o g u 2
N;ly [ = Nzuj(ogﬁﬁie (£)

=1 t=1

(2.17)
Defining
L ¥ L
el 2 5
=gy =y(n of=53en =)
t=1 t=1
(2.18)
yields the error reduction ratio or err value
N
9 9
wi(g& 5
- 208 _Gw
= TN = 5=
PR SONEEEY
(2.19)
So that from (2.17)
n G;""
= 2 BT = ;E
i= y
(2.20)

The larger the value of the err term the larger the reduction in residual variance as that
term is included in the model.




2.4 Model validity tests

Model validity tests are applied to check if the residual of the identified model has been
reduced to an unpredictable sequence. A general algorithm for both linear and nonlinear
model validation which has been derived by Billings and Zhu (19944, b) consists of com-
puting the following correlation functions

N-1
Y (a(r) —a) (2 (r-1) —€?)
_ =1
0,2 (0) = = —= —
J[E (o (t) —a)')(Z (e% (1) —€?) )
=1 =1
‘N—'r .
Y () —a) (W (t-1) —u?)
§ . [1) = et

Qus N . N —_
J[Z C16) -a)-J[z (1) —u?) )

1 t=1

(2.21)
where
a(r) =y (e
1 N
o= ye= o zy(r)S(r)
t=1
(2.22)

In the ideal case where the residuals are zero mean and uncorrelated with all linear and

nonlinear combinations of past inputs and outputs these tests yield
l,t=0
(1) = {

- 0, otherwise
‘baul(ﬂ =0, V1

(2.23)

Other alternative model validity test procedures (Billings and Woon 1986, Leontaritis and
Billings 1987) also can be used to check the quality of the model residual.

3.0 Fast orthogonal technique

3.1 Parameter estimation

Since the orthogonal estimation algorithm will be used to sort through typically thousands
of candidate model terms it is important to study the computational efficiency of the pro-




cedures involved and if possible to reformulate these to yield fast versions. To derive a fast

algorithm multiply out the ordinary orthogonal algorithm presented in section 2 based on
the Gram-Schmidt transformation (Korenberg, Billings, Liu and Mcllroy 1988) to give

k-1
wi (1) =p (1) - 2 o wi (1)

i=1

_ Py () w; (1)
ik W;-" (t)
o y@w (0
.= e
w2 (1)

Gwi(n  GOw )’

Y wi ) ¥y

err, =

(3.1}

The parameters in the ordinary model of (2.3) can be computed using transformation

m

- Z aikek 7 em = 8
k=i+1

(3.2)

Inspection of (3.1) shows that the order of processing in the ordinary orthogonal algorithm
involves computing the orthogonal term wy(f) first and then all the transformations Bt
estimates g, and erry. A faster algorithm can be derived based on computing the estimates
using the correlation computations instead of the orthogonal terms themselves so that the
computation of the orthogonal terms becomes unnecessary. The detailed derivations,
which exploit the orthogonality, are given below by considering the component terms in

(3.1

i-1

Py () w; (1) =p,(0) (p,-(r) P f([)J
Jj=1
i-1

=p(0p; () =Y o p (Dw. (1) w, (1)

g=




k=1
yw, (1) =y(n) (Pk(f) - Z QW ,(I)]

k-1

=y (O p () = Y oy (O w,;(£)

(3.3)
Define
R(ki) =p(wi(t)  R(kKk) =wi()  C(k) =ynw (D
(3.4)
then (3.3) becomes
R (ki) = p,()p,; (1) - Za.‘.R(k,j) k>ii=1,...,k-1
j=1
R(kK) = pi(1) jz SRGD) CR) =YD pe () 2
j=1
3.5)
with initial settings
R(k1) =p.(Dp ()  R(LD =pi()  C(1) =yO)p, (D
(3.6)

The estimates of the orthogonal regression term wy(f) in (3.1) can now be obtained much
more efficiently as

