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Abstract

We present two parallel algorithms for constructing the Voronoi diagram of a. aet of

n > 0 line segments in the plane:

a) The first algorithm runs in 000g2 n) time using O(n) processors. This im

proves the previous best results (by A. Chow and also by Aggarwal, Chazelle, Guibas,

6'Dunlaing and Yap) in two respects. First we improve the running time by a factor of

O(logn) and second the original results allow only aets ofpointa.

b) By using O(n1+() processors. for any f. > 0, we improve the running time to

00ogn). This is the fastest known algorithm uaing a subquadratic number of proces-

sors.

The results combine a number of techniques: a new O(logn) method for point loca

tion in certain tree-shaped Voronoi diagrams, a method of Aggarwal et al for reducing

contour tracing to merging tree-shaped Voronoi diagrams, and a technique of Yap for

computing the Voronoi diagrams of line segments. The computational model we use is

the CREW PRAM (Concurrent-Read, Exclusive-Write Parallel RAM).
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1 Introduction

Computational geometry has already proved to be an important problem area, and has applications

in many areas in which a fast solution is essential [12]. Thus it is natural to search for efficient par

allel solutions t.o these problems. There is a small but growing literature on parallel computational

geometry [1,2,5,8]. TheBe papers have addressed basic problems such as convex hulls, closest pairs,

segment intersection, polygon triangulation and Voronoi diagrams.

In this paper we addreBB the problem of constructing Voronoi diagrams in the plane. Ever

since the work of Shamos, the Voronoi diagram has been recognized to be one of the most versatile

geometric structures in computational geometry, being the key to the efficient solution of a. host of

other problems. Although the Voronoi diagram was originally defined for point sets, it has been

generalized in a variety of ways. One important generalization is the Voronoi diagram of a set S of

n > 0 line segments. We assume that the line segments in S may intersect each other only at their

endpoints. This problem, which is the main concern of our paper, has applications in diverse areas

such as pattern recognition [9J and robotics [15]. Note that this problem subsumes as special cases

(i) the original problem for point sets, and (ii) the problem of computing the Voronoi diagram of a

set of disjoint polygons. The Voronoi diagram for line segments will form a partition of the plane

into star-shaped regions bounded by straight and parabolic curve segments.

The first work on this problem was Drysdale's thesis [6]. He gave an O(nc{IOg"P/:Z) time al~

gorithm. Subsequently, together with D.T. Lee, this was improved to 0(nlog2 n) [11]. In 1979,

Kirkpatrick [9] gave a new O(nlogn) method for computing the Voronoi diagram of a set of n

pointsj Kirkpatrick indicated that his method generalizes to line segments to yield an O(nlogn)

algorithm. In 1984, Yap [20] gave the first detailed O(n log n) time solution to the problem. Very

recently, Fortune [7] has provided another O(nlog n) solutionj this solution is quite surprisingly in

that it is based on the sweepline paradigm. However, as we will show in this paper, the divide

and-conquer technique of Yap can be combined with our parallel merging technique to give rise to

a fast parallel algorithm. The sweepline approach of Fortune seems inherently sequential.

In all our discussions of parallel algorithms, we assume the concurrent read, exclusive write

(CREW) model of parallelism. A parallel algorithm for Voronoi diagrams in this model was 6rst

given in the thesis of Chow [5], who provided an o (log3 n) time n-processor algorithm. Her solution

relies on an O(log n) time n-processor sorting algorithm. At the present state of the art, using the

so-called AKS algorithm [3], the implicit constant in the "O(log n)n time is rather impractical. In

[1] an alternative to Chow's solution is provided which has the same asymptotic time and processor

bounds but which relies only on, say an O(log2 n) time sorting algorithm. In this paper, we will

improve the results of [1] in two ways: we will reduce the time complexity to o(log2 n) and generalize

the problem to allow the input to be a set of line segments.
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We also provide an O(logn) time algorithm using only O(nl+() processors. This is the fastest

known O(logn) time solution using a subquadratic number of processors.

In the remainder of this extended abstract we will outline the method for a set of points and

indicate how to extend it to the case of line-segments. The geometry involved for line-segments is

much more intricate and will appear in the final paper.

