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Abstract

The quest for efficient parallel algorithms for graph related problems necessitates 

not only fast computational schemes but also requires insights into their inherent 

structures that lend themselves to elegant problem solving methods. Towards this 

objective efficient parallel algorithms on a class of hypergraphs called acyclic hyper

graphs and directed hypergraphs are developed in this thesis. Acyclic hypergraphs 

are precisely chordal graphs and its subclasses, and they have applications in rela

tional databases and computer networks. In this thesis, firstly, we present efficient 

parallel algorithms for the following problems on graphs.

determining whether a graph is strongly chordal, ptolemaic, or a block graph. If 
the graph is strongly chordal, determine the strongly perfect vertex elimination 
ordering.

determining the minimal set of edges needed to make an arbitrary graph strongly 
chordal, ptolemaic, or a block graph.

determining the minimum cardinality dominating set, connected dominating set, 
total dominating set, and the domatic number of a strongly chordal graph.

Secondly, we show that the query implication problem (Q 1 —> <2 2) on two 

queries, which is to determine whether the data retrieved by query Q x is always a sub

set of the data retrieved by query Q 2, is not even in NP and in fact complete in U2P . 

We present several ‘fine-grain’ analysis of the query implication problem and show 

that the query implication can be solved in polynomial time given chordal queries.

Thirdly, we develop efficient parallel algorithms for manipulating directed 

hypergraphs H  such as finding a directed path in H , closure of H , and minimum 

equivalent hypergraph of H . We show that finding a directed path in a directed



hypergraph is inherently sequential. For directed hypergraphs with fixed degree and 

diameter we present NC algorithms for manipulations. Directed hypergraphs are 

representation schemes for functional dependencies in relational databases.

Finally, we also present an efficient parallel algorithm for multi-dimensional 

range search. We show that a set of points in a rectangular parallelepiped can be 

obtained in O (logn) time with only 2.1og2« -  10.logn + 14 processors on a EREW- 

PRAM. A non-trivial implementation technique on the hypercube parallel architec

ture is also presented. Our method can be easily generalized to the case of d- 

dimensional range search.



Chapter 1

INTRODUCTION

1. INTRODUCTION

There has been a tremendous interest in algorithmic graph theoiy to develop 

efficient algorithms for various graph problems. This is to a large extent due to the 

increase in the application of graph theory to problems of practical interest. Of the 

various graph structures which have received wide attention, planar graphs, perfect 

graphs, bipartite graphs, trees, chordal graphs, and partial-k-chordal graphs occupy a 

special place. Studies on such restricted classes of graphs are well-motivated from the 

following points of view:

1. Solutions to problems on restricted graphs oftentimes are easier to obtain com
pared to arbitrary graphs.

2. Studies on restricted graph classes shed light on solutions to problems for arbi
trary graphs.

3. Sometimes in real-life situations we may encounter only graphs with special 
structures.

4. In many situations, restricted graph classes are studied for their intrinsic 
mathematical interest.

Traditionally, researchers in algorithmic studies on graphs have focussed on the 

development of deterministic-sequential algorithms. In recent years, deterministic 

parallel algorithms for several important computational problems have been 

developed. This is supposed to be in preparation for a revolutionary switch from

1



sequential to parallel computing. In fact, one can expect parallel computing to dom

inate research initiatives for a few decades to come.

Recently, there has been a great spurt of research activity towards developing 

deterministic sequential and parallel algorithms for a class of graphs called perfect 

graphs [47]. Among the class of perfect graphs the chordal graph and its subclasses 

occupy the chief position. This is due to the fact that many polynomial-time algo

rithms can be designed systematically for the class of chordal graphs and its subc

lasses.

The theory of hyper graphs [15], has been extensively used in computer science 

as a mathematical model to represent concepts and structures from different domains: 

rewrite systems, databases, logic programming, etc. In all cases hypergraphs general

ize the concept of graph in the sense that they consists of a set of nodes and a set of 

(hyper)edges defined over the nodes. A different model that has been used in several 

applications is the directed hyper graph [8]. Directed hypergraphs are a generalization 

of directed graphs in which an arc can have more than two nodes. In the next two 

subsections an overview of the chordal graph and its subclasses and the directed 

hypergraph will be presented.

2. THE STRUCTURE OF CHORDAL GRAPHS AND THEIR APPLICATIONS

Informally, a simple, loopless, and undirected graph is chordal if every cycle of 

length of at least four contains a chord (an edge connecting two vertices that are not 

consecutive in the cycle). A chordal graph is also called as a triangulated graph.



Chordal graphs have important graphs forming their subclass and these include per

mutation graph, strongly chordal graph, ptolemaic graph, block graph, interval graph, 

path graph, threshold graph, k-trees etc. [47]. Figure 1.1 gives a chordal hierarchy.

Comparabilty

Bipartite

IntervalBlock

Split

T rees

Chordal

Threshold Cographs

Permutation

Directed Path

Perfect Graphs

Undirected
Path

Strongly
chordal

Figure 1.1: A hierarchy of chordal graphs

An important property of chordal graphs is that it exhibits an ordering (<) on its 

vertices {v 1( v2, ..., vn } called the perfect elimination ordering (PEO) which satisfies 

the condition that node v{ and nodes v;- adjacent to v,- with i < j  form a complete sub

graph (not necessarily maximal) [47]. A chordal graph G = (V, E) can be 

transformed into a hypergraph H with vertices V and hyperedges S = (5 j, S 2, .... Sq },



where each 5; is a maximal clique (completely connected subgraph) of G . The hyper

graph H  thus obtained from a chordal graph is called an a-acyclic hypergraph [11]. 

Figure 1.2 shows a chordal graph, its PEO, and the a-acyclic hypergraph correspond

ing to it.

Chordal graphs are an important class of graphs since polynomial time sequential 

algorithms are available on them, otherwise known to be NP-complete on general 

graphs. Here is a list of NP-complete problems on general graphs known to be solved 

in polynomial time on chordal graphs [44].

1. Maximum Independent Set

2. K-colorability

3. Clique Cover

6
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1

Figure 1.2: A chordal graph with PEO numbering 
of the vertices and the a-cyclic hypergraph 

corresponding to it.



