
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1992

Fast parallel algorithms for approximate string matching Fast parallel algorithms for approximate string matching

Yi Jiang
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation

Jiang, Yi, "Fast parallel algorithms for approximate string matching" (1992). Graduate Student Theses,

Dissertations, & Professional Papers. 5106.

https://scholarworks.umt.edu/etd/5106

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5106?utm_source=scholarworks.umt.edu%2Fetd%2F5106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

Copying allowed as provided under provisions
of the Fair Use Section of the U.S.

COPYRIGHT LAW, 1976.
Any copying for commercial purposes

or financial gain may be undertaken only
with the author’s written consent.

University of

Fast Parallel Algorithms for Approximate String
Matching

Yi Jiang
Computer Science, Univ. of Montana

For the degree of
Master of Science, University of Montana

Fall, 1992

Approved by

Chairman, Board of Examiners

Dean, G raduate School

UMI Number: EP40570

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disswtetef WWisfwig

UMI EP40570

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 81 0 6 - 1346

Jiang, Yi, M.Sci., Fall 1992 Computer Science

F a s t P a r a l l e l A lgorithm s f o r Approximate S t r in g Matching

ABSTRACT

Given a text string, a much shorter pattern string, and an integer k ,
parallel algorithms for finding all occurrences of the pattern string
in the text string with at most A; differences (as defined by edit
distance) are discussed. First, a real-time parallel algorithm, which
could be implemented on a systolic array using m (the length of the
pattern string) very simple processing elements, is proposed. After
the algorithm gets started, it outputs the minimum edit distance
from the pattern string to a substring of the text string at each time
step. Thus, the algorithm is well-suited for real-time searching of
text databases or biological nucleic acid sequence databases. Second,
several different ways for solving the same problem with different
CRCW-PRAM assumptions (priority model, combination model,
and common — value model) are developed. This class of algorithms
uses 0 (m x n) or 0 (m x m x n) processors and achieve a time
complexity of 0(k) .

Key words, approximate string matching, edit distance, systolic
computation, CRCW-PRAM models.

Contents

1 Introduction I
2 Related work and concepts 3
3 A new systolic algorithm 29

3.1 M o tiv a t io n of th e new a l g o r i t h m 29
3.2 The new a lg o r i th m 29
3 .3 Complexity a n a ly s i s ... 33
3 .4 A f u r t h e r s i m p l i f i c a t i o n of th e p ro c e ss o r

c o m p l e x i t y .. 33
3.5 D i s c u s s i o n .. 39
3 .6 A r c h i t e c t u r a l A l t e r n a t iv e s - m essage-passage

P E n e t w o r k .. 40

4 An 0(k) CRCW algorithm and related ideas 40
4 .1 I n t r o d u c t i o n ... 40
4 .2 0 (k) time w ith 0(m x n) p r o c e s s o r s 44
4 .3 0 (k) time w ith 0 (n x m x m) p r o c e s s o r s . . . 47
4 .4 C o n c l u s i o n s 47

5 Acknowledgement 48

iii

1 Introduction

In many branches of scientific research, it is often necessary to search
a large database for approximate occurrences of an interesting pat
tern. This is especially important in molecular biology, and infor
mation retrieval in general. In the case of molecular biology, the
need for development of advanced algorithms and technologies in
this and related areas is so urgent that a special article[Lander91]
was published in November issues of both Communication A C M
and I E E E Computer , inviting computer scientists to join forces
with molecular biologists in the human genome project, one of the
most promising and ambitious research projects in this century.

In existing nucleic acid databases, new data are being added at
a rapid rate. The number of possible relationships between various
nucleic acid sequences is significantly larger than the number of se
quences. Furthermore, along with the rapid advances of molecular
biology, the number of features of interest is also increasing. These
trends do not show any signs of abating. As a result of all these,
searching these databases for approximate occurrences of some given
pattern becomes frequently necessary and difficult.

This thesis is concerned with the problem of finding all approx
imate matches of a pattern string A of length m in a much longer
string T of length n (n m). Approximate matching is defined in
terms of edit distance, which allows for substitution, insertion, and
deletion operations to transform A into the substring of T.

The edit distance between strings A and J3, d(A,B) , is defined
as the minimum number of edit steps in converting A to B using
the following three kinds of edit steps:

(1) Delete an element from A.
(2) Insert an element into A.
(3) Replace an element of A with another element.

Example 2.1. The edit distance between string A = “ADGTF” and
string B = “AGCF” can be illustrated as follows:

1

A D G T F

A _ G C F

Here, in converting A to B, element D in A is deleted, and element
T is replaced by C. Thus, the edit distance between A and B is two
(assuming the cost associated with any edit step to be 1).

The edit distance can be generalized by putting different costs
on the operations or on the elements of the alphabet.

The k-differences string-matching problem is to find all occur
rences of substrings of T whose edit distance from A is less than
k (When k equals 0, this is the traditional exact string matching
problem).

The systolic algorithm presented in this thesis is based on the
dynamic programming method. It uses m simple processing ele
ments to solve the k-differences string-matching problem in 0 (n)
time. The processing elements are organized into a one-dimensional
systolic array where each processing element communicates with at
most 2 neighbors. The algorithm is real-time in the sense that the
algorithm uses n + m — 1 time steps, and in each time step after the
m th, a result is output. This result is the minimum edit distance
of the pattern string A from a substring in the text string which
ends at the right edge of a window. The right edge of the window
slides from the leftmost position of the text string to the rightmost
position, with its left edge being always at the left end of the text
string.

The algorithm can easily be viewed as an EREW-PRAM algo
rithm.

In the study and research of parallel computing, abstract, the
oretical computing models are often used in the literature. One
important model is the parallel random-access machine, or PRAM
in short.

In this thesis, several different ways of achieving a time com
plexity of 0 (k) for solving the same problem with different CRCW-

2

PRAM assumptions are also presented.

Throughout this thesis, we use A, to denote the i th element of
string A, and we use A\ to denote substring A;At-+i . . . A j , and use
d(A, B) to denote the edit distance between two strings A and B.

2 R elated work and concepts

Extensive research work has been done on this and related topics
over the past decades. Sankoff, et. al. [Sankoff83] contains very ex
tensive descriptions of the development of various dynamic program
ming algorithms as well as the background for scientific applications
of string matching problems.

Historically, the development of basic dynamic programming meth
ods to compute edit distance between two strings began in biol
ogy with Needleman and Wunsch [Needleman70], and was intro
duced independently by Sellers [Sellers74], and Wagner and Fischer
[Wagner74]. Also see [Manber89] and [Sankoff83].

In this section, we’ll describe basic dynamic programming meth
ods as well as several representative (parallel and serial) algorithms
to solve the k-differences string-matching problem.

Dynamic programming is a powerful and rigorous method to com
pute edit distance d(A ,B) . The basic version of dynamic program
ming method used to compute d(A, B) is described in several books
on computer algorithms. Since it forms the basis of later develop
ments and our new algorithm, we give a brief review of it here.

For simplicity, we assign a cost of 1 to each of the 3 edit steps:
deletion, insertion, substitution.

Suppose we have two strings A and B , of lengths m and n, re
spectively. Define C \i , j \ (0 < i < m, 0 < j < n) to be the edit
distance from A\ to B{. For i < m and j < n, one can observe that
C[i, j] is either

(i) d(A i-1, B r 1) + ^ , ^) , o r
(ii) d (A \ ,B { *) + 1 (i.e., insert Bj), or
(iii) d(Aj-1 , B{) + 1 (i.e., delete A,).

3

Thus, we have

C M =
min(C[i - 1, j] + 1 ,C [i ,j - 1] + l ,C [i - 1 , j — 1] + Cjj) (1)

where ctiJ denotes d(Ai ,Bj) . In other words, c,j = 0 if At = Bj, and
= 1 otherwise.

Initially, C[f,0] = i for 0 < i < m because A{ differs from the
empty text by i insertion steps. Similarly, C[0, j] = j for 0 < j < n.

The following algorithm computes the edit distance d(A, B).

Algorithm 0:

Initialization:
for 0 < i < m do C[i,,0] <— i
for 0 < j < n do C[0,j] <— j

Main loop:
for i = 1 to m do

for j = 1 to n do
x <— C[i — l , j] + 1
V «- C [i , j - 1] + 1
if A{ = Bj then

z * - C [i - 1 , j - 1]
else

z «— C[i — 1, j — 1] + 1
C[i , j] min(x , y , z)

(7[m, n] is the output of this algorithm.

Thus, the essence of the dynamic programming method for this
problem is to fill out a m x n matrix C[0..m, 0..n], using the basic
formula (1) iteratively.

Example 2.2. Applying algorithm 0 to the computation of edit dis
tance between string A = “ADGTF” and string B = “AGCF” would
result in the following C matrix:

4

D

1
1

0 1 2 3 4 5
1

Al
1

1 0 1 2 3 4
1

G1
1

2 1 1 1 2 3
I

cl
1

3 2 2 2 2 3
1

F| 4 3 3 3 3 22 <— ou tpu t

Here, the edit distance d (A ,B) is C[4,5], i.e., 2.

The basic version of dynamic programming method was later
extended to solve the k-differences string-matching problem. This is
a similar but different problem: finding all similar occurrences of a
pattern string in a longer string. Yet it turns out that the algorithm
to tackle this problem needs only minor changes from the original
algorithm described above. It was introduced in [Sellers79]. See
Galil and Park [Galil90].