2 Algorithm for a Set of Points

In this section we present an algorithm for constructing the Voronoi diagram of a set of points,

based on the popular divide-and~conquerparadigm. In this case we divide the set of points into

two halves, recursively solve each subproblem in parallel, and then quickly merge the solutions

to the subproblems. Shames and Roey [18] were the first to note that in merging two Voronoi

diagrams it is useful to first compute the set of edges between the two subsets which must be

added to construct the Voronoi diagram of the entire set. This set of edges is known as the contour

between the two Voronoi diagrams (see Figure 1). Unfortunately, the method Shames and Hoey

gave for efficiently building the contour sequentially does not work in the parallel setting, since it is

based on the Ucontour-tracing" paradigm. Thus, any fast parallel algorithm based on this divide

and-conquer approach must construct the contour in an entirely different manner. The algorithm

------..Yilhieh-follows-does-just-t-hat-,---constructin-g-hhe-contour-between-the-two-subsets in O(log n) time----

using O(n) processors.

By not immediately attacking the general case of line-segments, we isolate two key ideas: first,

we exploit the fact that computing the contour can be reduced to point location in a rather special

planar subdivision. The subdivision is determined by a planar graph in the form of a complete

binary tree. This reduction is due to [1]. Second, we show how to construct a search structure for

such a binary tree in O(logn) parallel time which can support point location queries in O(Iogn)

sequential time. We first give a high-level description of the algorithm, and then describe the details

of how each step is performed. For the sake of exposition we will assume that the input set of points

is in general position. That is, no 3 points are co-linear and no 4 points are co-circular. Modifying

the algorithms presented below for the more general case is straightforward.

A HighwLeveJ Description of the Algorithm. VORONOI:

Input: A set S of n points in the plane.

Output: The Voronofdiagram VOR(S).

Step 1. Preprocess S by sorting the points of 8 by z-coordinate. (This step is performed only once.)

Step 2. Divide 8 into two subsets 81 and 82 of size n/2 each, using a vertical cut-line, and recursively

construct the Voronoi diagrams VOR(81) and VOR(82) and the Convex Hulls CH(SI) and

GH(S,) in parallel.
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Step 3. Compute the convex hull CH(S) from CH(Sl) and CH(S,).

Step 4. Determine all the edges ofVOR(Sl). and ofVOR(Sz). which cross the contour.

Step 5. Using the information from Steps 3 and 4, construct the contour between 81 and 82 .

Step 6. Use the contour determined in Step 5 to construct VOR(S) from VOR(Sl) and VQR(Sz).

Before we describe the details, we would like to review an important observation made by

Aggarwal, Chazelle, Guibas, 6'Dunlaing, and Yap in [1]. which concerns the relationship between

VOR(Si) and GH(Bi ). Let He denote the region of the plane bounded by the two perpendiculars

extending from the corners of the edge e on the convex hull CH(Bi). Aggarwal et al observed that

the intersection ofVOR(Si) and He has the structure of a complete binary tree with all its leaves

lying on the edge e, and that an interior node is always farther from e than its children are (see

Figure 2). Note also that each of the regions determined by the binary tree are convex, since these

regions are part of the Voronoi diagram. We exploit this convexity in the algorithm which follows

to be able to construct the Voronoi diagram of n points in the plane in 0(1og2 n) time using O(n)

processors.

The A1goritlun VORONOI:

Step 1. Preprocess S hy sorting the points 0/8 by x-coordinate.

Step 1 is a. preprocessing step which makes the dividing done in Step 2 possible in constant

time.

Complexity. This step can be performed in O(log n) time using O(n) processors [3,13]. Since

this step is performed only once, we could also use a sub-optimal method whose constant "behind

the big-Oh" is smaller (e.g., [4,17,19]), provided the algorithm runs in at most 0(log2 n) time using

O(n) processors.

Step 2. DitJide 8 into two suhsets 8 1 and 8 2 o/size n/2 each, using a vertical cut-line, and recursively

construct the Voronoi diagram and Convex Hull/or each suhset in parallel.

