
Fast Outlier Detection

in High Dimensional Spaces

Fabrizio Angiulli and Clara Pizzuti

ISI-CNR, c/o DEIS, Universitá della Calabria
87036 Rende (CS), Italy

{angiulli,pizzuti}@isi.cs.cnr.it

Abstract. In this paper we propose a new definition of distance-based
outlier that considers for each point the sum of the distances from its
k nearest neighbors, called weight. Outliers are those points having the
largest values of weight. In order to compute these weights, we find the k
nearest neighbors of each point in a fast and efficient way by linearizing
the search space through the Hilbert space filling curve. The algorithm
consists of two phases, the first provides an approximated solution, within
a small factor, after executing at most d + 1 scans of the data set with
a low time complexity cost, where d is the number of dimensions of the
data set. During each scan the number of points candidate to belong to
the solution set is sensibly reduced. The second phase returns the exact
solution by doing a single scan which examines further a little fraction of
the data set. Experimental results show that the algorithm always finds
the exact solution during the first phase after d � d + 1 steps and it
scales linearly both in the dimensionality and the size of the data set.

1 Introduction

Outlier detection is an outstanding data mining task referred to as outlier min-
ing that has a lot of practical applications such as telecom or credit card frauds,
medical analysis, pharmaceutical research, financial applications. Outlier mining
can be defined as follows: ”Given a set of N data points or objects, and n, the
expected number of outliers, find the top n objects that are considerably dis-
similar with respect to the remaining data” [9]. Many data mining algorithms
consider outliers as noise that must be eliminated because it degrades their pre-
dictive accuracy. For example, in classification algorithms mislabelled instances
are considered outliers and thus they are removed from the training set to im-
prove the accuracy of the resulting classifier [6]. However, as pointed out in [9],
”one person’s noise could be another person’s signal”, thus outliers themselves
can be of great interest. The approaches to outlier mining can be classified in
supervised-learning based methods, where each example must be labelled as ex-
ceptional or not, and the unsupervised-learning based ones, where the label is
not required. The latter approach is more general because in real situations we
do not have such information. Unsupervised-learning based methods for outlier
detection can be categorized in several approaches. The first is statistical-based

T. Elomaa et al. (Eds.): PKDD, LNAI 2431, pp. 15–27, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

16 Fabrizio Angiulli and Clara Pizzuti

and assumes that the given data set has a distribution model. Outliers are those
points that satisfies a discordancy test, that is that are significantly larger (or
smaller) in relation to the hypothesized distribution [4]. In [20] a Gaussian mix-
ture model to represent the normal behaviors is used and each datum is given a
score on the basis of changes in the model. High score indicates high possibility
of being an outlier. This approach has been combined in [19] with a supervised-
learning based approach to obtain general patterns for outliers. Deviation-based
techniques identify outliers by inspecting the characteristics of objects and con-
sider an object that deviates from these features an outlier [3,16]. A completely
different approach that finds outliers by observing low dimensional projections
of the search space is presented in [1]. Yu et al. [7] introduced FindOut, a method
based on wavelet transform, that identifies outliers by removing clusters from
the original data set. Wavelet transform has also been used in [18] to detect
outliers in stochastic processes. Another category is the density-based, presented
in [5] where a new notion of local outlier is introduced that measures the degree
of an object to be an outlier with respect to the density of the local neighbor-
hood. This degree is called Local Outlier Factor LOF and is assigned to each
object. The computation of LOFs, however, is expensive and it must be done for
each object. To reduce the computational load, Jin et al. in [10] proposed a new
method to determine only the top-n local outliers that avoids the computation
of LOFs for most objects if n � N , where N is the data set size. Distance-based
outlier detection has been introduced by Knorr and Ng [12] to overcome the
limitations of statistical methods. A distance-based outlier is defined as follows:
A point p in a data set is an outlier with respect to parameters k and δ if no
more than k points in the data set are at a distance of δ or less from p. This
definition of outlier has a number of benefits but, as observed in [14], it depends
on the two parameters k and δ and it does not provide a ranking of the outliers.
Furthermore the two algorithms proposed are either quadratic in the data set
size or exponential in the number of dimensions, thus their experiments cannot
go beyond five dimensions. In the work [14] the definition of outlier is modified
to address these drawbacks and it is based on the distance of the k-th nearest
neighbor of a point p, denoted with Dk(p). The new definition of outlier is the
following: Given a k and n, a point p is an outlier if no more than n-1 other
points in the data set have a higher value for Dk than p. This means that the
top n points having the maximum Dk values are considered outliers. The ex-
periments presented, up to 10 dimensions, show that their method scales well.
This definition is interesting but does not take into account the local density
of points. The authors note that ”points with large values for Dk(p) have more
sparse neighborhoods and are thus typically stronger outliers than points belong-
ing to dense clusters which will tend to have lower values of Dk(p).” However,
consider Figure 1. If we set k = 10, Dk(p1) = Dk(p2), but we can not state
that p1 and p2 can be considered being outliers at the same way.