There also exist problems which are NP-complete on chordal graphs and known to be 

solvable in polynomial time for graphs in its subclasses. Here is a list of problems 

which are NP-complete on chordal graphs.

1. Minimum cardinality connected, total, and independent dominating set

2. Steiner tree

3. Minimum Fill-in i.e., minimum number of edges needed to make an arbitrary 

graph chordal.

Chordal graphs and their subclasses have a close relationship with the theory of 

acyclic hypergraphs or acyclic database schemes [3,36], It was shown by D ’Atri and 

Moscarini [3] that a graph G is chordal, strongly chordal, ptolemaic, or block, if and 

only if the corresponding hypergraph H  formed from the maximal cliques of G is 

acyclic, (5-acyclic, y-acyclic, or Berge-acyclic, respectively. Chordal graphs and its 

subclasses arise in several important applications, which include the following.

(a). Relational database design and queiy evaluation [5,11,36].

(b). Computing solutions of sparse system of linear equations [4,37].

(c). Probabilistic expert systems [64].

(d). Reliability of communication networks in the presence of constrained line and 

site failures [39,40,96].

(e). VLSI design layout [88].

An important sub-class of a chordal graph is the strongly chordal graph intro



duced by Farber [37]. Strongly chordal graphs are chordal graphs in which every 

even cycle of length at least 6 has a strong chord (i.e., an edge joining two vertices 

which are an odd distance apart in the cycle). The edge-vertex incidence matrix of a 

strongly chordal graph is "totally balanced." Totally balanced matrices are studied in 

proving certain min-max theorems in graphs theory [4]. An example of a strongly 

chordal graph is given in Figure 1.3

(

ngure 1.3: A strongly chordal graph.

Recently, there has been a growing interest in developing algorithms for a class 

of graphs called K-trees and partial-K-trees. Numerous NP-complete problems can be 

solved in polynomial-time (linear in most cases) when the input graph is a partial-K- 

tree [6,17]. A K-tree is K-chordal graph in which every clique is of size at most 

(K + 1). A partial-K-tree is a partial-K-chordal graph which is a subgraph of a K- 

chordal graph. A fast NC algorithm for recognizing partial-K-trees was given by 

Chandrasekharan and Hedetniemi [18].



3. AN OVERVIEW OF DIRECTED HYPERGRAPHS AND ITS APPLICA
TIONS

In this section, an informal discussion about directed hypergraphs is presented. 

Formal definitions are presented in Chapter 6. In the case of directed graphs, an arc 

(a , b ) consists of the source node a and the destination (sink) node b. Directed 

hypergraphs are a generalization of directed graphs where the source nodes can be a 

set of nodes, called the compound node. There is a directed path from compound 

node A to compound node B  if and only if there are directed paths from A to each of 

the component nodes forming B . Figure 1.4 gives an example of a directed hyper

graph.

A

Figure 1.4: A directed hypergraph

As observed previously, directed hypergraphs may be often applied to provide a 

formal model of concepts in computer science. A few examples are presented now. It 

should be noted that all these are informal discussions.



An important application of directed graphs is in the area of database theory. 

Given a set of attributes U , a set of functional dependencies is a relation over P (£/) x 

U, where P  (£7) is a set of attributes from U. A functional dependency from a set of 

attributes X  to a single attribute i means that, given the values of all attributes in X , 

the value of attribute i is uniquely determined. Clearly a directed hypergraph may 

provide an immediate representation for such a relationship. In this context, a typical 

problem is to determine a set of functional dependencies which is equivalent to a 

given one but which is minimal with respect to some parameter (number of depen

dency rules in the set, length of the total representation, etc.). Sequential algorithms 

for the manipulation of functional dependencies are presented by Ausiello et al. [8].

Another field of application in which it is meaningful to look for equivalent (or 

strongly equivalent) representations of the same hypergraph is problem solving. 

Directed hypergraphs may be used in problem solving as an alternative to and-or 

graphs, for describing the relationship existing among a given problem P and the set 

of problems whose solution is required to solve problem P  [46]. In this case, for 

example, given a hypergraph, it would be meaningful to look for an equivalent 

representation where the number of independent problems which may be solved in 

parallel is maximal.

Finally, another interesting application of directed hypergraphs arises in the 

representation and manipulation of the Horn Formula. Among various classes of log

ical formulae, Horn Formulae are particularly interesting in view of the fact that in 

Knowledge Based Systems is often represented by means of i f ... then ... clausal rules.
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Also in this case the use of directed hypergraphs is quite natural.

In the case of propositional calculus, for example given a set of propositional 

variables V  and the truth values T  and F , a Horn formula is a relation over P (V ) x 

V , where V = V u  {T}  and V = V u  {F}. A typical problem that we are 

interested in solving in this case is the implication, that, is the existence of a path, 

from a given set of variables X  to a single q .

A particularly interesting case is when, in the process of building a Horn formula 

which represents our knowledge of a given domain by progressively adding new 

clauses we want to check on-line the existence of a path from T to F because such a 

path would imply the unsatisfiability of the whole formula [31].

4. AN OVERVIEW OF PARALLEL ALGORITHMS

In recent years, parallel computation has come to influence all areas of computer 

science and related disciplines. This is mostly because of possible limits to hardware 

speed and software efficiency in the realm of sequential computing. Even before the 

existence of real parallel machines, computer scientists were developing a theoretical 

framework to develop the model of parallel of computations based on processor capa

bility, memory accessibility, and the pattern of interconnection among processors. 

Though there is no consensus on a model of parallel computation, many studies have 

focussed on the parallel-random-access-machine (PRAM) model (see Karp and 

Ramachandran [56]). The PRAM model is a parallel analog of the sequential RAM. 