R (k, j) _C C? (k)
i k - 5 3
R (k, k) y* (1)

(3.7)




Under the fast formulation the parameters in the ordinary model of (2.3) are computed as

n A.I)A

" 2R

k=i+

-

énl = g!?l

(3.8)

3.2 Computational comparisons
The computational requirements for the two algorithms are given in Table 1

computation Ordinary orthogonal Fast orthogonal

& matrix N*M N*m

W matrix 12*N*(2M-m) 0

A matrix 12*N*(2M-m) 12*N*(2M-m)

G and ERR vectors 12%(2M-m) 12*(2M-m)
Table 1

where N is the data length, M is the number of candidate terms in the full model and m is
the number of terms in the selected model. Each number listed denotes a number of basic
unit computations. Two obvious improvements of the fast algorithm are to get rid of
directly forming the orthogonal matrix W and only to build up the selected original term
matrix instead of the full original model term matrix.

The bias and covariance of the parameter estimates can be shown to be the same as for the

ordinary orthogonal algorithim because all the statistical properties are maintained by the
new algorithm.

4.0 Training of Radial Basis Functions neural networks

The fast orthogonal algorithm can also be used to train Radial Basis Function (RBF) neu-
ral networks. The radial basis function technique consists of choosing a function £, with n
inputs and m outputs, which has the following form (Chen, Billings, Cowan and Grant

1990)
MC
f(0) =T+ 3 To(lx-¢|)
j=1
4.1
where ¢ (.) is the radial basis function, x is the input vector, ||.|| denotes the euclidean

norm, 1"‘r is the weight vector, I'; is a constant vector and ¢; is the radial basis function
centre. Let

c

. T -
rj = [YUY’”}] ’ J = 0,...,M

4.2)

10



then (4.1) may be decomposed as
M

ff; (x) = Yot Z Y,'jq) (”.‘C—' Cj“): J

j=1

- |

(4.3)
which can be interpreted in terms of the NARMAX model formulation of (2.3).

The network can be trained using the following procedure

(i) Select an appropriate radial basis function. Typically choices of the radial basis func-
tion. are the thin-plate-spline

0 (v) = vilog (v)

(4.4)
the gaussian function
2
2
o (v) = exp [—@J
4.5)
where B is a real constant, and the multiquadric function
0 (v) = 7+ P2
(4.6)

(ii) Select the centres. The functions f, (x) and ¢(.) of (4.3) are equivalent to the NAR-
MAX model output y(r) and term p (1) of (2.3) respectively, that is

£ =y o(x-g) =p;(0)

4.7

The selection of a subset of radial basis function centres from a larger number of candidate
centres can thus be regarded as an example of the selection of significant regression terms
or model structure detection for the NARMAX model.

(iii) Estimation of weights. The weights Yij of (4.3) equivalent to the NARMAX model
parameters 9]. of (2.3), that is

Yy =9

(4.8)

Estimation of the weights therefore corresponds to the associated parameter estimation of

11



a NARMAX model.

The new fast orthogonal algorithim can therefore be used as a basis for structure detection
and parameter estimation of polynomial NARMAX models and to determine the topology
and train radial basis function neural networks.

5.0 Identification of nonlinear rational modes

Rational models are widely used in static function approximation because they provide
parsimonious models of complex phenomena and have excellent extrapolation properties.
Recently dynamic rational models have been introduced into nonlinear systemn identifica-
tion (Billings and Zhu 1991, 1994c, Zhu and Billings 1991, 1993) and because of the
excellent properties of these models it is important to consider how the fast orthogonal
algorithm can be adapted to both detect the structure and estimate the unknown parame-
ters for this important class of models. Expanding (2.1) as a rational function gives

num

PN GL

+e(1) = i‘-j%ni——-——-i-e(r)

> Py (08,

j=1

_a(n
il = I0)