In this paper we propose a new definition of outlier that is distance-based
but that considers for each point p the sum of the distances from its k nearest
neighbors. This sum is called the weight of p, ωk(p), and it is used to rank

Fast Outlier Detection in High Dimensional Spaces 17

p

q1

p1 p

q2

p2

Fig. 1. Two points with same Dk values (k=10)

the points of the data set. Outliers are those points having the larger values
of ωk. In order to compute these weights, we find the k nearest neighbors of
each point in a fast and efficient way by linearizing the search space. We fit
the d-dimensional data set DB in the hypercube D = [0, 1]d, then we map D
into the interval I = [0, 1] by using the Hilbert space filling curve and obtain the
k nearest neighbors of each point by examining its predecessors and successors
on I. The mapping assures that if two points are close in I, they are close
in D too, although the reverse in not always true. To limit the loss of nearness,
the data set is shifted d + 1 times along the main diagonal of the hypercube
[0, 2]d. The algorithm consists of two phases, the first provides an approximated
solution, within a small factor, after executing at most d + 1 scans of the data
set with a low time complexity cost. During each scan a better lower bound
for the weight of the k-th outlier of DB is obtained and the number of points
candidate to belong to the solution set is sensibly reduced. The second returns
the exact solution by doing a single scan which examines further a little fraction
of the data set. However, as experimental results show, we always find the exact
solution during the first phase after d � d+ 1 steps.

It is worth to note that approaches based on wavelet transform apply this
multi-resolution signal processing technique to transform the original space in
a new one of the same dimension and find outliers in the transformed space at
different levels of approximation. In our approach, however, space filling curves
are used to map a multidimensional space in a one dimensional space to obtain
the nearest neighbors of each point in a fast way, but the distance computation
is done in the original space.

The paper is organized as follows. Section 2 gives definitions and properties
necessary to introduce the algorithm and an overview of space filling curves.
Section 3 presents the method. In Section 4, finally, experimental results on
several data sets are reported.

2 Definitions and Notations

In this section we present the new definition of outlier and we introduce the no-
tions that are necessary to describe our algorithm. The Lt distance between two
points p = (p1, . . . , pd) and q = (q1, . . . , qd) is defined as dt(p, q) = (

∑d
i=1 |pi −

qi|t)1/t for 1 ≤ t < ∞, and max1≤i≤d |pi − qi| for t = ∞.