It consists of several independent sequential processors, each with its own private



memory, communicating with each other through a global memory. In one unit of 

time, each processor can read one global or local memory location, execute a single 

RAM operation, and write into one global or local memory location. PRAMs can be 

classified according to restrictions on the global memory access. In EREW (Exclusive 

Read Exclusive Write) PRAMs simultaneous access to any memory location for both 

reading and writing is forbidden. In a CREW (Concurrent Read Exclusive Write) 

PRAM simultaneous reads are allowed but not simultaneous writes. A CRCW (Con

current Read Concurrent Write) PRAM allows both simultaneous reads and writes. In 

the case of a concurrent write we assume that an arbitrary processor succeeds, though 

other assumptions are possible (see Moitra and Iyengar [70]). These models are 

increasingly powerful in that order. It is known that the CREW and the CRCW 

PRAM models can be simulated by an EREW-PRAM model in O (logP) time with 

0 ( P )  extra processors or with no extra processors in O (log2P ) time [33]. It was 

shown in [94], that all PRAM models with P processors can be simulated by an ultra

computer (bounded-degree network of processors with no global memory) in 

O (logP (loglogP)2) time per step and with no extra processors. Having described the 

models of parallel computation we will be using in our work, we next turn our atten

tion to the class of algorithms we will consider. In our discussion below we only con

sider sequential algorithms having polynomial-time complexity.

The most natural and a very practical idea of parallelism to make use of a fixed 

number of processors say, P (independent of the size of the input say, n). In this case, 

it is not hard to see that the speedup of a parallel algorithm (over the sequential one) 

for a problem will depend on the input size and when the input size is increased, the
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number of processors has to be dependent on the input size. The agreement in this 

case is to make use of only a reasonable amount of hardware i.e., a polynomial 

number of processors. The polynomiality of resources (time and processors) has been 

accepted as a reasonable demand.

Having justified the use of a polynomial number of processors let us consider the 

issue of time. The worst-case time-complexity of a parallel algorithm is a measure of 

the maximum time taken by any of the processors over all inputs. Using a polynomial 

number of processors we may hope to do as good as getting a constant-time parallel 

algorithm. However, creating a polynomial number of processors requires noncon

stant time in a reasonable model of parallel computation. For example, if we want to 

create say 0 ( n r) processors, we need O (log2« r ) time assuming a binary-tree 

configuration for processor creation. Hence reasonably good speedup can be said to 

have been achieved when the parallel time-complexity is a polylog (polynomial in the 

logarithm) of n . Note that in this case the speedup is exponential! Without much 

further ado, let us say that the class of NC algorithms (due to Nicholas Pippenger [76]) 

consists of algorithms which run in O (logr n ) time and make use of a polynomial 

number of processors. NC algorithms have been found for several important prob

lems in areas like algebra, graph theory, computational geometry etc. For a good sur

vey on NC algorithms see Karp and Ramachandran [56].

In contrast to NC  is the class of problems that cannot be speedup very much 

using a polynomial number of processors. A class that seems to capture this notion is 

the class of P -complete problems. The class P is the set of all problems that can be
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solved in polynomial time on a deterministic Turing machine. The question as to 

whether or not P = NC is open. It is known that, for example, if any P -complete 

problem is in N C , then P = N C . The following problem called the circuit value prob

lem (CVP) is known to be P -complete [75]. Circuit value problem asks for the output 

of a boolean circuit given certain number of inputs which are either true or false.

With this brief introduction to parallel algorithms we list the contributions of the 

thesis in the next section.

5. MAIN FOCUS, CONTRIBUTIONS, AND OUTLINE OF THE THESIS

The central theme of this thesis is to develop fast parallel algorithms for a class 

of graph structures with applications in relational databases and computer networks. 

The mathematics and the algorithmic framework presented in this thesis are very 

interesting and deep and offers the potential for far reaching applications as large 

scale parallel computers come into their own. In the following paragraphs the focus 

of the thesis together with the results obtained are listed.

1. Parallel algorithms for the recognition of strongly chordal, ptolemaic, and block 

graphs are developed. Given a graph G with n vertices and m edges we present 

parallel recognition algorithms to determine if G is strongly chordal, ptolemaic, or 

block. We obtain the following worst-case time and processor bounds for our recog

nition algorithms which run on a CRCW-PRAM model.
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(1) O (log2n ) time using 0( (n + m )3l2/log2n ) processors for recognizing a strongly 

chordal graph;

(2) O (log2n ) time using 0 (n  + m )  processors for recognizing a ptolemaic graph;

A

(3) O (log n ) time using 0 (n  + m )  processors for recognizing a block graph.

Our recognition algorithm for strongly chordal graphs has a better processor bound 

than the one proposed by Dahlhaus and Karpinski [28], who show that strongly chor

dal graph can be recognized in O (log2n ) time using O (n4) processors. The above 

results are presented in Chapter 2.

2. A parallel algorithm to obtain the strongly perfect elimination ordering (SPEO) of 

the vertices of a strongly chordal graph is developed. Various domination problems 

which have applications in computer networks are solved in linear-time sequentially, 

given the SPEO ordering of the strongly chordal graphs [21]. SPEO ordering is also 

used in Gaussian elimination and other computations on sparse matrices [4]. The 

parallel algorithm for the construction of SPEO works in O (log2n ) time with 

0( (n + m )3/2/log2n) + M(n))  processors on a CRCW-PRAM, where M(n)  is the cost 

of multiplying two n x n boolean matrices. Our SPEO construction algorithm is a 

significant improvement over the algorithm of Dahlhaus and Karpinski [28], who 

present an algorithm which runs in O (log2n ) time and uses O (n8) processors. The 

algorithm for obtaining the SPEO is presented in Section 2.6.

3. It was shown earlier, by Dahlhaus and Karpinski [26] that maximum matching [49]

in chordal graphs is as hard as bipartite graph matching. This implies that maximum
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matching in chordal graphs is in Random N C . An O (log2n ) time algorithm which 

uses O («8) processors on a strongly chordal graph was presented by [26]. We present 

an O (log2/!) time algorithm which uses 0( (n + m )3/2/log2n +M(n))  processors on a 

CRCW-PRAM for determining the maximum matching in strongly chordal graphs. 

This result is presented in Chapter 2.

4. From discussions in the earlier subsections it can be clearly seen that chordal 

graphs have advantages over arbitrary graphs. Dahlhaus and Karpinski [27] present 

an O (log n ) time parallel algorithm which uses O (nm) processors to convert an arbi

trary graph into a chordal graph by adding a minimal set of edges. We use the algo

rithm of Dahlhaus and Karpinski to construct strongly chordal, ptolemaic, and block 

graphs from arbitrary graphs. This result is significant in the sense that we are able to 

build acyclic databases given cyclic ones, and is discussed in Chapter 3.