Since our new algorithm is directly based on this algorithm, we
present it bellow.

Suppose we have a pattern string A and a text string T of lengths
m and n respectively, and an integer k (k < m < n). Define D[i , j \
(0 < i < m , 0 < j < r a) t o b e the minimum edit distance from A\
to any substring of T ending at Tj.

Similar to the case of algorithm 0, one can observe that for i < m
and j < n, the edit distance between A\ and T[for some h (1 <
h < j) is either

(ii) d(A\, Tl 1) + 1 (i.e., insert Tj), or
(iii) d(A\~1 ,T l) + 1 (i.e., delete A,-).

5

Thus,

D[i, j] =
min(D[i - l , j] + 1 , D [i , j - 1] + l , D [i - l , j - 1] + citJ) (2)

where Cij denotes d(Ai,Tj).

Initially, Z>[i, 0] = i for 0 < i < m because A\ differs from the
empty text by i insertion steps. D[0,j] = 0 for 0 < j < n because
the empty pattern occurs any where in T. D[m,j] < k if and only
if A occurs at position Tj with an edit distance at most k.

The following algorithm finds all substrings in T with edit dis
tances to A less than or equal to k.

Algorithm 1:

Initialization:
for 0 < i < to do D[i, 0] «— i
for 0 < j < n do D[0,j] «— 0

Main loop:
for i = 1 to m do

for j = 1 to n do
x *— D[i — 1, j] + 1
y «- D [i , j - 1] + 1
if Ai = Tj then

z <- D[i - l , i - 1]
else

2 <— D[i — 1 ,y — 1] + 1
D[i, j] *- min(:r,y,z)

The last row of D matrix, I>[m, j] ’s (1 < j < n), is the output of
this algorithm. More specifically, if a D[myj] is less or equal to &,
then, there’s an approximate occurrence of pattern A in T ending
at position j , with an edit distance less than or equal to k.

6

Here, again, as in the case of original dynamic programming
algorithm, the whole computation consists of filling out a matrix
Z)[0..m, 0..n], using the above formula iteratively. The difference
between the two is that algorithm 1 initializes row zero with all 0’s
whereas algorithm 0 does not.

Example 2.3. Applying algorithm 1 to solve the k-differences string-
matching problem for pattern string A = “CCCF” and string T
= “ADGTFCF” would result in the following D matrix (assume
k = 2):

A D G T F C F

i o
1

0 0 0 0 0 0 0
1

Cl 1
1

1 1 1 1 1 0 1
1

Cl 2
1

2 2 1 2 2 1 1
1

C| 3
I

3 3 2 2 3 2 2
1

F | 4 4 4 3 3 2 3 2

Here, the last row is the output. Since in that row only D[4, 5]
and D[4,7] are less or equal to 2, we know that there are approximate
occurrences of pattern A which ends at T5 and TV.

Obviously, these dynamic programming algorithms compute C[i , j]!s
or D[i, j] 's row by row, and have time complexity of 0(rn x n).

Since the invention of these algorithms, there has been consider
able progress oil improving their computation efficiencies, resulting
in many parallel and serial algorithms. We describe several algo
rithms here.

7

For algorithm 1, while the D[i, j] 's cannot be computed row by
row or column by column in parallel, they can be computed on a
line parallel to anti-diagonal (i.e., all D[i,j]'s with i + j equal to
some constant d with 1 < d < m + n) simultaneously. Let D-
antidiagonal(d) denote those D[i, j] 's such that \j + i\ = d. Then,
the matrix D can be filled from the upper-left corner to the lower-
right corner by D-antidiagonals with d — 1, 2, . . . , m + n.

Guibas, Kung, and Thompson [Guibas79] gave a systolic ar
ray implementation of algorithm 0 for computing the edit distance
between two strings. Lipton and Lopresti [Lipton85] described a
VLSI systolic array implementation of the same algorithm that uses
2n + 1 processing elements to compute the edit distance between
two strings of length n.

As described in [Lipton85], the 2n + 1 processors are arranged as
a linear array. The characters from the two strings to be compared
are fed into this processor array from left and right respectively. The
two input streams are interleaved with the data values from column
zero and row zero of matrix C, respectively. For example, if the
two strings are “abd” and “dbb”, their interleaved version would be
“alb2d3” and “dlb2b3”, respectively. As is characteristic of sys
tolic array architectures, the data is pumped through rhythmically
according to a global synchronizing clock. In each processor, there
is a state variable, which is initialized to 0. When two non-null
characters meet in a processor from opposite direction, a compari
son is performed. Then, on the next clock tick, the characters shift
out and the data values following them shift in. This processor now
computes the new value for the state variable, according to the pre
vious value of the state variable (serving as the upper-left cell in
matrix C), the result of comparison, and the two values just shifted
in (serving as the left and upper cells), using the same rule as in
algorithm 0. This new state variable then is used to update the
interleaving values (both left-bounded and right-bounded). In this
two-way shifting and computation process, D-cells are effectively
computed along D-antidiagonals. The last value which is shifted
out will be the lower-right-most D-cell, hence the answer.

The running time of their algorithm is the time from when a
string is fed in to the time that string is completely out at the other
end. Since the interleaved string is 2n long, the run time is 4 * n * s,
where s is the maximum time need by a processor to perform its
task on each clock tick.

Example 2-4-
The following figure depicts the computation of the edit distance

between string “abd” and string “dbb”.

0 0 0 0 0 0 0

3 d 2 b l - > ! a I— >1 | — >1 | — >! I— >1 I— >1 I— >1 | — >
< - - | | <— I | <— I | < - - | | <— I | <— I I<— I d I <— Ib2b3

<__ > t ___ > i ___) <___> <___ j <___ > <___ i

1 0 0 0 0 0 1

3d2b— >1 1 I— >1 a | — >1 | — >! | — >| | —>1 | — >1 | —>
<— I K - l l<— I l<— I l<— I l<— I d |<— I 1 I<— b2b3

<____) <___ > t ___ > <___ > t___) t___> f___ .>

1 1 0 0 0 1 1

3 d 2 — > i b i - > i i i — > i a i - > i i - > i i - > i i - > i i - >
<— I l< - - | l<— I l<— I l<— 1 d |<— I 1 | < " | b |< — 2b3

<____ ; <___ j <___) (___) (___) <___; (___>

2 1 1 0 (1) 1 1 2

3 d — > J 2 i - > i b i - > i i i ~ > i a i - > i i - > i i - > i i - >
<— I K - - I I<— I K - l d K - l 1 K - l b K - l 2 l < - b 3

< _______ > < _____) t

_

; r __________ > i ____ j i ______> t ______>

9

2 2 1(1) 1 1(1) 2 2

3 — >1 d I— >1 2 I— >1 b | — >1 1 I— >| a | — >| I — > [| — >
<--1 l<— I l<— I d | < — I 1 | <— | b | <— | 2 | <— I b I<— 3

(________ J < ______) <______) < ______ J (_______) <__ ___) f ______)

3 2(0) 2 1(0) 2 2(1) 3

— >| 3 I— >1 d I— >| 2 | — >| b I— >[2 | — >| a | — >i | - - >
<- -1 . K - l d K - | 2 K - l b K - l 2 K - l b | < - l 3 | < -

< i < ___) I ____) i _____ i I ____ ; < _____ l i ____ >

2 2(1) 1 2(0) 3

— >i i — >i 2 i — >i d i - > i i i— >i b i— >i 3 1— >i a i - >
<— I d K - l 2 K — I b l<— I l l<— I b |<— I 3 | <— I l<—

I ; < _______> (______ ? (_______ j (______ ; i ________) < ______ >

2 1 (1) 2

— >i 1— >1 1— >i 2 I— >1 d I —> I 2 I— >i b I— >i 3 I— >a
d<— I 2 K - l b K - l 2 K - l b K - l 2 K - l l<— I K —

(____j 1__j <_> <___> 1___ j <___ j 1___ >

2

— >! i - > i 1— >i 1— >i 2 1— >[d 1— >i. 2 i - > i b 1 — >3a
d 2<— I b | <— I 2 l<— I b | <— I 2 | <— I l<— I l<— I l<—

(____ ; t ___) <___ > (___ j (___ ; (___) I___ >

10

— >! i — >i i— >i i — >i i - - > i 2 i — >i d i — >i 2 1— >b3a
d2b<— I 2 l<— I b | <— I 2 | <— I |'<— | | < - - | l<— I l<—

< __ ; (___(_____________) ____________1 ____ j < _____; < _____; < ____ >

— >! l - - > ! 1— >i 1 — >1 l - - > [I— >i 2 I— >i d I— >2b3a
d2b2<— I b |< - - | 2 | <— I |<— I l<— I |<— I l<— I l<—

1 _________ > < __________1 < ___________ > < - — > < _________ > < ___________> < _________ >

I
‘— r e s u l t

In this figure, the boxes represent processing elements (PE). A value
above a PE which is enclosed in a parenthesis represents the result of
a comparison (0=success). Values above PE’s but not in parentheses
represent state variables.