18 Fabrizio Angiulli and Clara Pizzuti

Let DB be a d-dimensional data set, k a parameter and let p be a point
of DB. Then the weight of p in DB is defined as ωk(p) =

∑k
i=1 dt(p, nni(p)),

where nni(p) denotes the i-th nearest neighborhood of p in DB.
Given a data set DB, parameters k and n, a point p ∈ DB is the n-th outlier

with respect to k, denoted as outliern
k , if there are exactly n− 1 points q in DB

such that ωk(q) > ωk(p).
Given a data set DB, parameters k and n, we denote with Outnk the set of

the top n outliers of DB with respect to k. Let Out∗ be a set of n points of DB
and ε a positive real number, we say that Out∗ is an ε-approximation of Outnk if
ω∗ε ≥ ωn, where ω∗ is min{ωk(p) | p ∈ Out∗} and ωn is the weight of outliern

k .
Points in DB are thus ordered according to their weights ωk(p), computed

by using any Lt metrics. The n points Outnk having the maximum ωk values are
considered outliers. To compute the weights, the k nearest neighbors are obtained
by using space-filling curves. The concept of space-filling curve came out in the
19-th century and it is accredited to Peano [15] who, in 1890, proved the existence
of a continuous mapping from the interval I = [0, 1] onto the square Q = [0, 1]2.
Hilbert in 1891 defined a general procedure to generate an entire class of space-
filling curves. He observed that if the interval I can be mapped continuously onto
the square Q then, after partitioning I into four congruent subintervals and Q
into four congruent sub-squares, each subinterval can be mapped onto one of
the sub-squares. Sub-squares are ordered such that each pair of consecutive sub-
squares share a common edge. If this process is continued ad infinitum, I and Q
are partitioned into 22h replicas for h = 1, 2, 3 . . . In practical applications the
partitioning process is terminated after h steps to give an approximation of
a space-filling curve of order h. For h ≥ 1 and d ≥ 2, let Hd

h denote the h-th
order approximation of a d-dimensional Hilbert space-filling curve that maps 2hd

subintervals of length 1/2hd into 2hd sub-hypercubes whose centre-points are
considered as points in a space of finite granularity. The Hilbert curve, thus,
passes through every point in a d-dimensional space once and once only in a
particular order. This establishes a mapping between values in the interval I
and the coordinates of d-dimensional points. Let D be the set {p ∈ R

d : 0 ≤
pi ≤ 1, 1 ≤ i ≤ d} and p a d-dimensional point in D. The inverse image of p
under this mapping is called its Hilbert value and is denoted by H(p). Let DB be
a set of points in D. These points can be sorted according to the order in which
the curve passes through them. We denote by H(DB) the set {H(p) | p ∈ DB}
sorted with respect to the order relation induced by the Hilbert curve. Given a
point p the predecessor and the successor of p, denoted Hpred(p) and Hsucc(p),
in H(DB) are thus the two closest points with respect to the ordering induced
by the Hilbert curve. The m-th predecessor and successor of p are denoted by
Hpred(p,m) and Hsucc(p,m). Space filling curves have been studied and used in
several fields [8,11,17]. A useful property of such a mapping is that if two points
from the unit interval I are close then the corresponding images are close too
in the hypercube D. The reverse statement, however, is not true because two
close points in D can have non-close inverse images in I. This implies that the
reduction of dimensionality from d to one can provoke the loss of the property

Fast Outlier Detection in High Dimensional Spaces 19

of nearness. In order to preserve the closeness property, approaches based on the
translation and/or rotation of the hypercube D have been proposed [13,17]. Such
approaches assure the maintenance of the closeness of two d-dimensional points,
within some factor, when they are transformed into one dimensional points. In
particular, in [13], the number of shifts depends on the dimension d. Given a
data set DB and the vector v(j) = (j/(d+ 1), . . . , j/(d+ 1)) ∈ R

d, each point
p ∈ DB can be translated d+ 1 times along the main diagonal in the following
way: pj = p + v(j), for j = 0, . . . , d. The shifted copies of points thus belong to
[0, 2]d and, for each p, d+1 Hilbert values in the interval [0, 2] can be computed.
In this paper we make use of this family of shifts to overcome the loss of the
nearness property.

An r-region is an open ended hypercube in [0, 2)d with side length r = 21−l

having the form
∏d−1

i=0 [air, (ai + 1)r), where each ai, 0 ≤ i < d, and l are in N.
The order of an r-region of side r is the quantity − log2 r.