(3.1

where a(r) and b(r) are polynomial NARMAX models defined in (2.3). In order to apply
the orthogonal least squares techniques. (5.1) is expanded into a linear in the parameters
expression by multiplying b(f) on both sides of (5.1) and moving all the terms except

y(6)p, (1) 6, to the right hand side to give

nun den
Y(1) = 3 p,(08,= 3 y()p,; (08, +()
i=1 i=2

(5.2}
where Y (1) =y (5)p,, (1) |9 =1 and C(r) = b(s)e(r). The orthogonal transform of
(5.2) can then be expressed as”'

num+den—1

Y(n = Y wi(ng+{()

j=1
(5.3)

Because the right hand side of (5.3) contains £(¢) terms multiplied by the elements of b(z)
the direct application of the orthogonal least squares algorithm will yield biased estimates
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even when &(7) is white. this effect which does not occur for polynomial or RBF expan-
sions is a consequence of multiplying out (5.1) to make the model linear in the parameters.
Failure to properly accommodate these effects leads to severe bias in the parameter esti-
mates and consequently the orthogonal algorithm (Zhu and Billings 1993, Billings and
Zhu 1994¢) must be modified as follows

k-1
Wk([) =pk(t) - Z a;kwi (f)
i=1
k-1 0 numerator term
e () = A = D aye (N, A = {Pdk(’) denominator term

i=1

p()w; (1) =B, (e (Do,

o

ik = =
wi (1) = e (1) o2

_ y (1) w, (1) =pyy (1) e, (1) Gg

oY

k

Wi (1) —e; (1) o2

g (Wi (1) = €3 (1) 62) = 22,5 (D e, (1) o

err, =

Y () b2 ()

m-1
ek =8k~ 2 a,{Jej y em = 8m
k+1

[}

den
b(n) =3 pjs(nb,
j=1
N o)
s 1 a(r) . -
GE_N—mdl:%H(y(r)_m)

(5.4)

The elements which multiply residual variance cg are called bias correction components.
A fast implementation of (5.4) can also be derived because y(@)w, (1), wﬁ(t) and
y (r) w,(¢) can be reformulated based upon the fast orthogonal computations in section

13



3.1. The implementation of the bias correction components, from (5.4), are given by

i—1

A (n)e (1) =A (1) (A'.(:) - ): ae; (:))
i=

i-1

=4, (04,(0) = 08,0 e ()
Jj=1

- k-1 2

er () = (Ak(r) - a‘.kei(r))

1—1
= A7 (D) Za e (1)

i=1

k-1
P (DD =gy (1) (Ak -3 a,-kef(r>]
i=1

k=1
=p (D8, () = Y aypy (e, (1)
i=1
k-1
b(r)e,(r) =b(1) (/_\k(r) =¥ a‘.ke‘-(r))
i=1

—b(r)A f) —~ Za b(De. (1) ) e

i=1
(5.5)
Define
R (ki) =4, (n)e (D) R, (k k) = e} (1)
C, (k) =pyy (e, (1) B,(k)=b(De, (1)
(5.6)
Such that (5.5) becomes
i-1
R (ki) =A (D8 (D) = Y R (k)  k>ii=1,..,k-1
j=1
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k=1
R,(k k) =48;(0) =), afchU,j)

j=1
k=1
Ce (’L) =pdl ([) Ak([) - 2 ajkcg (J)
=1
kj—l
B, (k) =5 (NA(D) - ¥ 0,C, ()
=1
(5.7)
with initial settings
R, (k1) =A (DA (1) R,(1,1) =Af(r)
Co(1) =py (DA (1) B, (1) =b (A, (1)
(5.8)

The estimates computed without directly forming the orthogonal regressor w, (t) orthe

error term ¢, (#) can be obtained based upon the fast implementation

R(kj) =R, (kj)os C (k) =C, (k) o
o, = ] gk = y
% R(,j) =R, (k, k) o2 & R (k, k) =R, (k, k) G2

£

8% (R (k, k) =R, (k, k) 6%) -28}B, (k) o

err, =

Y () b ()