For the A:-differences string matching problem, Landau [Landau89]
gave an interesting parallel algorithm which runs in 0{log(m) + k)
using n processors. Their method is a parallelization of a serial
method given in [Ukkonen83] which computes the D[i, j] 's along
main diagonals. To explain their method, we need first to look at
another algorithm, a variation of algorithm 1, which was first in
vented by Ukkonen [Ukkonen83].

The following description is somewhat reminiscent of [Landau89],
Let A and T denote the pattern string and text string, respec

tively. Let D-diagonal(d) of the matrix D consist of all D[i, /]’s such
that I — i — d. Let e denote the number of differences, and let
denote the largest row i such that D[i,l\ = e and D[i, I] is on diag
onal d. By definition, e is the minimum edit distance between A^d,e
and any substring of T which ends at Tjrde + d. The definition of
Ld)e also implies that A Lds+1 ^ TLde+d+1 (for L d>e < m).

11

Example 2.5. Continuing from example 2.3, we show the L^e values
for diagonal 3. They are: L3i0 = 0, T3i1 = 1, L3|2 = 4.

A D G T F C F

I 0
I

Cl 1
I

C| 2

Cl 2
I

FI 2

For each diagonal d , we are interested in finding out the values
of jLd.e’s, for e = 0 , . . . ,k. If one of such L'des equals m, then, there
is an occurrence of pattern A in T with at most k differences that
ends at

In computing s, we use induction on e. For a given d and
e, suppose we’ve computed L VtX, for all x < e and all diagonals y.
Suppose Ld,e should get value i, i.e., i is the largest row such that
D[i, l\ = e, and D[i, l\ is on diagonal d. By algorithm 1, there are
two possibilities for D[i, /] in getting its value e:

(i) D[i — 1,1 — 1] (predecessor of D[i,l] on diagonal d) is e — 1
and Ai T). Or, either D[i , l — 1] or D[i —1,1) has a value of e — 1.

(ii) D l~\ equals e and A,- = T;.
This implies that we may begin from D[i, I] and go upward along

diagonal d by possibility (ii) until we get a possibility (i). Putting
it in a reverse way, we can compute L^t by first locating the row of
diagonal d where possibility (i) occurs, and then increasing the row
number as long as possibility (ii) occurs.

These observations leads to the following algorithm:

12

Algorithm 2:

Initialization:
for 0 < d < n do Ld<e <-------- 1
for —(k + 1) < d < — 1 do Ld,\d\-i <—| d \ —1, Ld,|d| - 2 <—| o? | —2
for — 1 < e < k do Ln+i,e *------1

Main loop:
for e = 0 to k do

for d = — e to n do
1 row «- max[(Zd>e_ 1 + 1), (Ld_he^) } (Ld+i,e- i + 1)]

row <— min(row,m)
2 while row < m and row + d < n and Arow+1 = Trô +1+(i do

row <— row + 1
3 L dte <— row
4 if Ldf£ = m then

print “There is an occurrence ending at Td+mn

As can be seen, this algorithm computes L dJ s along n + k + 1
diagonals. Furthermore, since in the inner loop, the variable row can
take at most m different values, this algorithm has a time complexity
of 0 (m n) (although in practice, this algorithm might be faster than
the basic algorithm, due to the fact it never computes values for D
cells which have cost greater than k).

Now we can explain what Landau and Vishkin did in [Landau89].
Basically, their algorithm is a parallelization of algorithm 2. Ob

serve that in the inner loop of algorithm 2, statement 2 is a while
loop which carries the task of finding Ldi6. The first idea in Landau
and Vishkin’s algorithm is that if we can find L d>e in 0 (1) time in
stead of using this while loop, the whole time complexity would be
reduced to 0(n k) (in a serial sense).

The trick is utilizing a suffix tree which is defined as follows.

Definition:

Let S = s i , . . . , sp be a string where sp = “$” and “$” “$” does not
appear elsewhere in S. The suffix tree of S is defined as;

13

(1) Each suffix of S, Sf, defines a leaf node in the tree.
(2) The empty string defines the root of the suffix tree.
(3) For any pair of leaves, Sf and Sf, their longest common prefix

(which could be empty string, i.e., the root) defines their immediate
parent node in the tree. More generally, for any pair of nodes, their
longest common prefix defines their immediate parent node in the
suffix tree.

Each node v = Sf can be stored as: START(n) = i — 1 and
LENGTH(u) = j —i + l , recording node v ’s start position and length.
Also, each node should keep pointers to its immediate parents.

Example 2.6. the suffix tree for string abab$ is:

(r o o t)

/ I \
/ I \

/ I \
/ I \

/ I \
/ I \

/ I \
(ab) (b) ($)

/ \ / \
/ \ / \

(abab$) (ab$) (bab$) (b$)

It is stored as: START(a&) = 2, LENGTH(a6) = 2, START(6) = 3,
LENGTHS) = 1, START($) = 4, LENGTH($) = 1, START(a6 a6 $)
= 0, LENGTH(a6 a 6 $) = 5, START(a6 $) = 2, LENGTH(a6 $) = 3,
START(6 a 6 $) = 1, LENGTH(6 a 6 $) = 4, START(6 $) = 3, LENGTH(6 $)
= 2 .

The parallel algorithm developed in [Landau89] proceeds in two
steps.

14

In the first step, the text string T and pattern string A are con
catenated into one string Tx, . . . , Tn, A x, . . . , Am$ where $ is not an
element of either A or T. Then, the suffix tree of this concatenated
string can be computed using the algorithm given in [Apostolico88]
and [Landau87] in 0 (log n) time using n processors.

In the second step, n + k-f 1 processors are employed, each dealing
with a D-diagonal d, —k < d < n. The details are given as algorithm
3.

Algorithm 3:

Initialization: as in algorithm 2.
for e = 0 to k do

for d = — e to n parallel-do
1 row <- max[{Ld,e- 1 + 1), (Ld- i,e-i), (£<z+i,e- i + 1)]

row *— min(rou?, m)
2 Trf,e <- row+ LENGTH(LC'Arou,i(i)
3 if Ld,e — m then

print “There is an occurrence ending at Xd+TO”

where, L C A roWid is the lowest common ancestor of the leaf nodes
Trow+d+i • • • $, and Arow+1 , . . . $, in the suffix tree.

The differences in algorithm 3 from algorithm 2 are: (a)the inner
for-loop is now done in parallel; (b)statement 2 in algorithm 2, i.e.,
the while statement , is replaced by a single assignment statement
which finds in 0 (1) time.

After statement 1, we know that on diagonal d, on row row , the
edit distance (i.e., D[row,row + d\) is e. Then, we compute Ld,ei
the largest row on diagonal d such that D[row,row + d\ is still e.
In algorithm 2, we achieve this by continuously increasing the value
of row as long as Trow+li+\ — Arow+ It is not difficult to see that
the number of times we can increase the value of row is exactly
LENGTH(TOAroit/jCe). That is why the while-loop in algorithm 2
can be reduced to statement 2 in algorithm 3.

15

Example 2.7. Continuing from example 2.3, in computation of jL3|2,
the values of i 2,i 5^ 3 ,1 ? 4̂ ,i are needed. Since their values are 1 , 1

and 2, respectively, by algorithm 3, we initialize row to max[i 2,n
£ 3 ,1 + 1, £ 4 ,1 + 1] = 3 (see the following figure). Next, we look at
LENGTH(LCb4rou>fd), i.e,LENGTH(ZCfA3 >3). Since L C A 3<3 is the
longest common prefix of the two leaves T7 . . . $ (=FCGCCF$) and
A4, . . . $ (=F$), we know from the suffix tree that
LENGTH(LCA3 ,3)=LENGTH(F)=1. Thus, F3 ,2 = row + LENGTH(F)
= 3 + 1 = 4 .

A D G T F C F

0 0 0 0

1 1 1 1

2 2 2 1

3 3 2 2 <------i n i t i a l l y , row = 3

4 3 2

Since L3>2 = 4 = m and e = 2 < k, this algorithm will report an
occurrence of pattern + which ends at Td+m = T7.

In algorithm 3, the time complexity is O(k). Since the time
needed to construct the suffix tree is O(log n)[Apostolico88], the
total time is 0 (k + log n)[Landau89].

Finally, using the divide-and-conquer method, one can split the
original problem into [n/rn] smaller problems each of size O(m),
and solve them in parallel using the above algorithm and \n /m \
groups of processors, thus achieving a time complexity of
0 (k + log m).

16

For the sake of completeness, let’s have a look at another inter
esting development, a serial algorithm given in [Galil90] by Galil
and Park , which has a time complexity of 0 (k n + m 2).

The following is a description of their method.
First, note that on each diagonal d, D[i,j]'s are non-decreasing

(see lemma 1, subsection 3.4). This feature of D matrix suggests a
more compact way of storing the information in D. That is, on each
diagonal d, we store only those positions where the value actually
increases. In this thesis, we will refer to those positions in D after
which (on the same diagonal) the value increases from e — 1 to e as
ju m p points of e — 1.

For a difference e, let E[e, d] be the largest column j such that on
diagonal d, D[j — d,j] equals e. In other words, D[E[e,d] — d, E[e,d\]
is the jump point on matrix D for difference e. Then, if E[e, d] — d =
m for some e < k, we know that there’s an approximate occurrence
of pattern A which ends at column m + d.