Let p and q be two points. We denote by MinReg(p, q) the side of smallest r-
region containing both p and q. We denote by MaxReg(p, q) the side of the
greatest r-region containing p but not q.

Let p be a point, and let r be the side of an r-region. Then

MinDist(p, r) = mind
i=1{min{pi mod r, r − pi mod r}}

MaxDist(p, r) =




(
∑d

i=1(max{pi mod r, r − pi mod r})t)1/t for 1 ≤ t < ∞

maxd
i=1{max{pi mod r, r − pi mod r}} for t = ∞

where x mod r = x − �x/r�r, and pi denotes the value of p along the i-th
coordinate, are respectively the perpendicular distance from p to the nearest
face of the r-region of side r containing p, i.e. a lower bound for the distance
between p and a point lying out of the above r-region, and the distance from p
to the furthest vertex of the r-region of side r containing p, i.e. an upper bound
for the distance between p and a point lying into the above r-region.

Let p be a point in R
d, and let r be a non negative real. Then the

d-dimensional neighborhood of p (under the Lt metric) of radius r, written B(p, r),
is the set {q ∈ R

d | dt(p, q) ≤ r}.
Let p, q1, and q2 be three points. Then

BoxRadius(p, q1, q2) = MinDist(p,min{MaxReg(p, q1),MaxReg(p, q2)})

is the radius of the greatest neighborhood of p entirely contained in the great-
est r-region containing p but neither q1 nor q2.

Lemma 1. Given a data set DB, a point p of DB, two positive integers a and b,
and the set of points

I = {Hpred(p, a), . . . ,Hpred(p, 1),Hsucc(p, 1), . . . ,Hsucc(p, b)}

let r be BoxRadius(p,Hpred(p, a− 1),Hsucc(p, b+ 1)) and S = I ∩ B(p, r). Then

20 Fabrizio Angiulli and Clara Pizzuti

1. The points in S are the true first |S| nearest-neighbors of p in DB;
2. dt(p, nn|S|+1(p)) > r.

The above Lemma allows us to determine, among the a + b points, nearest
neighbors of p with respect to the Hilbert order (thus they constitute an approx-
imation of the true closest neighbors), the exact |S| ≤ a + b nearest neighbors
of p and to establish a lower bound to the distance from p to the (|S| + 1)-th
nearest neighbor. This result is used in the algorithm to estimate a lower bound
to the weight of any point p.

3 Algorithm

In this section we give the description of the HilOut algorithm. The method
consists of two phases, the first does at most d + 1 scans of the input data
set and guarantees a solution that is an kεd-approximation of Outnk , where
εd = 2d

1
t (2d + 1) (for a proof of this statement we refer to [2]), with a low

time complexity cost. The second phase does a single scan of the data set and
computes the set Outnk . At each scan HilOut computes a lower bound and an
upper bound to the weight ωk of each point and it maintains the n greatest
lower bound values in the heap WLB. The n-th value ω∗ in WLB is a lower
bound to the weight of the n-th outlier and it is used to detect those points that
can be considered candidate outliers. The upper and lower bound of each point
are computed by exploring a neighborhood of the point on the interval I. The
neighborhood of each point is initially set to 2k, then it is widened, proportion-
ally to the number of remaining candidate outliers, to obtain a better estimate
of the true k nearest neighbors. At each iteration, as experimental results show,
the number of candidate outliers sensibly diminishes. This allows the algorithm
to find the exact solution in few steps, in practice after d steps with d � d+ 1.
Before starting with the description, we introduce the concept of point feature.
A point feature f is a 7-tuple 〈point, hilbert, level, weight, weight0, radius, count〉
where point is a point in [0, 2)d, hilbert is the Hilbert value associated to point
in the h-th order approximation of the d-dimensional Hilbert space-filling curve
mapping the hypercube [0, 2)d into the integer set [0, 2hd), level is the order
of the smallest r-region containing both point and its successor in DB (with
respect to the Hilbert order), weight is an upper bound to the weight of point
in DB, radius is the radius of a d-dimensional neighborhood of point, weight0
is the sum of the distances between point and each point of DB lying in the
d-dimensional neighborhood of radius radius of point, while count is the number
of these points.
In the following with the notation f.point, f.hilbert, f.level, f.weight, f.weight0,
f.radius and f.count we refer to the point, hilbert, level, type, weight, weight0,
radius, and count value of the point feature f respectively. Let f be a point fea-
ture, we denote by wlb(f) the value f.weight0+(k−f.count)×f.radius. wlb(f)
is a lower bound to the weight of f.point in DB. The algorithm, reported in
Figure 2, receives as input a data set DB of N points in the hypercube [0, 1]d,