5. We present fast parallel and linear-time sequential algorithms for domination prob

lems on strongly chordal graphs which have applications in computer networks. A set

of vertices D £  V is a 1-dominating set for a graph G = (V, E ) if every vertex in

V - D  is adjacent to a vertex in D . The domination set D is connected if the graph 

induced by vertices in D is connected, independent if the vertices in D are indepen

dent, and total if every vertex in V is adjacent to a vertex in D . The domination prob

lem or 1-domination problem is to determine the minimum cardinality set D . Gerard 

Chang [20] gave a linear time sequential algorithm for the k -domination problems on 

a strongly chordal graph given a simple vertex elimination ordering and without tak

ing powers of the graph. Farber [38] presented a linear time sequential algorithm for
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the minimum weight domination and minimum weight independent domination given 

strongly perfect elimination ordering of the vertices of the strongly chordal graph.

Given a strongly chordal graph G with n vertices and m edges, we present 

sequential algorithms with 0 (n  + m ) time complexity and fast parallel algorithms 

with O (log2n ) time complexity using 0{n  + m ) processors on a CRCW-PRAM 

model for the following problems:

(1) Dominating set problem

(2) Domatic number problem, i.e., determine the maximum integer K  and disjoint 

vertex sets V 1? V2, VK such that each V; is a dominating set.

(3) Connected domination problem

(4) Total domination problem

We know of no parallel algorithms for domination problems on strongly chordal 

graphs. Domination and other related problems are solved in Chapter 4.

6. The query implication problem (Q i —> Q2) on two queries Q l and Q 2 is to deter

mine whether the data retrieved by the query Q 1 is always a subset of the data 

retrieved by £? 2- The queiy implication problem has applications in the areas of com

putational geometry, distributed databases, and others. We study the general implica

tion problem in which all six comparison operators: = ,#,< ,> ,< ,> , as well as con

junctions and disjunctions, are allowed. It is shown here that the general implication 

problem is not even in NP and in fact complete in Ylp 2. In the simple case where the
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comparison operator is only *=’, we show that the implication problem is NP- 

Complete. We define a class of queries called ‘acyclic queries’ and show the 

existence of polynomial-time algorithms for the implication problems which are 

shown to be NP -Complete.

We use the above results, to estimate the time-complexity of determining 

whether two update transactions consisting of insert and delete operations are 

equivalent. Conjunctive queries arise in the area of query optimization in relational 

data bases [6 8 ]. We show that the testing implication of two conjunctive queries with 

inequalities is Ilp 2-Complete. The query implication problem is discussed in Chapter

5.

7. Given a set of functional dependencies E and a single dependency a , we show that 

the algorithm to test whether E implies a  is log-space complete in P . The functional 

dependencies E are represented as a directed hypergraph [8]. We first present a 

parallel algorithm which solves the above implication problem using P processors on 

an EREW-PRAM in 0( e / P  +n.logP) time and on a CRCW-PRAM in 0(e!P + n)  

time, where e and n are the number of arcs and nodes of the graph H-%. For graphs 

with fixed degree and diameter, we show that the closure H^+ can be computed in 

NC. We present NC algorithms to obtain a non-redundant and an LR-Minimum cover 

for the set of functional dependencies E. All our algorithms on a n-node directed 

hypergraph with fixed degree and diameter can be implemented to run in O (log2n ) 

time with M( n)  processors on a CREW-PRAM model, where M(n)  is the cost of 

multiplying two binary matrices. The algorithms are efficient based on the transitive
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closure bottleneck phenomenon [56], that is, any improvement in the time and proces

sor complexity of the transitive closure algorithm will result in an improvement by the 

same amount for the algorithms presented here. Algorithms for directed hypergraph 

or functional dependency manipulations are presented in Chapter 6 .

8 . We present a parallel algorithm to obtain a set of points in a rectangular paral

lelepiped (range-search) in O ilogn) time, with only (2.1og2n -  10Jogn + 14), on ann 

EREW-PRAM, where processors are allowed to communicate through messages. We 

also present a non-trivial implementation technique on the hypercube parallel archi

tecture with which the above time and processor bound can be achieved without any 

communication overhead. A parallel algorithm for range searching is developed here 

using the concept of distributed data structures. We use the range tree proposed by 

Bentley as our data structure to be distributed. Our algorithm can easily be generalized 

for the case of a d -dimensional range search. Range search has important applica

tions in the areas of databases and computational geometry. The range searching 

problem is discussed in chapter 7.

We conclude this thesis in Chapter 8 . and mention some open problems.



Chapter Two

PARALLEL ALGORITHMS FOR RECOGNIZING A CLASS OF
CHORDAL GRAPHS

1. INTRODUCTION

The central theme of this chapter is to provide characterizations for strongly 

chordal, ptolemaic, and block graphs in terms of the intersection graph of its maximal 

cliques. Using the correspondence between the maximal cliques of the above graphs 

and acyclic hypergraphs we develop characterization theorems for them. We first 

show that the intersection graph of a strongly chordal graph is chordal. Now, since a 

block graph is a ptolemaic graph which is a strongly chordal graph, the chordality pro

perty of the intersection graph holds for these graphs also. It turns out that this neces

sary condition is crucial for the purposes of recognition and computation on strongly 

chordal graphs. In section 4, we present an O (log2n ) time parallel algorithm which 

uses 0 (n  + m )  processors on a CRCW-PRAM to construct the intersection graph. 

The above time and processor complexities are achieved by the use of an important 

combinatorial lemma on chordal graphs by Fulkerson and Gross [42] who show that 

the sum of the sizes of edge labels of the intersection graph of a chordal graph is at 

most 0 {n  + m ).

There has been a number of parallel chordal graph recognition algorithms 

[19,34,52,73]. The most efficient recognition algorithm in terms of the number of 

processors was developed by Philip Klein [60]. In [60] a variety of problems includ

ing PEO (Perfect Elimination Ordering), finding maximal cliques, and coloring was
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solved in NC using a linear number of processors (linear in the number of vertices 

and edges of the graph). Dahlhaus and Karpinski [28] were the first to obtain an NC2 

algorithm to recognize and determine the strong vertex elimination ordering of 

strongly chordal graphs. The algorithm of Dahlhaus and Karpinski for computing the 

SPEO of a strongly chordal graph runs in 0  (log2n ) time and uses O (n8) processors. 