Now, the original computation on a m x n matrix D has been
transformed into computation on an order k x n matrix E. This
computation of matrix E can be done by the following algorithm (if
we think in terms of D matrix, this is just another representation
of algorithm 2):

Algorithm 4: (This isn’t their new algorithm; Algorithm 5 is)

Initialization:
for 0 < d < n — m + k + 1 do E[—1, d] <— d — 1
for —(k + 1) < d < — 1 do

E[\ d | - l ,d] 4- - 1
E [j d j —2, d] < oo

Main loop:
for c = 0 to n — m + k do
1 for e = 0 to k do

d <— c — e
2 col <— max(E[e — 1, d — 1] + 1, E[e — 1, d] + 1, E[e — 1 ,d + 1])
3 while col < n and col — d < m and Aco/+i_d = TCo(+i do

col *— col + 1
4 i£[e,d] e-m in(c<d,m + d,n)

if i?[e, d] = m + d then

17

print “There is an occurrence ending at Td+mv

Note that the row index of matrix E ranges from -1 to fc, whereas
the column index extends from —(k + l) t o r a —m + fc + 1.

By nature, algorithm 4 is equivalent to algorithm 2 in that both
determine the jump point for a difference e by first determining a cell
achieving e by looking at e —1 cells on this and adjacent D-diagonals,
and then proceed along this /^-diagonal as long as the corresponding
elements from A and T matches. However, a big difference exists: in
algorithm 4, we compute E cells (the jump points on D-diagonals)
by antidiagonals on E\ If we translate E cells into corresponding D
cells, we’ll notice that the order of computation is quite different.

Following the convention in the original paper, we call antidiag
onals on E as E — diagonals c, where for each cell E[i, j] on E, i + j

The E matrix contains three types of columns:
(1) F or—A: < d < — 1, only d + k + 1 cells (i.e.,E[e,d], | d |< e < k)

need to be considered, since D — diagonal d on matrix D begins with
value d.

(2) For 0 < d < n — m, k + I cells (i.e., E[e, d\ 0 < e < k) need
to be computed.

(3) For n — m + 1 < d < n — m + k, (n — m + k) — d + 1 cells (i.e.,
E[e, d] 0 < e < (n — m + k) — d) need to be computed, since that
although these corresponding D — diagonals lead to no results, their
values may nevertheless affect those D — diagonals below them on
matrix D.

In the initialization stage of algorithm 4, special values, —1, and
—oo are used. Since on D matrix, the situation e = 0 begins at
column d on D — diagonal d , it is proper to initialize E[—l,d] to
d — 1 (for d > 0). Since for —(fc + 1) < d < —1, the D — diagonal
d begin with value | d \ at column 0 on matrix D , we initialize
FJ[| d | — l,d] to —1 (that is, value —1 on D — diagonal d ends
at column — 1— an imaginary column, of course). For reason of
dependencies among cells on E, we also initialize E[\ d \ —2, d\ to
-oo, for —(k + 1) < d < — 1 .

18

Example 2.8. Let pattern string A = “CCCF”, text string T =
“ADGTFCF”and k — 2 again. The initial E matrix would be:

9
1 e \ 4 1 -3 -2 -1 0 1 2 3 4 5 6

I -1 1 —oo
1 |

- 1 0 1 2 3 4 5
1 1
I 0 1 -oo -1
1 |1 I
| 1 | —oo -1
1 1

1 2 1 -1

From algorithm 4, we see that E[i - 1, j - 1], E[i -" h j] and
E[i — l , j + 1] (Statement 2) are used to compute E[i, j] . That is,
every cell on E is dependent on three cells above it in the previous
row.

Lemma 2.1. In the computation of E —diagonal c , the elements of T
which are compared with the pattern are at most Tc+1, . . . , Tmm(c+m)Tl)

Proof. In the computation of E[e,c — e] (0 < e < k), consider
the first element of T to be compared. Since the computation of
E[e, c — e] begins with the comparison of Tc_e+1 , and there is at
least one cell on D — diagonal c — e for each e', 0 < e' < e, the first
position of T to be compared in the computation of E[e,c — e] has
to be greater than or equal to c + 1. Now consider the last element
of T to be compared in the computation of E[e,c — e]. Since the
last column position is m + c — e for D — diagonal c — e, the last
position of T elements compared against the pattern has to be less
than or equal to m + c — e, 0 < e < k.

Lemma 2.2. For the computation of a E — diagonal c,

19

(1) The position of T ’s elements which are compared against the
pattern is nondecreasing.

(2) Any position in T can at most repeat k times.

Proof. For 0 < e < £, E[e, c— e] is the last position in T with respect
to that e, and E[e, c — e] -f- 1 is the last position of T involved in
comparison. We need to show that the position of the first element
compared in computation of E\e + l , c — (e + 1)] will be at least
E[e, c — e] + 1.

From statement 2 in algorithm 4, we know that at the beginning
of computation of E[e + 1, c — e — 1], col > E[e, c — e] (substitute
e + 1 and c — e — 1 for e and d, in statement 2, respectively), then we
have col + 1 > J5[e, c — e] + 1, that is , the first comparison for e + 1
is at a position greater than or equal to that of the last comparison
for e. Hence lemma 2.2(1).

Since repetitions are only possible at the beginning of computa
tion for each e, 1 < e < k, there can be at most k repetitions.

By lemma 2.1 and 2.2, the loop on e in algorithm 4 needs time
0 (m) , thus the total time complexity of algorithm 4 is 0(m n) .

Based on algorithm 4, [Galil90] gives an improved (serial) algo
rithm which solves the problem in time O(kn).

As in the situation of algorithm 3, the idea is: instead of com
paring the T elements against A elements one at a time, we try to
jump as far as we can down the D - diagonal using some kind of
mechanism (algorithm 3 does this perfectly by using a suffix tree,
but has the overhead of having to build the suffix tree). In this case,
a p r e f ix table is used. It isn’t as good as a suffix tree, but is easier
to build.

Let P re f ix [i , j] , 1 < i < j < m, be the length of the longest
common prefix of A™ and A f . This is an upper-triangular matrix.

Example 2.9. Continuing from example 2.8, the prefix matrix of
pattern string A = “CCCF” is:

20

1 i \ j 1 1 2 3 4

1 1 1
i i

2 1 0
1 I
1 2 1
i i

1 0
1 1
1 3 1 0

1 4 1

Reference triples are also used in their algorithm, in order to
utilize the p re f ix matrix.

A reference triple (u , v , w) is an array with 3 elements, the first
of which specifies a start position, the second an ending position,
and the third a D — diagonal w such that Tf matches A” I™, and
Tv+1 / A v+ \ - w. The triple is a null triple if u > v.

A reference position , with respect to a reference triple (u , v , w)
and a position t in T (u < t < v), is the position t — w in pattern
A.

Let’s consider again the computation of E — diagonal c, that is,
E[e ,c — e],0 < e < k. Let Tq+i be the rightmost element in T
which was compared before we enter iteration c. Assume that we
have k + 1 reference triples, (u0> vo,w0), (ui,Vi,Wi), . . . , (u*, v it;*,),
constructed in earlier loops, and they form a partition of the interval
M]-

The following algorithm utilizes the prefix matrix and the ref
erence triples to compute the same information as does algorithm
4.

Algorithm 5.

Initializations as in algorithm 4.
Main loop:

for c = 0 to n — m + k do

21

1 for e = 0 to k do
d <— c — e

2 co/ <— max(-E'[e — 1, d — 1] + 1, E[e — 1, d] + 1, E[e — 1, d + 1])
s e *— col + 1
found <r— false

3 while not found do
4 if within(co/ + 1, k, r) then

/ <— vT — col
5 g <— Pre/iarfco/ + 1 — d, col + 1 — tur]
6 if f = g then

col *— col + f
else

col <— co/+min(/,<?)
found <— true

7 else
if ccd < n and ccd — d < m and Tcoi+i = A coi+\-d then

col <— col + 1
else

found <— true
8 E[e,d\ <— min(co/, m + d,n)

/ / update reference triple (ue, v e,w e)
if ve > E[e, d] then

if e = 0 then ue <— c + 1
else ue <— max(ue,t)e_i + 1)

else
ve <- E[e, d]
we <- d
if e = 0 then ue «— c + 1
else ue <— max(se,ue_ 1 + 1)

function within{t , k, r)
while r < k and t > vT do

r <— r + 1
if r > k then return(false)
else

22

if t > ur then return(true)
else return(false)

At iteration c of the main loop, as before, our focus is at variable
col , which is first taken as the maximum of three values obtained
previously, and then starting from that position, going down the
D diagonal, we look for the first occurrence of the situation that
T element and A element mismatch. Instead of using a while loop
to go down the D diagonal d as long as the corresponding T and
A elements matches, we first check whether the current position t
(= col + 1) is within the range of one of the reference triples. If
it’s not, we have no other way than to do the actual comparison(s)
between T and A elements. If, however, it is within a reference
triple (ttr, vT, uy), i.e., ur < t < vr, then, we can use pre f ix table to
“jump” down the diagonal d (d = c — e).

Now, the current pattern position is t — d. The reference position
corresponding to t is t — wr. By the definition of a reference triple,
we can infer that A " = TfT. Let g be Pref ix [t — d , t — wr\. We
want to find the largest x such that A f Z d — T f .