Fast Outlier Detection in High Dimensional Spaces 21

the number n of top outliers to find and the number k of neighbors to consider.
The data structures employed are the two heaps of n point features OUT and
WLB, the set TOP , and the list of point features PF . At the end of each itera-
tion, the features stored in OUT are those with the n greatest values of the field
weight, while the features f stored in WLB are those with the n greatest values
of wlb(f). TOP is a set of at most 2n point features which is set to the union
of the features stored in OUT and WLB at the end of the previous iteration.
PF is a list of point features. In the following, with the notation PFi we mean
the i-th element of the list PF .
First, the algorithm builds the list PF associated to the input data set, i.e. for
each point p of DB a point feature f with f.point = p, f.weight = ∞, and the
other fields set to 0, is inserted in PF , and initializes the set TOP and the global
variables ω∗, N∗, and n∗. ω∗ is a lower bound to the weight of the outliern

k in
DB. This value, initially set to 0, is then updated in the procedure Scan. N∗ is
the number of point features f of PF such that f.weight ≥ ω∗. The points whose
point feature satisfies the above relation are called candidate outliers because the
upper bound to their weight is greater than the current lower bound ω∗. This
value is updated in the procedure Hilbert . n∗ is the number of true outliers in
the heap OUT . It is updated in the procedure TrueOutliers and it is equal to
|{f ∈ OUT | wlb(f) = f.weight ∧ f.weight ≥ ω∗}|. The main cycle, consists of
at most d+1 steps. We explain the single operations performed during each step
of this cycle.
Hilbert. The Hilbert procedure calculates the value H(PFi.point + v(j)) of each
point feature PFi of PF , places this value in PFi.hilbert, and sorts the point
features in the list PF using as order key the values PFi.hilbert. After sorting,
the procedure Hilbert updates the value of the field level of each point feature. In
particular, the value PFi.level is set to the order of the smallest r-region contain-
ing both PFi.point and PFi+1.point, i.e. to MinReg(PFi.point, PFi+1.point), for
each i = 1, . . . , N − 1. For example, consider figure 3 where seven points in the
square [0, 1]2 are consecutively labelled with respect to the Hilbert order. Fig-
ure 3 (b) highlights the smallest r-region containing the two points 5 and 6 while
Figure 3 (c) that containing the two points 2 and 3. The values of the levels as-
sociated with the points 5 and 2 are thus three and one because the order of
corresponding r-regions are − log2 21−4 = 3 and − log2 21−2 = 1 respectively. On
the contrary, the smallest r-region containing points 1 and 2 is all the square.
Scan. The procedure Scan is reported in Figure 2. This procedure performs a
sequential scan of the list PF by considering only those features that have a
weight upper bound not less than ω∗, the lower bound to the weight of outliern

k

of DB. These features are those candidate to be outliers, the others are sim-
ply skipped. If the value PFi.count is equal to k then Fi.weight is the true
weight of PFi.point in DB. Otherwise PFi.weight is an upper bound for the
value ωk(PFi.point) and it could be improved. For this purpose the function
FastUpperBound calculates a novel upper bound ω to the weight of PFi.point,
given by k×MaxDist(PFi.point, 2−level), by examining k points among its suc-
cessors and predecessors to find level, the order of the smallest r-region con-