Complexity. If we let T(n) denote the time bounds of Steps 2 through 6. and let P(n) denote

the processor bounds, then this step requires approximately T(n/2) time and 2P(n/2) processors.

Step 3. Compute CH(S) from CH(Sl) and CH(S,).

It is sufficient to find the two tangent lines between CH(81) and CH(S2)'

Complexity. Using a binary search technique of Overmars and Van Leeuwen [16l (which is also

described in 114]) this step can be performed in O(log n) time using one processor.

Step 4. Determine all the edges 0/VOR(81)1 and o/VOR(82) which cross the contour.

Method. Note that an edge is adjacent to the contour if and only if one endpoint is closest to a point

in 81 and the other endpoint is closest to a point in 82 • We first build a data structure De for each

Re. e E CH(8d. in parallel which allows us to solve the point location problem in O(log n) time.
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Let R~ be some edge region, and let T be the binary tree which partitions R~. For any node r in

T, define the triangle at r to be the triangle formed by the node r and the leftmost and rightmost

leaf descendants of r (see Figure 3). The convexity of the tree regions guarantees that Done of the

triangles enclosing subtrees in T intersect each other, or intersect the interior of a tree edge. The

details for the construction and use of D~ follow:

Step 4.1. Preprocess the tree T and compute for each node its preorder number, the maximal

preorder among all its descendants, and therefore (implicitly) the number of descendants

it has.

Step 4.2. Lett be the number of nodes in T, and let r denote the root node ofT. Assign t processors

to T and find the deepest descendant d of r such that the subtree at d contains more

than 2t/3 nodes (this can be done in constant time).

Step 4.3. Let T1 be the larger of the two subtrees whose roots are children of d (so T1 has between

tJ3 and 2t/3 nodes). Let T2 be obtained from T by replacing T1 by its enclosing triangle

and updating the descendant information for all nodes between d and r to take account

of removing T1 .

Step 4.4. Recursively process T1 and T2. Note that the precomputed quantities from Step 4.1

allow us to decide in constant time whether a node in T belongs to T1 or T2.

Comment: The data structure D~ is simply a. pointer mechanism enabling one to proceed from (the

triangle enclosing) T to T[-or T2 in one step (aftet-dete-rmining wliether t"h.e-'I"'r"ianmog'"le~---

enclosing T1 contains the query point or not). Clearly D~ contains O(Iogn) levels, and

allows one to find the tree region or ~ containing a query point in O(log n) serial time.

So we can now solve the point-location problem for each point pES.

Step 4.5. Assign a processor to each endpoint p of the Voronoi edges in VOR(81 ) and VOR(82)

(WLOG P E VOR(81 )), and perform a binary search to find which region ~ of CH(S2)

contains p. H there is no R~ region containing p, then we are done, since p must then

belong to the "wedge" between two R~ regions, hence to the Voronoi polygon of the

corner vertex.

Comment: The point location problem for p is now to find which region of the binary tree T which

divides ~ contains p. We call these regions tree regions.

Step 4.6. Use the data structure D~ to find the tree region of R~ containing p. This of course gives

us the Voronoi polygon V2(q) in VOR(S2) which contains p.

Step 4.7. We can now test for each edge whether one endpoint is closest to 8 1 and the other closest

to 82, or not, in constant time. This gives us the sets edges which cross the contour. Let

El (~) be the set of edges of VOR(81 ) (VOR(S2)) which cross the contour. Sort E1
and E'}. in O(Iogn) time with O(n) processors along the y~direction using parallel prefix

[10] (every edge can determine in 0(1) time its predecessor).
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Complexity. We can construct the data structure D~ for each Re region in O(logn) time using

O(n) processors. since the Voronoi diagram has O(n) nodes. We have already observed that we

can use D~ to solve the planar location problem for each endpoint p in O(logn) serial time. Since

VOR(81 ) and VOR(82) are both planar. there are O(n) endpoints p. Thus Step 4 can be performed

in O(logn) time using O(n) processors.

Step 5. Using the information from Steps 9 and 4, construct the contour between 8 1 and 82 •

Step 5.1. From the supporting tangents joining CH(81) and CH(82) we can compute the first

and last (infinite-length) edges of the contour.