Since A*ZZTr+9 = AlZd+9 (definition of Pref ix []), we must have
r̂nm(nr,!+j)-(! _ j ,mtn(vr,t+g) ̂ we can safely advance Col to

min(vr , t + g). Next, if vr < t + g, we know AVr+\-d ^ T„r+1, since
we have A V r - . W r + x ^ T V r + 1 (by definition of a reference triple) and
A , r - d + i = A,,r_Wp+1. If vr > t + g, we have A t + g + 1 _ d ± T t + g + u since
A t + g + l - W r = T t + g + l but A t + g + l - d A t + g + l - W r ’

Thus, if vr t + g, we know for sure that E[e,d] = mm(ur, i + g).
In case of vT = t + g, we don’t know whether AVr+i-d = TVr+1 , we
have to continue from vr + 1 to do further actual comparison or
try another reference triple whenever col falls into the range of a
reference triple.

23

At the end of the calculation of each E[e,d], we need to update
(ue, v e, w e). Let se be the first position of T considered in computa
tion of E[e, d\. Then, by the way Z?[e, d\ is computed, we must have

Obviously, (se,E[e,d] ,d) is a potential candidate
for the replacement of (ue, ve, we), 0 < e < k. But we can not imme
diately do the replacement, for there may be multiple holes between
E[e, d\ and s e+i (i.e., when s e+i > E[e, d\ + 2). We solve this prob
lem by choosing the triple which has the larger end position, e.g.,
if E[e,d] > ve, we replace old triple, otherwise, we don’t replace.
Whether we replace old triple or not, we need to adjust ue so that
this triple does not overlap with the previous one.

Initially, all reference triples are (0 ,0 ,0).

Example 2.10. Let’s continue from example2.8 and 2.9 (A = “CCCF”,T
= “ADGTFCF” and k = 2). The figures bellow show the E matrix
and the reference triple at the end of each iteration c, 0 < c < 5.

i n i t i a l s t a t e :

E:

I e \ d | -3 -2 -1 0 1 2 3 4 5 6

1 -1 1
1 |

—oo -1 0 1 2 3 4 5

1 0 |
I |

—oo -1
1 1
1 1 1
1 |

—oo -1
1 1
1 2 1 -1

r e f e r e n c e t r i p l e : (0 0 0) (0 0 0) (0 0 0)

E:

1 e \ d 1 -3 -2 -1 0 1 2 3 4 5 6

1 -1 1 —oo -1 0 1 2 3 4 5

1 o I
1 |

—oo -1 0
1 1
1 1 1
1 |

—oo -1 0
1 1
1 2 1 -1 0

r e f e r e n c e t r i p l e : (1 0 0) (1 0 0) (1 0 0)

c = 1:

E:

1 e \ d 1 -3 -2 -1 0 1 2 3 4 5 6

1 - 1 1
i i

—oo -1 0 .1 2 3 4 5
1 1
1 0 |
1 |

—oo -1 0 1
1 1
1 1 1
1 |

—oo -1 0 1
1 1
1 2 | -1 0 1

r e f e r e n c e t r i p l e : (2 1 1) (2 2 0) (3 1 -1)

25

c = 2:

E:

1 e \ d 1 -3 -2 -1 0 1 2 3 4 5 6

1 -1 1
I i

—oo -1 0 1 2 3 4 5
1 1
1 0 1
1 i

—oo -1 0 1 2
1 1
1 1 1
I |

—oo -1 0 1 3
1 1
1 2 | -1 0 1 3

r e f e r e n c e t r i p l e : (3 2 2) (3 3 1) (4 3 0)

c = 3:

E:

1 e \ d 1 -3 -2 -1 0 * 1 2 3 4 5 6

1 -1 1
1 |

—oo -1 0 1 2 3 4 5

1 0 1
l i

—oo -1 0 1 2 3
1 1
1 1 1
I i

—oo -1 0 1 3 3
1 1
1 2 | -1 0 1 3 5

r e f e r e n c e t r i p l e : (4 3 3) (4 3 1) (5 5 1)

26

c = 4:

E:

1 e \ d 1 -3 -2 -1 0 1 2 3 4 5 6

1 -1 1
1 i

—oo - 1 0 1 2 3 4 5
1 1
1 o 1
I i

—oo -1 0 1 2 3 4
1 1
1 1 1
1 i

—oo -1 0 1 3 3 4
1 1
1 2 1 -1 0 1 3 5 4

r e f e r e n c e t r i p l e : (5 4 4) (5 4 3) (5 .5 1)

c = 5:

E:

1 e \ d I

CM1CO1
i

- 1 0 1 2 3 4 5 6

1 -1 1
l i

—oo -1 0 1 2 3 4 5
1 1
1 o 1
1 |

— oo - 1 0 1 2 3 4 5
1 1
1 1 1
1 |

-o o -1 0 1 3 3 4 6
1 1
1 2 1 -1 0 1 3 5 4 7

r e f e r e n c e t r i p l e : (6 5 5) (6 6 4) (7 7 3)

27

In the last figure (c = 5), in the last row, note that for e =
2 ,d = 1, E[e,d\ = £[2 ,1] = 5 = 4 + 1 = m + d, since e < k,
we know there is an approximate occurrence of pattern A in T,
with an edit distance less than or equal to k, and which ends at
column 5. The same applies to £[2,3]. That is, for e = 2, d = 3,
£[e, d] = 7 = 4 + 3 = m + d, since e < k, we know there is an
approximate occurrence of pattern A in T, which ends at column 7.

Complexity analysis. For each iteration c, consider the number of
repetitions of the while loop in this algorithm: it is the number of
direct comparisons plus the number of lookups of the P r e f i x table.

How many direct comparisons are needed at most? There’re two
cases in which a direct comparison is needed:

(1) If t > q + 1 (i.e., Tt is a newly seen element);
(2) t < q + 1 but t falls into one of the holes between two adjacent

reference triples.
For case one, by Lemma 2.1, the number of repetitions for a

position t can not exceed k in iteration c. Also, at the next iteration,
position t will become in case (2). So, there can be at most 0 (k * n)
overall direct comparisons in case (1) in the whole computation.

For case two, since there can be at most k holes in interval
[c, q + 1], at most k direct comparisons at a hole can occur at itera
tion c. Thus, the overall number of such comparisons in the whole
computation can be at most 0 (k * n).

Now,, how many P r e f i x table lookups are needed at most? At
iteration c, since a lookup of P r e f i x table either increases e or r,
and r can only take values less than k + 1, there can be at most
0 (k) lookups during iteration on £ diagonal c. Hence, there can be
at most 0 (k * n) table lookups in the whole computation.

Conclusion: Algorithm 5 has time complexity O(kn). It is so
far the best serial algorithm in terms of worst-case complexity for
solving the k — di f f erence problem.

28

3 A new systo lic algorithm

3 .1 M o tiv a tio n o f th e n ew algorith m

The inherent parallelism in dynamic programming algorithms, and
the rapid progresses in parallel processing technologies makes par-
allelization of these algorithms an obvious choice.

Although the time complexity of Landau’s algorithm in [Landau89]
is quite small: 0(log(m) + &), the algorithm uses 0(n) processors,
which creates serious problem in some situations. For example, the
text T to be searched may well be residing on a hard disk. Then,
how can you present the whole text “at once” to the 0 (n) processor
array? If you can’t, if you have to feed the n elements serially, then
the actual time complexity will be something like 0(n) . In addition
to this “data path” problem, the usual assumption of n >> m may
make the construction of a processor array of that size difficult.

So, in many cases, if we can reverse the orders of computation
time and number of processors required in Landau’s algorithm, e.g.,
if we use m processors, and do the computation in 0(n) time, then,
it will be more practical and economical: since we need 0(n) time
in feeding the text to our computing device any way, the 0 (n) time
in computation is the fastest we can achieve in those cases.

This is the motivation of the new algorithm.

3.2 T h e n ew a lgor ith m

By using the algorithm described in the following, we can solve the
approximate string matching problem with at most k-differences,
in time s x n, using m simple processing elements (called PE's
afterwards), where s is very small time constant in which a few
simple additions, comparisons, and inter P E communications can
be done.

The new algorithm is a parallelization of Algorithm 1. Processing
element PE{ is assigned to the computation of row i of matrix D. On
the t th time step, processor PEi computes D[i, j] where i + j — t-p i.
Thus, all elements on a secondary diagonal of D are being computed
at the same time. (See Figure 1.)

29

T

! / !

A ! / ------ > !
! / !

< - . >
i
' -> o u tp u t D [m ,t-m + l] , t=m, m+1, . . . n+m-1

F ig u re i . How th e p ro c e s s o rs p a ss over th e m a tr ix D

The computation of D[i , j] requires D[i — l , j] and D[i , j — 1],
which were computed on the previous time step, and D[i — 1, j — 1]
which was computed two time steps previously. Also required are
A,-, which can be preloaded into P E % before the algorithm starts,
and Tj, which was used by on the previous time step. Thus,
the required data for the computation of D[i , j] comes from P E ^ i
and PEi on the previous two time steps.