22 Fabrizio Angiulli and Clara Pizzuti

HilOut (DB, n, k)
{
Initialize(PF , DB);

/* First Phase */
TOP = ∅;
N∗ = N ; n∗ = 0; ω∗ = 0;
j = 0;
while (j ≤ d && n∗ < n) {
Initialize(OUT);
Initialize(WLB);
Hilbert(v(j));
Scan(v(j), kN

N∗);
TrueOutliers(OUT);
TOP = OUT ∪WLB;
j = j + 1;

}
/* Second Phase */
if (n∗ < n)
Scan(v(d), N);

return OUT ;
}

Scan(v, k0)
{

for (i = 1; i ≤ N ; i++) if (PFi.weight ≥ ω∗) {
if (PFi.count < k) {
ω = FastUpperBound (i);
if (ω < ω∗) PFi.weight = ω else {
maxc = min(2k0, N);
if (PFi ∈ TOP) maxc = N ;
InnerScan(i, maxc, v, NN);
if (NN.radius > PFi.radius) {
PFi.radius = NN.radius;
PFi.weight0 = NN.weight0;
PFi.count = NN.count;

}
if (NN.weight < PFi.weight)
PFi.weight = NN.weight;

}
}
Update(OUT , PFi);
Update(WLB, wlb(PFi));
ω∗ = Max(ω∗,Min(WLB));

}
}

Fig. 2. The algorithm HilOut and the procedure Scan

taining both PFi.point and other k neighbors. If ω is less than ω∗, no further
elaboration is required. Otherwise the procedure InnerScan returns the data
structure NN which has the fields NN.weight, NN.weight0, NN.radius and
NN.count. If NN.radius is greater than PFi.radius then a better lower bound
for the weight of PFi.point is available, and the fields radius, weight0, and count
of PFi are updated. Same considerations hold for the value PFi.weight. Finally,
the heaps WLB and OUT process wlb(PFi) and PFi respectively, and the value
ω∗ is updated.
InnerScan. This procedure takes into account the points whose Hilbert value lies
in a one dimensional neighborhood of the integer value PFi.hilbert. In particular,
if PFi belongs to TOP , then the size of the above neighborhood, stored in
maxc is at most N , otherwise this size is at most 2kN/N∗, i.e. it is inversely
proportional to the number N∗ of candidate outliers. This procedure manages
a data structure NN constituted by a heap of k real numbers and the fields
NN.weight, NN.weight0, NN.count, and NN.radius. At the end of InnerScan,
NN contains the k smallest distances between the point PFi.point and the points
of the above defined one dimensional neighborhood, NN.radius is the radius of
the d-dimensional neighborhood of PFi.point explored when considering these
points, calculated as in Lemma 1, NN.weight is the sum of the elements stored
in the heap of NN , NN.weight0 is the sum of the elements stored in the heap
of NN which are less than or equal to NN.radius, while NN.count is their
number. Thus InnerScan returns a new upper bound and a new lower bound

Fast Outlier Detection in High Dimensional Spaces 23

64
5

7
1

2

3

(a)

64
5

7
1

2

3

(b)

64
5

7
1

2

3

(c)

Fig. 3. The level field semantics

for the weight of PFi.point. We note that the field level of each point feature is
exploited by InnerScan to determine in a fast way if the exact k nearest neighbors
of such point have already been encountered (see [2] for a detailed description).
The main cycle of the algorithm stops when n∗ = n, i.e. when the heap OUT is
equal to the set of top n outliers, or after d+1 iterations. At the end of the first
phase, the heap OUT contains a kεd-approximation of Outnk . Finally, if n

∗ < n,
that is if the number of true outliers found by the algorithm is not n, then a
final scan computes the exact solution. This terminates the description of the
algorithm.

As for the time complexity analysis, the time complexity of the first phase
of the algorithm is dN(d logN + (n + k)(d + log k)). Let N∗ be the number of
candidate outliers at the end of the first phase. Then the time complexity of the
second phase is N∗(logn+N∗(d+ log k)).