We present an algorithm for computing the SPEO and it runs in O (log2n ) time and 

uses 0( (n +m  )3/2/log2n ) + M  (n)) processors on a CRCW-PRAM. This algorithm is 

presented in Section 5. The material contained in this chapter is a completely revised 

and expanded version of Radhakrishnan and Iyengar [82,79].

2. PRELIMINARIES -  NOTATIONS AND DEFINITIONS

We adopt terminologies and state theorems from [3] to give the relationships 

between the chordality of a graph G and acyclicity of the hypergraph H . Duke [32] 

gives a good survey of the various cycles in hypergraphs. We assume G to be a class 

of simple, loopless, undirected graphs and H  to be undirected, reduced, and conformal 

hypergraphs. The number of vertices is n and the number of edges is m .

Definition 2.2.1 [Graph Chordality and Elimination Orderings]

A chordal graph [47] is a graph in which every cycle with at least four distinct 

nodes has a chord. A vertex v is simplical if the graph induced by v and its neighbors 

is a clique. An ordering of the vertices v l5 v2, ..., vn with vt- simplical in the graph 

induced by {v,-, vl+1, ..., vn } for all i is called a perfect elimination scheme. A graph 

is chordal iff it has a perfect elimination scheme (or ordering) (PEO) [47].
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A strongly chordal graph [37] is a chordal graph that in every even cycle with at least 

six nodes contains a strong chord (i.e., a chord joining two nodes with an odd distance 

in the cycle). A perfect elimination ordering < of the vertices Vj, ..., v„ is a strong 

perfect elimination ordering (SPEO) if and only if for any x , y , x', y ,  s.t. (x , y) ,  (x 

y ) , ( y , x ) e  E and x  < x  , y < y \  we have (x \ y )  e E.  Also, Farber showed that a 

graph G is strongly chordal if and only if G has an SPEO.

A ptolemaic graph G [53] is a strongly chordal graph and each 5-cycle of G has at 

least three diagonals, or each cycle of G of length greater than or equal to 5 has a pair 

of diagonals which cross one another.

A block graph is a ptolemaic graph in which each biconnected component is a com

plete subgraph [50].

Figure 2.1 and Figure 2.2 give examples of chordal and strongly chordal graph with 

PEO and SPEO numbering, respectively.

6

4

1

Figure 2.1: A chordal graph with PEO numbering of the vertices
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3

4

Figure 2.2: A strongly chordal graph with SPEO numbering of the vertices

Definition 2.2.2 [Intersection Graph]: Let H  be the maximal cliques {5"!, S 2, ..., Sr }, 

1 < r  < n , of a chordal graph G . We can treat H  as a hypergraph by treating each 

maximal clique in H as a hyperedge. The intersection graph 1(H)  of H  is a graph 

containing edges e H  as nodes and edges (S,-, Sj) labeled I (S; r\Sj ) ,  if St n  Sj * 

0.U

Figure 2.3 gives an example of the intersection graph of the graph in Figure 2.2.

C  45678
78

56387
67

156

267

Figure 2.3: The intersection graph of the maximal cliques of the graph in 

Figure 2.2.
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Definition 2.2.3 [Hypergraph Acyclicity]:

The following definitions for hypergraph acyclicity are taken from [36].

A hypergraph H  is Berge-acyclic if it does not contain the following sequence (S 1# jc 

S 2, x 2> •••> > xm > Sm+i) satisfying the following conditions:

(i) x  ls ..., xm are distinct nodes of H;

(ii) S   Sm are distinct edges of H , and 5m+1 = S

(iii) m >2, that is, there are at least 2  edges involved; and

(iv) xi is in 5,- and Si+l (1 ^  i <m).

Figure 2.4 gives an example of a block graph together with its intersection graph 

formed by the maximal cliques (hyperedges) which is Berge-acyclic.
f

a

bed

defgh

Figure 2.4: A block graph together with its intersection graph of the maximal cliques.

A hypergraph H  is y-acyclic if it does not contain the following sequence (S j, x j, S 2, 

x 2, ..., Sm, xm, Sm+i) satisfying the following conditions:
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(i) x  j , xm are distinct nodes of H ;

(ii) S j , Sm are distinct edges of H , and Sm+l = Sj;

(iii) m £ 3, that is, there are at least 3 edges involved;

(iv) xt is in 5; and SJ+1 (1 < i < m ); and

(v) If 1 < / <m, then xi is in no Sj except Si and SM -

Figure 2.5 gives an example of a ptolemaic graph together with its intersection graph 

formed by the maximal cliques (hyperedges) which is y-acyclic.

f

bed

j
a ghjkdefgh

Figure 2.5: A ptolemaic graph together with its intersection graph of the maximal cliques.

A hypergraph H  is ^-acyclic if it does not contain the following sequence ( S \ , x x, S 2, 

x 2 Sm,xm, Sm+i) satisfying the following conditions:

(i) x !,..., xm are distinct nodes of H ;

(ii) S   Sm are distinct edges of H , and 5m+1 = S i ;

(iii) m £ 3, that is, there are at least 3 edges involved; and
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(iv) xi is in S',- and 5’t+1 (1 <i < m ) and in no other Sj .■

We will now state some theorems which gives the relationship between chordal

ity of graphs and acyclicity and shows how the various forms of acyclicities are 

related. The following theorem was proved in [3].

Theorem 2.2.1: A graph G is chordal, strongly chordal, ptolemaic, or block if and 

only if the hypergraph H is a-, P~, y, or Berge-acyclic, respectively. ■

Fagin [36] proved the following hierarchy of acyclicities.

Theorem 2.2.2: The following implication Berge-acyclicity => y-acyclicity => p- 

acyclicity => a-acyclicity and none of the reverse implication holds. ■

The following result of Klein [60] is a very useful one and used often in this 

thesis.

Theorem 2.2.3: Recognition of a chordal graph, determining the PEO, maximal 

cliques, maximum independent set, and coloring of a chordal graph can all be done in 

O (log2n ) time using 0 (n  + m )  processors on a CRCW-PRAM.IS

3. CHARACTERIZATIONS OF ACYCLICITIES

In this section we provide certain characterizations of acyclicities based on the 

intersection graph of the maximal cliques of the graph G . These characterizations are 

used in deriving efficient recognition algorithms in section 4. First, we begin by
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proving the following necessary condition.