The m P E ’s are connected into a linear array with one-way com
munication channels between successive P E ’s. (See Figure 2.) Text
character Tt is fed into P E \ on time step t. The output at time step
t is D[m, t — m + 1], which is the minimum edit distance from string
A to any substring of T ending at

30

Interconnection topology (linear array):

--------------------—----------------------- data stream T
I

P E X
i

P E 2

I
P E m

I
output stream

Figure 2. Interconnection Topology (linear array)

These observations lead to the following algorithm:

Algorithm 6 (a systolic algorithm):

Processors: P E i , i ■= 1 ,2 , . . . , m

Each P E has integer memory locations a:, ?/, z, c, cost, and char
acter memory locations a and b. These correspond to D[i , j — 1],
D{i - 1,;'], D[i - l . j - 1], ci>h D [i , j], At, and Tt- i+1 respectively.

Each P E has an NORTH input channel and a SOUTH output
channel. For i ^ 1, memory locations y , z, and b are buffer locations
for the NORTH channel. They will contain the first, second, and
third data “items” sent from the PE’s north neighbor.

For PEi , memory location b is a buffer for the NORTH channel.
It will contain the element Tt sent from the T input stream. For
t > n, b can contain an arbitrary character, since this character
does not affect the output.

31

Initial configuration:

f o r P E i , i = 1, . . . m do
x <— i
cost <— i
a *— Ai
b <— B*
/ /N o te : s e l e c t B* t o be a c h a r a c t e r t h a t does no t occur in A.

f o r P E \ do
y *- 0
z e- 0
/ / t h e s e v a lu e s rem ain c o n s ta n t

We assume there is a system clock which generates a steady clock
signal to each P E . A clock cycle is further divided into 2 subinter
vals, called subcycle 1 and 2 respectively. PE's perform the follow
ing algorithm within a clock cycle.

Input: Tt , written to NORTH of PEi at subcycle 1, clock t.
Output: D[m, t — m] at clock t , from SOUTH channel of P E m.

int x, y , z , c , cost
char a, b
/ / x , y , z , a, b contain D[i , j - 1], D[i - 1 ,;], D[i - 1 , j - 1], A , T j

repeat
in subcycle 1, do

send(SOUTH, cost)
send(SOUTH, *)
send(SOUTH, b)

in subcycle 2, do
x <— cost / / update “left” cell
if a = b then c <— 0 else c <— 1
cost *— min(x + 1, y + 1, z + c)

/ / goes to y in the next P E
/ / not applicable when i — m
II not applicable when i — m

32

The initialization using the special character B* is designed so
that the values of the variables x, y, and z in PEi remain unchanged
when the time step t < i.

After the first data transfer between P E ’s, the y and z values
in PEi are i — 1. Since c = 1 (for B* is a special character not in
the pattern), the cost in PEi is chosen as the minimum of x = i,
y + 1 = i, and z + 1 — i. Thus, x retains the value i. This remains
true for PEi as long as t is less than i.

Using a special character B* may require that the maximum al
phabet size be increased by one. An alternative is to start PEi on
time step i.

After producing garbage at clock cycle 1 through m, this systolic
algorithm will produce a useful result at each clock cycle until clock
cycle n + m.

Clearly, the algorithm can be generalized to compute the edit
distance where the cost of insertions, deletions, and substitutions
are different from 1, including the case where these costs depend on
the pattern or text characters.

3 .3 C o m p lex ity analysis

Let s be the time duration of one clock cycle. Obviously, the time
complexity of this algorithm is s x (n + m — 1), and the number of
P E ’s used is m. Since the instructions executed within each clock
cycle are fixed, the algorithm is real-time.

3 .4 A fu rth er sim p lifica tion o f th e processor co m p lex ity

Lipton and Lopresti [Lipton85] described a way to further simplify
the processor complexity by using mod-4 arithmetic in the cost com
putations. This allows the integer memory locations of the P E ’s to
be 2-bit integers, thus greatly reduces the complexity of each PE.

Assuming the cost of an insertion and deletion to be one, and
the cost of a substitution to be 2, their method relies on a lemma
which states that the values of horizontal and vertical neighbors in
the matrix C (of Algori thm 0) always differ by 1 or -1.

33

Although the algorithm of this thesis is different, a similar ap
proach can be applied.

Let I be the cost of substitution. We consider two cases: / = 1,
and I = 2 (the former is by far the most commonly studied case in the
literature. The latter is used in Lipton and Lopresti’s paper. One
can prove that by putting the cost of substitution to be the same as
the combined costs of an insertion and a deletion, the substitution
can be essentially disregarded).

For / = 1, their lemma definitely does not hold here, for the
difference between horizontal or vertical neighbors may zero. Even
for I = 2, because of the difference in initialization, their lemma no
longer holds , either.

However, we can prove a somewhat weaker but similar result(lemma
3.2 below). And to make things work, we need some other lemmas,
too.

Lemma 3.1 [Ukkonen85b, Galil90]: If the cost of a substitution is 1,
then for every i and j , D[i , j] = D[i — 1 , j — 1] or D[i — 1, j — 1] + 1.

We defer the proof of lemma 3.1 until after the introduction of
lemma 3.2.

Now we prove lemma 3.2.

Lemma 3.2: In matrix D, the values of horizontal and vertical neigh
bors differ by at most 1.
Proof of Lemma 3.2.

First, consider the case of / = 1.
Consider D[i , j] and D[i , j — 1].
By the definition of D[i, j], it cannot be more than D[i, j — 1] + 1 .

34

Now suppose D[i, j — 1] — D[i, j] > 2. Then, the value of D[i, j]
cannot come from the value of D[i — l , j — 1], because otherwise D[i—
1, j — 1] would be less than D[i , j — l] by more than one: contradictory
to the definition of D [i , j —l}. So, the value of D[i, j] must come from
the value of D[i — 1, j] , that is we must have D[i, j] = D[i — 1, j] + 1 .
This implies that D[i—1, j] must be less than or equal to D[i, j — 1] by
more than three, i.e., D [i , j —l] —D[i—l , j] > 3. Now let’s look at the
value of D [i — 1, j — 1]: dy definition, it must be greater than or equal
to D[i , j — l\ — l , i.e., D[i — l , j — 1] — D[i , j — 1] > —1. Combiningthe
last two inequalities together, we have D[i — l , j — 1} — D[i — 1, j] > 2.

So, if we assume D[i , j — 1] — D[i , j] > 2, we must have D[i —
l yj — 1] — D[i — 1, jf] > 2 . Using induction, it follows that, in general,
the inequality D\ p , j — 1] — D\p, j] > 2 (for 0 > p > i) must be true.

But we know that, for p = 0, this is not true. Here is a contra
diction which means that our original assumption is false. That is,
D[i , j] cannot be less than D[i , j — 1] — 1. .

So,Lemma 3.2 holds for horizontal neighbors.
Using the same kind of reasoning, we can prove that lemma 3.2

holds for vertical neighbors.
This completes the proof for case / = 1.

Second, consider the case of I = 2. We prove it by induction on
i + j , the sum of the row and column indices.

For the basis, take i + j = 2. In this case, D[1,1] is either 0 or 1 and
lemma 3.2 trivially holds.

For the induction hypothesis: assume lemma 3.2 is true for i + j < p.

Induction: consider the case i + j = p.

35

First consider vertical neighbors. If | D[i, j] — D[i — l , j] |> 2,
then, since D[i , j] is the minimum of three values which includes
D[i — l , j] + 1, it can only be that D[i — 1, j] — D [i , j] > 2. Since
by hypothesis, D[i — 1, j — 1] can diifer from D[i — 1, jr] by at most
1, we must also have D[i — 1, j — 1] — D[i , j] > 1. Similarly, since
D[i , j — 1] can differ from D[i — l , j — 1] at most 1, we must have
D\ i , j - 1] - £>[i, j] > 0. Thus, D[i , j] is strictly less than the three
values (i.e., D[i , j] + c^, D[i — 1, j] + 1, and D[i , j — 1] + 1) of which
it is taken as a minimum. Contradiction.

Similarly, we can prove that our hypothesis holds for horizontal
neighbors.

This completes the proof for lemma 3.2.

Now we can prove lemma 3.1.
Proof of Lemma 3.1:

Because of its definition, D[i , j] cannot be greater than — —
1] + 1. We need only to show the second part: D[i, j] > D[i — l , j — 1].

The proof is by contradiction.
Suppose D[i , j] < D[i — 1 , j — 1]. Then, D[i , j] must have been

obtained by adding 1 to either D[i — 1, j] or D[i1 j — 1]. Say it’s
D[i — l , j } . Then we must have

D[i - 1 ,j] = D[i , j] - 1 < D[i - l , j - 1] - 2 (*)
This is impossible by lemma 3.2. Contradiction.

Lemma 3.3: If the cost of a substitution is 2, then for every % and
j , D[i , j] is in the range of D[i — 1, j — 1] through D[i — 1, j — l]+ 2 .
Proof of Lemma 3.3:

Since D [i , j] is the minimum of D[i — 1, j — 1] 4- Cij, D[i — 1, j] + 1
and D[i , j — 1] + 1, and D[i — 1, j], D[i , j — 1] cannot be greater than
D[i — 1 , j — 1] by more than 1 (lemma 3.2), D[i , j] cannot exceed
D [i - l , j - l] + 2 . “

36

On the other hand, if D [i , j] < D[i - 1, j — 1], then, we must have
D[i , j] < D[i — 1 , j] + 1 and D[i , j] < D[i , j - 1] + 1 (lemma 3.2).
That’s in contradiction with the definition of D[i , j] (as a minimum
of three values).€

Now that we have Lemma 1-3, we can derive the method of con
structing matrix D by using remainders modulo 4 arithmetic/comparisons
for all integer variables in algorithm 4. That is, we compute only the
least significant 2 bits of binary representations of D[i , jYs. Thus,
only 2 bits are needed for each integer variable.