4 Experimental Results and Conclusions

We implemented the algorithm using the C programming language on a Pentium
III 850MHz based machine having 512Mb of main memory. We used a 64 bit
floating-point type to represent the coordinates of the points and the distances,
and the 32th order approximation of the d-dimensional Hilbert curve to map
the hypercube [0, 2)d onto the set of integers [0, 232d). We studied the behavior
of the algorithm when the dimensionality d and the size N of the data set,
the number n of top outliers we are searching for, the number k of nearest
neighbors to consider and the metric Lt are varied. In particular, we considered
d ∈ {2, 10, 20, 30}, N ∈ {103, 104, 105, 106}, n, k ∈ {1, 10, 100, 1000}, and the
metrics L1, L2 and L∞. We also studied how the number of candidate outliers
decreases during the execution of the algorithm. To test our algorithm, we used
three families of data sets called GAUSSIAN, CLUSTERS and DENSITIES.
A data set of the GAUSSIAN family is composed by points generated from a
normal distribution and scaled to fit into the unit hypercube. A data set of the
CLUSTERS family is composed by 10 hyper-spherical clusters, formed by the
same number of points generated from a normal distribution, having diameter
0.05 and equally spaced along the main diagonal of the unit hypercube. Each
cluster is surrounded by 10 equally spaced outliers lying on a circumference of

24 Fabrizio Angiulli and Clara Pizzuti

radius 0.1 and center in the cluster center. A data set of the DENSITIES family
is composed by 2 gaussian clusters composed by the same number of points but
having different standard deviations (0.25 and 0.75 respectively). The data sets
of the same family differs only for their size N and for their dimensionality d.
Figure 4 (a) shows the two dimensional GAUSSIAN data set together with its
top 100 outliers (for k = 100) with N = 10000 points. In all the experiments
considered, the algorithm terminates with the exact solution after executing a
number of iterations much less than d+ 1. Thus, we experimentally found that
in practice the algorithms behaves as an exact algorithm without the need of the
second phase. The algorithm exhibited the same behavior on all the considered
data set families. For the lack of space, we report only the experiments relative
to the GAUSSIAN data set (see [2] for a detailed description). Figures 4 (b) and
(c) show the execution times obtained respectively varying the dimensionality d
and the size N of the data set. The curves show that the algorithm scales linearly
both with respect to the dimensionality and the size of the data set. Figures 4
(d) and (e) report the execution times obtained varying the number n of top
outliers and the type k of outliers respectively. In the range of values considered
the algorithm appears to be slightly superlinear. Figure 4 (f) illustrates the
execution times corresponding to different values t of the metric Lt. Also in this
case the algorithm scales linearly in almost all the experiments. The algorithm
scales superlinearly only for L∞ with the GAUSSIAN data set. This happens
since, under the L∞ metric, the points of the GAUSSIAN data set tend to
have the same weight as the dimensionality increases. Finally, we studied how
the number of candidate outliers decreases during the algorithm. Figure 4 (g)
reports, in logarithmic scale, the number of candidate outliers at the beginning of
each iteration for the the thirty dimensional GAUSSIAN data set and for various
values of the data set size N . These curves show that, at each iteration, the
algorithm is able to discharge from the set of the candidate outliers a considerable
fraction of the whole data set. Moreover, the same curves show that the algorithm
terminates, in all the considered cases, performing less than 31 iterations (5, 7, 10
and 13 iterations for N equal to 103, 104, 105 and 106 respectively). Figure 4 (h)
reports, in logarithmic scale, the number of candidate outliers at the beginning
of each iteration for various values of the dimensionality d of the GAUSSIAN
data set with N = 100000. We note that, in the considered cases, if we fix the
size of the data set and increase its dimensionality, then the ratio d/(d + 1),
where d is the number of iterations needed by the algorithm to find the solution,
sensibly decreases, thus showing the very good behavior of the method for high
dimensional data sets.
To conclude, we presented a distance-based outlier detection algorithm to deal
with high dimensional data sets that scales linearly with respect to both the
dimensionality and the size of the data set. We presented experiments up to
1000000 of points in the 30-dimensional space. We are implementing a disk-
based version of the algorithm to deal with data sets that cannot fit into main
memory.