Comment: From Step 4 we know all the edges El of VOR(81 ) and the edges E2 of VOR(82 ) which

intersect the contour. Note that the regions between consecutive edges correspond to

Voronoi regions.

Step 5.2. Let e be the median edge in El. Assigning one processor to each edge I of VOR(82 ).

we can determine the intersection or non-intersection of e with f in constant time. He

intersects the edges 11.12•...• 11: in this order, the processor at each Ii can in constant

time determine its neighbors /;-1 and Ii+l. It is then easy to determine the vertex where

e attaches to the contour.

Step 5.3. Let e' be the next edge below e in El • so they bound the cell of the median point in 81

along the contour. Using the technique of step 5.2 for e' we can determine the interval

of 82-cells along the contour which interact with p. This subdivides the cells in 82 into

those which interact with 81 above p and those which interact with 81 below p_ Thus

we can reassign the processors in 8 2 and recursively compute all the contour vertices.

Comment: In some cases there will be a cell in 8 2 which belongs to both the upper division and the

lower division. This does not affect the asymptotic number of processors used. however.

Step 5.4. Repeat the procedure of steps 5.2 and 5.3 for the edges of E2 • and sort the set of edges

determined to be part of the contour by the y-coordinates of their endpoints. We can

then augment this set with the edges from Step 5.1 in constant time to form the contour.

Comment: This ordering is well-defined because the contour is monotone in the y-direction.

Complexity. Since the subdivision of steps 5.2 and 5.3 can be done in constant time, the entire

step can be performed in o(log n) time using O(n) processors.

Step 6. Use the contour determined in Step 5 to construct VOR(8) Irom VOR(81 ) and VOR(82 ).

Complexity. Step 6 amounts to using the contour to construct the data structure representing

the Voronoi diagram of 8. It is easy to see that this can be done in O(logn) time using O(n)

processors.

End of Algorithm VORONOI.

We sununarize the above discussion in the following theorem.
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Theorem: The Voronoi diagram of a set of n points in the plane can be constructed in o (Iog2 n)

time on a CREW PRAM using O(n) processors.

In the next section we outline how to construct the Voronoi diagram for a set of line segments.

3 Algorithm for Line Segments

We briefly indicate the new complications that arise when we extend the above method to computing

the Voronoi diagram of a set of line segments. The obvious method is to divide the set of segments

into two subsets whose separate Voronoi diagrams can then be merged easily. This is the major

obstacle facing researchers since they all seem to lead to contours that may not be connected; the

best known method for computing such contours takes O(n log n) time so that the overall algorithm

is O(nlog2n), as shown by Lee and Drysdale [11]. In (20)' Yap uses an unusual way of dividing

the problem: choose a vertical line L that separates the endpoints of the segments into two equal

halves. Whenever this vertical line may cut a segment we imagine that we have two new segments,

one on each side of L. If this method is naively followed, it can lead to an O(n2) behavior. If we

are careful about not computing certain parts of the Voronoi diagram "unless we have to" , we can

get an O(nlogn) solution. We shall show that this "radical divide-and-conquer" method can be

combined with the methods of the previous section.

------Xhe-basie-set-up-foUowing-{l-8}-is-as-fQllows.---Suppoae-that--we-ha....e-an-infinite-reg-ion--S-bou-nde,dd----

between two vertical lines. Call such a region S a slab. Suppose S contains some number of line-

segments (none of the segments protrude outside S). Among these segments, those that stretch

from the left boundary of S to the right boundary of S are called long. Thus the long segments

divide S into quadrilateral regions (the topmost and bottommost are also regarded as quadrilaterals

for this purpose). A quadrilateral is active if it contains any segment that is not part of its boundary.

Let L be a vertical line that divides S into a right sub-slab SR and a left sub-slab SL.