Lemma 2.3.1: The intersection graph 1(H)  for a set of maximal cliques H  of the 

graph G is chordal, if G is block, ptolemaic, or strongly chordal.

Proof. When graph G is strongly chordal we know from Theorem 2.2.1 that H  is p- 

acyclic. We will show by contradiction th a t/( //)  is chordal. L e t//  be P-acyclic and 

1(H)  not chordal. Consider the sequence (Si, x h S 2, x 2, S 3, x 3, S 4, x 4, S±) in 1(H).  

The nodes x  l5 x 2, x 3, and x 4 are all distinct (otherwise there would be a chord con

necting opposite vertices). The sequence is P-cycle, which means that H  contains a 

P-cycle, which is a contradiction. Therefore, 1(H)  is chordal when G is strongly chor

dal. >From Theorem 2.2.2, we see that 1(H)  is chordal when G is ptolemaic or a 

block. ■

We will now, present a characterization for the recognition of Berge-acyclicity.

Theorem 2.3.2: Let 1(H)  be the intersection graph with labels |5,- n S j  | < 2, for all 

nodes S, , Sj in I  (H).  The hypergraph H  is Berge-acyclic if and only if 1(H)  is chor

dal and every triangle (St , Sj , Sk) in 1(H)  satisfies the condition 5, n Sj = r , Sj n Sk 

= r , S k n S i =r  and | r | =1.

Proof: (IF) Let us assume that H  is Berge-acyclic. It is clear from Lemma 2.3.1 that 

1(H)  is chordal. Consider the triangle (St , Sj , Sk) in I  (H). We have 5/ n S j  = r , and 

\r | = 1, for otherwise we have a Berge-cycle (5,-, A,  Sj,  r,  Si) when n Sj = Ar 

(Definition 2.2.3). Thus, | r (-1 = 1, / = 1,2 ,3 . If 5,- n Sj = r h Sj n S k = r2, Sk n 5f 

= r 3, then, we clearly have a Berge-cycle. The case where n Sj = r l}Sj n Sk = r x,
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and Sk n  S,- = r 2 does not exists. Thus, every triangle in 1(H)  satisfies the condition 

of the theorem.

(ONLY-IF) Let us assume that 1(H)  is chordal and every triangle (St , Sj, Sk ) satisfies 

the condition of the theorem. It is easy to see that the triangle (Sh Sj,  Sk ) is Berge- 

acyclic. We have to show that any cycle of length k > 3 is not a Berge-cycle. Con

sider a sequence (Sh r lt S 2, r2, S 3, r3, S 4, r4, S{) in 1(H).  Now, |r (-1 = 1, / = 

1,2, 3,4, r j  = r 2, and r3 = r4 from the assumptions about each triangle in 1(H)  and 

chordality of I  (H). Therefore, the above sequence is not a Berge-cycle. In fact, is it 

easy to see that S,-, i = 1,2, 3 ,4  in 1(H)  forms a complete sub-graph due to the follow

ing. >From the assumptions: = r2 and let S } r\ S 3 = r l (chordality assumption).

Now, r x = r2 = r3 = r 4, which implies, S 1 n S 2 n S 3 n 5 4 # 0  = r 1. i

Corollary 2.3.3: Let 1(H)  be a complete graph. H  is Berge-acyclic if and only if for 

all Si and Sj in / (H), Si n S j  - r  and \r | = 1.

Proof: See the proof of Theorem 2.3.2.H

>From the above characterization it can be seen that, testing coro. 2.3.3 on every max

imal clique of 1(H)  would be a sufficient test for the recognition of Berge-acyclicity. 

We develop the following characterization for the recognition of y-acyclicity.

Theorem 2.3.4: The hypergraph H  is y-acyclic if and only if 1(H)  is chordal and 

every triangle (S; , Sj, Sk ) in 1(H)  satisfies the condition Sp n  Sq = r 1, S (j n  Sr = r x, 

Sr n S p = r2 for somep  * q *  r in [/, j , k].



Proof: (IF) Let us assume that H  is y-acyclic. It is clear from Lemma 2.3.1 th a t/( //)  

is chordal. Consider the triangle (Sit S j , Sk) in 1(H).  If S; n  Sj = r h Sj n  Sk = r2, 

and Sk n  5,- = r 3, then we have a y-cycle (S,-, r l5 S-, r 2, S*, r 3, S,-), a contradiction to 

the assumption. For the case, S(- n  Sj = r h Sj n S k = r h Sk n  St = r ls and \ r l | = 1, 

H  is Berge-acyclic (Theorem 2.3.2), which implies H  is y-acyclic (Theorem 2.2.2). 

Clearly, when \ r { | > 1, there is no y-cycle. For the case, S',- n S j  = r 1,Sj  n  Sk = r h 

and Sk n  S’,- = r 2 the graph is still y-acyclic. Hence, every triangle satisfies the condi

tion of the Theorem.

(ONLY-IF) Let us assume that 1(H)  is chordal and every triangle (S), Sj,  Sk) satisfies 

the condition of the theorem. We can easily show that there is no y-cycle of length k 

> 3 in 1(H).  Let (Slf r lt S 2, r2, S3, r 3, S4, r 4, S{) be a sequence in 1(H).  The 

sequence is not a y-cycle, since n  r2 & 0  and r2 n  from assumptions about

chordality of 1(H)  and condition on each triangle. In fact, it can be shown that any 

cycle of length k in I  (H) is part of a complete sub-graph on k vertices. ■

We will now derive some properties of P-acyclic hypergraphs.

Lemma 2.3.5: If H  is P-acyclic, then, every triangle (St , Sj,  Sk ) in 1(H)  satisfies the 

condition Sp n  Sq c:Sp n  Sr and5^ c S ? n Sr for somep  in [/, j , k).

Proof: Let Sq n  Sq = r h Sq n  Sr = r2, Sr n S q = r 3, and H  be p-acyclic. If r 1n r 2 

n  r 3 = 0 , then, we have a p-cycle, a contradiction to the assumption. If r 1 n  r 2 n  r 3 

= x  and x  c  r,-, i = 1, 2, 3, then we have a P-cycle by Definition 2.4, a contradiction. 