Theorem 1: We can compute the remainder modulo four of each
D[hj \ by using the following rules. (All subtractions and additions
are done modulo 4).
rule 1 (for I =1):

if c = 0 or D[i - 1 , j] = D[i - 1 , j - 1] - mod\ 1 or
D\%iJ 1] = D \l 1 1] mod4 1

then ■ D [i J] = D [i - 1 J - 1] ;
else

— D \t 1 i j 1] ~\"mod4 !j

rule 2 (for I =2):
if c = 0 or D[i - 1 J] = D[i - 1, j - 1] - morf4 1 or

D[i , j - 1] = D[i - l , j - 1] mod4 1
then D[i , j] =D [i-l,j-lj;
else if D[i — 1 , j] = D[i — l , j — 1]
then D[i J] = D [i - l J - l] + m0d4^
else

1] Tmod4

Proof.
For rule 1: By lemma 3.1, D[i, j] must take the value of either

D[i — 1 ,/ — 1] or D[i — l , j — 1] + 1. D[i , j] will take the former
value when either c is 0 or D[i — 1,;] = D[i — 1, j — 1] — mod4 1, or
D[i, j — 1] = D[i — 1 , j — 1] —mod4 15 otherwise, D [i , j] will take the
latter value.

37

For rule 2: By lemma 3.3, D[iyj] must take a value in the range
of D[i - 1 , j — 1] through D[i - 1 , j - 1] + 2. D[i, j] will take the
first value when either c,-j is 0 or D[i — 1, j] = D[i — 1 , j — 1] — 1,
or D[i, j — 1] = D[i — 1, j — 1] -+mod4 1; Otherwise, it’ll achieve the
second value if D[i — 1 ,j] = D[i — l , j — 1]; If none of the above
conditions are met, it’ll achieve the second or third value depending
on the value of D[i , j — 1].

Example: (assume 1 = 1)
Suppose D[i — l , j — 1], D[i — l,^] and D[i, j — 1] are 3, 0, 3,

respectively; Suppose Qj = 1. Then, by rule 1, since ĉ - ^ 0 and
D[i — l , j] or D[i , j — 1] does not equal to D[i — 1, j — 1] —mod4 T
D[i , j] should be D[i — 1 , j — l)-\rmod4 1, that is, 0.

Of course, if we stop short at only knowing the remainder four
of the edit distance, we are going nowhere. The trick is : we can
reconstruct the true result by using an up-down counter at the end
of our P E array.

38

The output at P E m is the remainder modulo 4 of D[m, t — m + l].
In the P E array architecture, we connect a counter to P E m. Before
t = m + 1 (i.e., before the P E array outputs D[m, 1]), we store a
value m (that is, the value of D[m , 0]) in the counter. At t = m + 1 ,
we get from P E m the output of remainder modulo 4 of D[m, 1], By
lemma 3.3, we know whether to increase or decrease the counter by 1
or let it remain the same by judging whether the output is greater or
smaller than (in mod-4 sense) the remainder modulo 4 of the value
in the counter. For example, if the current value in the counter is 5
(its remainder modulo 4 is 1), and the current output from P E m is
0, then, the value of the counter should be decreased to 4, because
0 <mod4 1 (one can also think of it this way: the new value should
be 4, 5, or 6 by lemma 3.2, and only 4 has a zero remainder modulo
4). Thus, at time step t > m, the counter can always be properly
adjusted in accordance with the mod-4 output from P E m, giving
the real output.

3 .5 D iscu ssion

(1) Although in the presentation of this algorithm, the physical di
mension of the processor array is determined by the pattern size m,
in a real hardware implementation, the physical dimension of P E
array could be made large enough to accommodate most real-life
m's. Of course, the algorithm needs to be modified. For example,
each PEi with i > m may simply transfer whatever is received to its
southern neighbor, thus propagating the results down to the lowest
PE.
(2) This algorithm enables a VLSI implementation. Clearly, the
PE's can be very simple, with minimal memory, and minimal pro
cessing power.
(3) One possible commercial usage of this algorithm would be to
fabricate cheap coprocessors implementing the algorithm. Such a
coprocessor might be attached directly to a disk drive controller.
This would enable application programs to do very fast approximate
text search (ideally, at the same speed as that at which data is read
from the disk surface). This kind of computing power is essential in
many specialized applications.

39

As an indirect evidence of the usefulness of such a device, [Hollaar91]
reviewed the development of disk-attached hardware-based pattern
matchers for exact string matching problems. If, instead of attaching
exact-pattern-matchers, we attach approximate-pattern-matchers (note
again, when k = 0, our approximate-pattern-matcher reduces to
exact-pattern-matcher) to hard disks, the functionality of such a
device would be much more versatile, and meet with the needs of a
wider range of applications.
(4) Our algorithm does not compute the optimal alignment path,
i.e., the sequence of edit steps needed to achieve the (local) minimum
distance between the pattern and some portion of the text. The user
can always use other means to do this once the interesting segments
of the text are located.

3 .6 A rch itectu ra l A ltern a tiv es — m essage-p assin g P E n e t
w ork

Although the algorithm is described as systolic with global syn
chronization, this algorithm is also suitable for standard distributed
message-passing architectures. Each P E repetitively reads data
from NORTH, does some computation, then sends data to its SOUTH
channel. The synchronization can be guaranteed by blocked I/O ,
and it is trivial to prove that starting from a state in which every
P E is waiting to fetch data from NORTH, the time interval between
two successive results from P E m cannot be greater than a small con
stant, which is determined by the time needed for computation and
communication.

4 A n 0(k) C R C W algorithm and related ideas

4 .1 In trod u ction

In the study and research of parallel computing, abstract, theoretical
computing models are often used in the literature. One important
model is the parallel random-access machine, or PRAM in short.

40

In this section, we will present several ways of solving the In
differences string-matching problem in time 0 (k), using PRAM model
(more specifically, CRCW PRAM model, which will be explained
below).

The following figure shows the general architecture of the PRAM
model.

41

\Po l < ------------------->

I I
I Pi l< -->

I I
IP2 l<-

Pn l <-

shared
memory

Pi r e p r e s e n t s t h e ith p ro c e s s o r .

That is, in a PRAM model, all processors can read from or write
to a shared memory in parallel[Cormen90] [Leighton92] .

42

The key assumption concerning the PRAM model performance
is that running time can be measured as the number of parallel
memory accesses effected by an algorithm.

Different assumptions can be made in the PRAM model in re
gards to concurrent reads from or writes to the same memory loca
tion, which leads to different submodels within the PRAM paradigm.

Commonly used submodels are:

(1) EREW: exclusive read and exclusive write,
(2) CREW: concurrent read and exclusive write,
(3) ERCW: exclusive read and concurrent write, and
(4) CRCW: concurrent read and concurrent write.

See [Cormen90] for a detailed discussion of these variations of the
PRAM model.

In this section we will be using CRCW PRAM model. That is,
concurrent reads from and concurrent writes to the same memory
location are allowed.

As stated in [Cormen90], “when multiple processors write to the
same location in a CRCW algorithm, the effect of the parallel write
is not well defined without additional elaboration.”

Several assumptions have been used in the literature:

a. Arbi trary. The value written is arbitrarily chosen among the
writers.

b. Priori ty . Store the value written by the lowest-indexed pro
cessor.

c. Combination. Store some specified combination of the values.
d. C ommo n—value. When multiple processors write to the same

location, they must write the same thing.

43

Different assumptions affect the complexity of our algorithm in
different ways. This can be seen shortly.

4 .2 0 (k) t im e w ith 0 (m x n) processors

First let’s look back at algorithm 2 (Ukkonen’s algorithm). For
convenience, we restate algorithm 2 here.

Algori thm 2:

Initialization:
for 0 < d < n do L^e <----- 1
for —(k + 1) < d < - 1 do Ld<\d|_x <-| d \ - 1 , Ldt\d_2 H d | - 2
for —1 < e < k do Tn+1)6 <------1

Main loop:
for e = 0 to k do

for d = — e to n do
1 row <- max[(Trf,e_i + 1), (Ld+he- 1 + 1)]

row 4— min(roiy,m)
2 while row < m and row + d < n and Arou,+i = Trou)+i+(i do

row <— roto + 1
3 4— rurw
4 if = m then

print “There is an occurrence ending at Td+m'>

Since the inner for-loop can be done in parallel, if we can execute
statement 2 (while-loop) in 0 (1) , then, the main loop can be done
in 0(k) . That’s exactly the goal Landau and Vishkin [Landau89]
have in mind when they developed their new algorithm (algorithm
3 in this thesis). But their use of a suffix tree causes significant
overhead and resulted in a higher time complexity of 0(k-\- log n).

Can the overall time complexity of 0(k) be achieved at all? This
is an interesting theoretical question. And this is the goal of our
efforts here.