(5.9)
- The parameter estimates in the rational model of (5.1) can then be recovered using
X m Rk i) =R, (ki)o?, .
0, =8- ) — ==lly B ™ R
' k=i+1R(1’I) _R(.(I)I)GE“
(5.10)

Obviously the fast orthogonal rational model identification algorithm given in (5.9)
reduces to the algorithm presented in (3.7) when the denominator in the rational model is
set to unity (b(r)=1) so that all the components in (5.9) which are multiplied by e,(f)

15



become zero because of e.(r)=0.
6.0 Simulated examples

Two simulated systems were selected to demonstrate the effectiveness of the new fast
algorithm. The fast algorithm was implemented using the rational model formulation to
provide generality since this is applicable to polynomial, RBF and rational models. For
each of the simulated systems 1000 pairs of input and output data were used with the same
choice of input and noise signals in each case. The input u(f) was a uniformly distributed
random excitation sequence with zero mean and amplitude +1 ( variance G' =0.33) and
the n01sc e() was a normally distributed disturbance sequence with zero mcan and vari-
ance 0 = 0.01. An initial full model of 56 terms was specified with numerator degree =
denommator degree = 2 and input lag = output lag = noise lag = 2.

Example §,

The first simulated nonlinear rational system was defined as

0.25y(t-1) 085y(t—2)e(t—2)+u(t—1)u(t-2)
y(1) = +e (1)
1+068y (r—1)+y (t=2)

(6.1)

In this form the model is a highly nonlinear with nonlinearity in the parameters, input, out-
put and noise. The input and noise corrupted output data sequences are shown in Fig. 1.
Applying the fast orthogonal algorithm to search through all the 56 possible candidate
terms to detect the structure or significant model terms and to estimate the unknown
parameters produced the results shown in Table 1. The final estimated model contains just
five terms and the one step ahead predictions and residuals are illustrated in Fig. 2. The
model validity tests are shown in Fig. 3.

Numerator polynomial Parameter estimates
y(t-1) 0.269

y(t-2)e(t-2) -0.613

u(t-Du(t-2) 1.012

denominator polynomial

yX(t-1) 0.654

y2(1-2) 0.963

Residual variance

Gaz 0.0994

Table 1 Identified model for S,
Example S,

A second simulated nonlinear system consisting of the polynomial model
y(r) =054y (t=1) +0.95y (1 =2)u(r=1) +u(r=-1) +0.77u% (r - 2)
+u(t=1)e(t=2) +e(r)

(6.2)
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was simulated. This system was used to demonstrate the generality of the fast algorithm,
which reduces to the fast orthogonal polynomial model algorithm when the denominator
in the rational model is set to one, b(f)=1. The input and noise corrupted output data
sequences are shown in Fig. 4. The identified model which was obtained by searching
over 56 candidate model terms is shown in Table2. The term selection and parameter esti-
mation procedures of the fast algorithm produce a final model with just five terms. The
one step ahead predictions and residuals are illustrated in Fig. 5, and the model validity
tests are illustrated in Fig. 6.

Numerator Parameter estimates
y(t-1) 0.541

y(t-2)u(t-1) 0.948

u(t-1) 1.000

u*(t-2) 0.776

u(t-1)e(t-2) 0.900

Residual variance

Cg’ 0.0989

Table 2 Identified model for S,
7.0 Conclusions

A new class of fast orthogonal estimation routines have been introduced for polynomial

models, radial basis function neural networks and nonlinear rational models. The new
algorithms provide a computationally efficient implementation which can be used to rap-
idly search through a large class of candidate model terms, to order the terms according to
their significance and hence to determine the structures of the model. Unbiased parameter
estimations can be obtained in the presence of both additive and multiplicative correlated
noise. The fast algorithms are typically two to three times faster than the original formula-
tions making this approach computationally efficient while preserving the flexibility that
the orthogonal properties provided.
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