The case where, (rj = r 2) n  r 3 = 0  does not exist, and either r 3 = r j  or the contain
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ment stated in the Lemma holds.®

Definition 2.3.1 [36]: A triangle (S l5 S 2, S 3) begins a (3-cycle in 1(H),  if it satisfies 

the following condition:

LetX = S i  n  S 2 n  S 3, and let S \  = S( - X ,  for i = 1, 2, 3. Let T = {E e 1(H) : (E =

S x) or (E = S3) or (X c E andE  n S 2 = 0)}. L e tT = {E - X :  E e  T}.  Now, (Sl5

S 2, S  3) begins a P-cycle in / ( / / )  if and only if S \  and S 3 are in the same component 
/

of T . It should be clear that the operation to test whether a triangle begins a P-cycle 

in 1(H)  is examining a complete subgraph of I  (H)M

Lemma 2.3.6: Let 1(H)  be a complete graph satisfying the condition of Lemma 2.3.5. 

The graph H  is P-acyclic if and only if an arbitrary chosen triangle (S,-, Sj,  S*) in 

1(H)  does not begin a p-cycle.

Proof: (IF) Let us assume H  to be P-acyclic. Clearly, every triangle in 1(H)  satisfies 

the condition of Lemma 2.3.5. Also, an earlier result of Fagin [36] tells us that no tri

angle in 1(H)  begins a p-cycle.

(ONLY-IF) Let 1(H)  satisfy the conditions of Lemma 2.3.5 and an arbitrarily triangle 

in 1(H)  does not begin a P-cycle. Now, we have to show that no other triangle in 

1(H)  begins a P-cycle and hence H  is P-acyclic. Let (S 1> S 3, S 4) be the vertices

of the graph /  (H).  Let S i r \ S 2 r \ S 3 n S n  = x  * 0 .  Let our arbitrary triangle be (S1, 

S 2, 5 3). The operation in Definition 2.3.1 to test if the triangle begins a p-cycle com

pletely disconnects the graph 1(H).  Let (S2, S 3, S f )  be another triangle and we will 

show that it cannot begin a P-cycle. Note that, S l n S 2 n S 3 = x 1'3 x , S 2 r>S3 r \ S A
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= x 2 □  x , and Xj n  x 2 *  0 . Hence, the operation in Definition 2.3.1, when testing the 

triangle (S2, S 3, S4), would also completely disconnect the graph, justifying that it 

does not begin a P-cycle. Thus, no triangle in 1(H)  begins a P-cycle, hence H  is P- 

acyclic. ■

Theorem 2.3.7: Let I (H ) be the intersection graph and let /* (H)  = {/*(//), I 2(H) , ..., 

I k (H)}, \ < k  <n,  where H( H)  is a maximal clique of 1(H).  Now, H  is P-acyclic if 

and only if each H ( H) satisfies the condition of Lemma 2.3.6.

Proof: The proof follows from Lemma 2.3.6.H

4. ALGORITHMS AND COMPLEXITY

We present efficient recognition algorithms based on the characterizations 

developed for various acyclicities in section 3. We now state a combinatorial lemma.

Lemma 2.4.1 (see [60]) : Let Sv be the set of all maximal cliques of a chordal graph 

containing vertex v, | Sv | = O (n + m ).■

>From Lemma 2.4.1 we can see that the sum of the sizes of all edge labels of the 

intersection graph 1(H)  for a set of maximal cliques H  of a chordal graph is 

O (n + m ). We now present a method to construct the intersection graph efficiently.

Given a Chordal graph G with n vertices and m edges its maximal cliques H 

can be determined in 0(log 2n) time with O(n +m)  processors on a CRCW-PRAM 

[60]. Let the maximal cliques be represented as a vertex-clique incidence lists M .



Let M  (/) correspond to the incidence list of vertex v,-. The intersection graph I  (H ) 

can be constructed as follows. Allocate processors P r iti, P r i,\, •••> P r i,\M(r)\l t0 

incidence list of vertex vr . The processor P r t j  stores the following information: (a), 

the vertex vr , (b). the clique number 5(-, (c). the adjacent clique number Sj *  Si . The 

total number of processors is O (n +m) ,  since the sum of the sizes of all edge labels is 

0 ( n  +m).  Arrange all the processors sorted first by the field (b) and then by the field

(c). Now, from the sorted order the edges and its labels from each clique 5,- can be 

easily determined. The sorting can be done in O (logn) time with 0 ( n  +m)  proces

sors using the sorting algorithm of Cole [24]. Thus, the intersection graph I  (H) can 

be constructed in O (logn) time with O {n + m ) processors.

Theorem 2.4.2: Given a clique-vertex incidence list M  for a set of maximal cliques H  

of G the intersection graph 1(H)  with labeled edges can be determined in 0(logn ) 

time using 0 (n  + m )  processors on a CRCW-PRAMmodel.■

The following Lemma by Fisher [41] establishes an upper bound on the number 

of triangles of graph G with n vertices and m edges. This Lemma would be useful in 

deriving the complexity estimates for the recognition algorithms.

Lemma 2.4.3: The upper bound on the number of triangles of a graph with n Vertices 

and m edges is O (m3/2).B

We will now present methods to recognize various hypergraph acyclicities. 

>From Lemma 2.3.1, for a hypergraph to be Berge-, y-, or p-acyclic the intersection
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graph of the hyperedges must be chordal. We will assume that as a preprocessing 

step, the intersection graph 1(H)  has been tested for chordality, the nodes are assigned 

PEO numbers, and the maximal cliques of 1(H)  have been determined in O (log2n ) 

time with 0 ( n  +m)  processors on a CRCW-PRAM using the algorithm of Klein [60]. 

We have the following theorem for Berge-acyclicity recognition complexity.

Theorem 2.4.4: Let H  be the maximal cliques of a chordal graph G with n vertices 

and m edges and let 1(H)  be chordal. Berge-acyclicity of H  can be recognized in 

time O (log2n ) with 0 ( n  +m)  processors on a CRCW-PRAM model.

Proof'. Check the condition of Coro. 2.3.3 on each maximal clique of I  (H). Since the 

total number of edges is at most 0  (n + m ) (Lemma 2.4.1), checking all the maximal 

cliques can be done in constant time with O (n +m)  processors on a CRCW-PRAM.■

For recognizing y-acyclicity we process each clique H (H) of 1(H)  as follows. 