Fast Outlier Detection in High Dimensional Spaces 25

Fig. 4. Experimental results

26 Fabrizio Angiulli and Clara Pizzuti

References

1. C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proc.
ACM Int. Conference on Managment of Data (SIGMOD’01), 2001. 16

2. F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional spaces. In
Tech. Report, n. 25, ISI-CNR, 2002. 20, 23, 24

3. A. Arning, C. Aggarwal, and P. Raghavan. A linear method for deviation detection
in large databases. In Proc. Int. Conf. on Knowledge Discovery and Data Mining,
pages 164–169, 1996. 16

4. V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 1994.
16

5. M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-based
local outliers. In Proc. ACM Int. Conf. on Managment of Data (SIGMOD’00),
2000. 16

6. C. E. Brodley and M. Friedl. Identifying and eliminating mislabeled training in-
stances. In Proc. National American Conf. on Artificial Intelligence (AAAI/IAAI
96), pages 799–805, 1996. 15

7. Yu D., Sheikholeslami S., and A. Zhang. Findout: Finding outliers in very large
datasets. In Tech. Report, 99-03, Univ. of New York, Buffalo, pages 1–19, 1999.
16

8. C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In Proc. ACM
Int. Conf. on Principles of Database Systems (PODS’89), pages 247–252, 1989. 18

9. J. Han and M. Kamber. Data Mining, Concepts and Technique. Morgan Kaufmann,
San Francisco, 2001. 15

10. H. V. Jagadish. Linear clustering of objects with multiple atributes. In Proc. ACM
Int. Conf. on Managment of Data (SIGMOD’90), pages 332–342, 1990. 16

11. H. V. Jagadish. Linear clustering of objects with multiple atributes. In Proc. ACM
Int. Conf. on Managment of Data (SIGMOD’90), pages 332–342, 1990. 18

12. E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large
datasets. In Proc. Int. conf. on Very Large Databases (VLDB98), pages 392–403,
1998. 16

13. M. Lopez and S. Liao. Finding k-closest-pairs efficiently for high dimensional data.
In Proc. 12th Canadian Conf. on Computational Geometry (CCCG), pages 197–
204, 2000. 19

14. S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers
from large data sets. In Proc. ACM Int. Conf. on Managment of Data (SIG-
MOD’00), pages 427–438, 2000. 16

15. Hans Sagan. Space Filling Curves. Springer-Verlag, 1994. 18
16. S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of olap

data cubes. In Proc. Sixth Int. Conf on Extending Database Thecnology (EDBT),
Valencia, Spain, March 1998. 16

17. J. Shepherd, X. Zhu, and N. Megiddo. A fast indexing method for multidimensional
nearest neighbor search. In Proc. SPIE Conf. on Storage and Retrieval for image
and video databases VII, pages 350–355, 1999. 18, 19

18. Z. R. Struzik and A. Siebes. Outliers detection and localisation with wavelet based
multifractal formalism. In Tech. Report, CWI,Amsterdam, INS-R0008, 2000. 16

19. K. Yamanishi and J. Takeuchi. Discovering outlier filtering rules from unlabeled
data. In Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Min-
ing, pages 389–394, 2001. 16

Fast Outlier Detection in High Dimensional Spaces 27

20. K. Yamanishi, J. Takeuchi, G.Williams, and P. Milne. On-line unsupervised learn-
ing outlier detection using finite mixtures with discounting learning algorithms. In
Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages
250–254, 2000. 16

	Fast Outlier Detection in High Dimensional Spaces
	Introduction
	Definitions and Notations
	Algorithm
	Experimental Results and Conclusions
	References