Let S contain m > 0 line segments that are not long. Without going into the details, it

suffices to say that we can obtain an o(Iog2 n) time, n-processor solution to the global problem if

we can compute compute the Voronoi diagram of each active quadrilateral of Sin O(Iogm) time

using m processors. Recursively, suppose that the Voronoi diagram of the active quadrilaterals

of SR and SL ha.ve been computed. An active quadrilateral Q of S is composed of a contiguous

series of quadrilaterals of SL, none of which are necessary active, together with a similar series of

quadrilaterals of SR. We can obtain the Voronoi diagram of the union QL and QR of these two

series rather simply. Assuming this, we must now compute the Voronoi diagram VOR(Q) of Q

from VOR(QL) and VOR(QR), the diagrams of QL and QR.

A2> in the point case, we assume that we have computed the convex hull of the segments in each

quadrilateral, excluding the long segments that bound it above and below. It is not hard to show
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that the Voronoi diagram that lies in the regions Rc (defined as before) forms a complete binary

tree although the edges of the tree could be parabolic area. However. it is no longer true that

each edge of the tree can only interact with the contour at most once. However. we can further

subdivide these edges into at most two pieces such that the property holds. We can further show

that the triangle decomposition of the planar subdivision of a tree works, and so we can determine

the edges ofVOR(QL) that are involved in the contour C. Note that C is connected as shown in

(20]. The remaining steps are substantially as before.

Theorem: The Voronoi diagram of a set of n line segments can be computed in o (log2 n) time

on a CREW PRAM using n processors.

4 An Even Faster Algorithm

It is easy to imagine situations where one would be more interested in a fast running time, even

at the expeDBe of the number of processors required to achieve that bound. Given that the convex

hull of n points can be computed in O(1og n) time with O(n) processors [1.2], it is easy to see that

0(n2) processors can compute the Voronoi diagram of n points in O(logn) time by using O(n)

processors to compute the Voronoi polygon for each point. In this section we show that we can

achieve this same time bound with much fewer processors. Namely, we show how to compute the

-----4VoTonor-diagt-ann5rn-p-ointslnO{log n) time using O(n11 ~) processors on a CREW PRAM. where

E > 0 is some constant. Again we outline the method for the case of point sets only.

We construct the Voronoi diagram of S using a more sophisticated divide-and-conquer technique

than we used before. We divide S into n€ subproblems of size n 1- c each. separated by vertical cut

lines, and compute the Voronoi diagram and convex hull of each subproblem in parallel. The merge

phase consists of two stages. First. we construct the contour for every pair VOR(Si) and VOR(Sj).

if. j. We do this by assigning n1- c processors to each pair (i.j). i,i E {1•... ,E}, and use the

methods of the previous algorithm to compute the contour between VOR(Si) and VOR(Sj). Then

we use all these contours to construct the Voronoi polygon V(p) for each point PES. to complete

the construction of VO R(S). This can be done by assigning nC processors to each point pES to

find the subchain of each contour intersecting V; (p). p E Sj. Since each subchain is convex in Vi(p),

each processor needs to compute at most 2 points of intersection, which can be done in O(logn)

time. After doing this, we can easily compute the set of all contour edges constructed for Sj which

intersect Vi(p), call this set of edges E(P). By assigning lVi(p)1 + IE(p)1 processors to every point

pES, we can compute V(p) from Vi(P) and E(p) in O(logn) time. This amounts to computing

the intersection of all the half-planes determined by the edges of Vi(P) and E(p), and can be done

by using a technique similar to the one used in [2] to solve the convex hull problem. Finally, we

build VOR(S) from the set of Voronoi polygons we just constructed. It should be clear that this
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can all be done in o (log n) time using O(n) processors.

We summarize the above discussion in the following theorem.

Theorem: The Voronoi diagram of n points in the plane can be constructed in O(Iog n) time

using O(nl+E
) processors on a CREW PRAM.

5 Conclusion

In this paper we presented two algorithms for the Voronoi diagrams for a set of n line segments where

the line segments may intersect only at their endpoints, and a line segment may degenerate into

points. The algorithma are fairly complicated and involved a combination of several techniques. It

seems to be a considerable challenge to further improve our O(Iog2 n) time bound using n processors.

On the other hand, there is no reason to think that they are optimal.
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Figure 1: The contour between two Voronoi diagrams.

Figure 2: The binary tree structure of an R~ region.
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Figure 3: The partitioning of the binary tree T into Tl and T2 • The dashed lines indicate the

enclosing triangles.
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