Suppose we have m x n (again, m, n are the lengths of pattern
string A and text string T, respectively) processors Pt J , (1 < i < m,
1 j < u), where PhJ looks at pattern element At and text element
T

44

The objective is to speed up the inner while loop (statement 2 in
algorithm 2).

Let rowJni t denote the initial value of the variable row computed
by the max function just before the while loop. What the while loop
does is essentially the following computation:

Ld,e min{rou; : row = m OR (1)
(row > rowJni t AND A r(yw+i ^ Trow+d+1) }

That is, the while loop goes down D — diagonal d, starting with
the cell whose row number is rowJni t , until hitting a cell with a
mismatch between its corresponding A and T elements. Then L d,e
is set to the row number just before the mismatch.

In the above formula, this is expressed as a computation of finding
a minimum among at most m row numbers. More specifically, in
our situation, since each cell on a D — diagonal has a corresponding
processor, in doing the minimum finding, we have, as resources, the
same number of processors as the number of row numbers. Can this
task of finding minimum among at most m numbers be accomplished
in 0 (1) time?

We assume a CRCW PRAM model with assumption b (the priori ty
model). More specifically, take the row number i of processor J as
its physical index. To determine the minimum value in formula (1),
just let each processor concerned (i.e., each processor which is on
D — diagonal d , has a physical index greater than rowJni t , and its
next neighbor down the diagonal has a mismatch) write their index
to L d<e. In the priori ty model assumed, the value written has to be
the minimum of those row indices.

Thus, computation in (1) can be done in 0(1) time trivially.
One gets a simple CRCW 0 (k) algorithm using (n — m + k + 2) x m
processors.

The next algorithm implements the above idea.

45

Algori thm 7: (based on algorithm 2)

I n i t i a l i z a t i o n :

f o r D — diagonal d, 0 < d < n p a r a l l e l - d o
Ld,e ~ 1

f o r D — diagonal d, — (k + 1) < d < — 1 p a r a l l e l - d o
Ld,\d\ - i MI ~ 1
Ld,\d\ - 2 \d | — 2

f o r — 1 < e < k p a r a l l e l - d o
Ln+l,e * 1

Main loop :

f o r e = 0 to A: do
f o r D — diagonal d , — e < d < n p a r a l l e l - d o

ro w J n i td <- max [(//«(,*_ i + 1), (iid_1,e_1), (Zrd+i,e_i + 1)]
Ld,e *— min (rowJnitd, fn)
i f Ld,e < m th en

f o r P^i+dt rowJnitd < i m p a r a l l e l - d o
i f (i ± m) th e n

i f (Aj+1 ^ Ti+l+d)
Ld,e i / / c o n c u r r e n t w r i te

e l s e
Ld,e i / / c o n c u r r e n t w r i te

i f Ld,e = ™ th e n
p r i n t ' 'T h e r e i s an o ccu rren ce ending a t Td+m’ ’

As is said earlier, different assumptions of the CRCW model af
fect the complexity of our algorithm in different ways.

For example, if we assume assumption a, (i.e., Arbitrary model),
it seems that there is no simple way to do the minimum-finding.
Some kind of lock mechanism must be used to coordinate the writ
ers, and the lock mechanism is inherently serial, the resulting time
complexity cannot be 0 (1) (It has to be some function of m).

46

The impact of assumption d, called common-CRCW model, to
our algorithm will be discussed in next subsection.

Lastly, one can easily show that with assumption c, i.e., the
combination model, one can also achieve the 0 (1) minimum-finding
goal in a similar way. To do so, one needs, within the combination
model, to further assume that the combination value written will
always be the minimum number among all the numbers being writ
ten (In [Cormen90], it is said that one typical way of combining the
values is taking maximum).

4 .3 0 (k) t im e w ith 0 (n x m x m) processors

The same worst-case time complexity bound, 0 (k), can also be
achieved with assumption d , the common-CRCW model. But one
has to use much more processors in this case.

For taking minimum among at most m numbers, we can use
an existing 0 (1)-time-complexity algorithm which uses m x m pro
cessors. See page 704 of [Cormen90]. They described a parallel
algorithm which computes maximum among m numbers in 0 (1)
time using m x m processors in a common-CRCW model. For our
situation, we need m x m processors for each D — diagonaL This
increases the number of processors needed by a factor of m. Thus,
one gets an 0(k) CRCW algorithm that uses (n —m + k + 2) x m x m
processors.

Since this idea seems only have theoretical value, and since the
resulting algorithm would be rather tedious, we will not try to give
one here. But the idea should be quite clear.

4 .4 C onclusion

PRAM model is a widely studied abstract parallel computing model.
Although it omits many details which exist in actual architectures, it
nevertheless grasps many key features of various parallel machines.

This section shows several ways in which one can get an 0(k) time
algorithm for the k difference approximate string matching problem,
each being associated with a specific CRCW model assumption.

47

Thus,the k difference approximate string matching problem CAN
be solved in 0 (k) time in CRCW PRAM computation model.

5 A cknow ledgem ent

This research work is supervised, guided by my graduate advisory
committee, which consists of Prof. Alden H. Wright, Prof. Ronald
E. Wilson in Computer Science department, and Prof. Ralph Judd
in Division of Biological Sciences.

Thanks especially go to committee chairman, Prof. Alden H.
Wright. This research is actually the result of our joint effort.

48

R eferences

[Apostolico88]

[Cormen90]

[Hollaar91]

[Galil86]

[Galil88]

[Galil90]

[Guibas79]

[Landau85]

[Landau87]

A. Apostolico, C. Iliopoulos, G. M. Landau, B.
Schieber, and U. Vishkin, Parallel construction of a
suffix tree with applications, Algorithmica, 3, (1988),
347-365.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, “In
troduction to Algorithms” (chapt 30, algorithms for
parallel computers) MIT press, 1990.

L. A. Hollaar, Special-purpose hardware for text
searching: past experience, future potential, Infor
mation Processing & Management , 27, No. 4 (1991),
371-378.

Z. Galil, and R. Giancarlo, Improved string match
ing with k mismatches, SIGACT News, 17 (1986),
52-54.

Z. Galil, and R. Giancarlo, Data structures and al
gorithms for approximate string matching, J. Com
plexity, 4 (1988), 33-72.

Z. Galil, and K. Park, An improved algorithm for
approximate string matching, SIAM J. Comput., 19,
No. 6 (1990), 989-999.

L. J. Guibas, H. T. Kung, and C. D. Thompson,
Direct VLSI implementation of combinatorial al
gorithms, Proc. Conf. VLSI: Architecture, Design,
and Fabrication, California Institute of Technology,
Pasadena, CA, 1979, pp. 509-525.

G. M. Landau, and U. Vishkin, Efficient string
matching in the presence of errors, in “Proceedings,
26th IEEE FOCS, 1985,” pp. 126-136.

G. M. Landau, B. Schieber, and U. Vishkin, Par-'
allel construction of a suffix tree, in “Proceedings
14th ICALP,”, Lecture Notes in Computer Science,
267,(1987), 314-325.

49

[Landau88] G. M. Landau, and U. Vishkin, Fast string match
ing with k differences, J. Comput. System Sci ., 37
(1988), 63-78.

[Landau89] G. M. Landau, and U. Vishkin, Fast parallel and
serial approximate string matching, J. Algorithms,
10 (1989), 157-169.

[Lander91] E. S. Lander, R. Langridge, and D. M. Saccocio,
Mapping and interpreting biological information,
Communications of The ACM, 34, No. 11 (1991),
33-39.

[Leighton92] F. Thomson Leighton, “Introduction to Parallel Al
gorithms and Architectures” (Section 3.6, Simulat
ing a Parallel Random Access Machine) Morgan
Kaufmann Publishers, 1992.

R. J. Lipton, and D. Lopresti, A systolic array for
rapid string comparison, in “Proceedings of 1985
Chapel Hill Conference on VLSI,” pp. 363-376.

U. Manber, “Introduction to Algorithms, a creative
approach,” Addison-Wesley, 1989, pp. 155-158.

S. B. Needleman, and C. D. Wunsch, A general
method applicable to the search for similarities in
the amino acid sequences of two proteins, J. Mol.
Bio., 48 (1970), 444-453.

D. Sankoff, J. B. Kruskal (Eds.), “Time Warps,
String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison”, Addison-Wesley,
Reading, MA, 1983.

[Sellers74] P. H. Sellers, An algorithm for the distance between
two finite sequences, J. Combinator. Theor., A16
(1974), 253-258.

[Sellers79] P. H. Sellers, Pattern recognition in genetic se
quences, Pro. Natl Acad. Sci. USA, 76 (1979), 3041.

[Lipton85]

[Manber89]

[Needleman70]

[Sankoff83]

50

[Ukkonen83]

[Ukkonen85a]

[Ukkonen85b]

[Wagner 74]

E. Ukkonen, On approximate string matching, in
“Proceedings Int. Conf. Found. Comput. Theory,”
Lecture Notes in Computer Science, 158 (1983),
487-495.

E. Ukkonen, Finding approximate pattern in strings,
J. Algorithms, 6 (1985), 132-137.

E. Ukkonen, Algorithms for approximate string
matching, Inform, and Control, 64 (1985), 100-118.

R. A. Wagner, and M. J. Fischer, The string-to-
string correction problem, J. ACM , 21 (1974), 168—
173.

51

	Fast parallel algorithms for approximate string matching
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