Choose the edge label lj in V  (H) whose size is minimum. This can be done for all 

maximal cliques in time O (logn) with 0 ( n  + m ) processors. Remove edges from 

I J(H)  whose label is lj (removal operation). This operation is clearly takes 0(1)  

time with 0 ( n  +m)  processors from Lemma 2.4.1. We will now show that if the 

degree of each node in V  (H) is less than two after the removal operation, then V  (H) 

satisfies Theorem 2.3.4 and hence the hypergraph formed using the maximal cliques 

H  is y-acyclic. Let us assume that V  (H) satisfies Theorem 2.3.4 and after the remo

val of edges which has the label l j , let Sj  be the node with degree two, i.e., with edges 

(Sj, Sp ) and (Sj, Sq). Now, the edge labels of (Sj, Sp ) and (Sj, Sq) should be the 

same for otherwise we have a triangle (Sj, Sp , Sq) which does not satisfy Theorem
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2.3.4, a contradiction. The degree of each node in I J(H)  after the removal operation 

can be determined in 0 (1) time with 0 ( n  +m)  processors, thus, y-acyclicity can be 

recognized in O(log2n ) time with 0 (n +m)  processors on a CRCW-PRAM.

Theorem 2.4.5: Let H  be the maximal cliques of a chordal graph G with n vertices 

and m edges and let 1(H)  be chordal, y-acyclicity can be recognized in 0  (log2« ) 

with 0  (n + m ) processors on a CRCW-PRAM model. ■

For recognizing (5-acyclicities using the characterization in Lemma 2.3.5, we 

have to necessarily process each triangle. Since the intersection graph has at most 

0 ( n  +m)  edges the number of triangles is 0( (n  + m )3/2) from Lemma 2.4.3. With 

P = Min( |SinSj  | , \ S jnSk | , |SknS,- | ) the triangle (5,-, Sj , Sk) can be checked to see 

if it satisfies the condition of Lemma 2.3.5 in 0 (1 ) time by indexing into an array 

storing edge labels. In fact, any set of t triangles each of which contains at least one 

edge whose label size is less than or equal to P , can be processed in 0  (1) time using 

P . t processors. Now, P . t < 0 ( ( n  + m )3/2) from Lemma 2.4.1 and Lemma 2.4.3. 

Now it can be easily seen that with 0( (n  + m )3/2) processors all triangles in 1(H)  can 

be processed. The condition of Lemma 2.3.6 is checked as follows. For each maxi

mal clique I s (H) i n i ( H ), arbitrarily choose a triangle (5,-, Sj , Sk). Assume edge (S; , 

Sj) is contained (label is contained) in edges (Sj, Sk ) and (Sk , 5t ). Now for all edges 

(St , Sj) which contains (£,-, Sj), remove node St from H (H). All edges (Sr , Ss ) 

whose edge labels are contained in (5,-, Sj) are removed from H(H).  Now, check to 

see if Si and Sk are connected in 13 (H) using the connected components algorithm 

[87]. If Sj and Sk are connected then, triangle (5,-, Sj,  Sk) begins a (3-cycle and H is
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(3-cyclic. If the sum of the sizes of all edge labels in V  (H) is T,  then all the above 

operations can be done in O (logT) time using 0 ( T )  processors. Hence, all the maxi

mal cliques of 1(H)  can be processed in O (logn) time using O (n + m)  processors.

Theorem 2.4.6: Let H  be the maximal cliques of the chordal graph G with n vertices 

and m edges and let 1(H)  be chordal, (3-acyclicity can be recognized in O (log2n ) 

time with 0( (n  + m )3/2/log2n ) processors on a CRCW-PRAM.

Proof. Follows from the discussion above.®

5. ALGORITHM FOR COMPUTING STRONGLY PERFECT VERTEX 
ELIMINATION SCHEMES

We use the characterization of Dahlhaus and Karpinski [26] for strongly perfect 

elimination schemes in terms of maximal cliques of the graph and develop a fast 

parallel algorithm for computing such a scheme. Using the same characterization 

Dahlhaus and Karpinski developed an NC2 algorithm using 0 ( n 8) processors. Our 

use of the intersection graph of the maximal cliques of a strongly chordal graph 

reduces the processor bound by a great extent. We will now state some definitions 

and present the characterization for strongly perfect elimination schemes.

Definition 2.5.1 [26]: Choose a clique m and say x  <m y  if and only if there is a 

chain from* to m v iay , such that the sequence x 0 = x ,  x l t ..., xi = y , x i+1, ...,xk = m 

with n x i  andx,- n x i+1 are incomparable by inclusion.®
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Definition 2.5.2 [26]: For two cliques x  and y we say x  <mL y  if and only if there 

exists a clique z such that 0  * x  n  y c . y  n z . l

Lemma 2.5.1 [26]: Let <m be the transitive closure of <m' u  <mL . The ordering 

satisfying <m is a strongly perfect elimination ordering of the maximal cliques of the 

strongly chordal graph. ■

We now present an algorithm for computing the strongly perfect elimination ord

ering of the vertices of a strongly chordal graph.

Algorithm SPEO;
Input: A strongly chordal graph G with n -vertices and m -edges.
Output: An ordering of vertices of G satisfying strongly perfect elimination ordering.

Begin
1. Determine the maximal cliques H  of G .
2. Construct the intersection graph 1(H).
3. Obtain a PEO numbering of the chordal intersection graph 1(H).
4. Determine the maximal cliques R of  1(H).
5. Order the maximal cliques in R as R 1?..., Rk such that R t

contains a vertex whose PEO number is less than all vertices in R j , for / < j  < k .
6. For each clique /?,• of R Do-in-parallel 

Begin
7. For each triangle ( x , y , z ) i n R i  Do-in-parallel 

Begin
8 . Determine the ‘containment edge’, i.e., ( x , y )  such thatx  n y  Q y  n z , 

and x  n y  q x  n  z.
9. Add arcs (x , z ) and ( y , z ) in the directed graph G (/?,•).

End;
10. Compute strong components of G (/?,•), arbitrarily order members of each 

strong components and starting with a component with indegree zero construct a 
directed path containing all vertices in G (/?, ).

End;
11. Merge all the paths computed in step 10 after deleting vertices /// in Rj  

if is in some with i < j .  Call this <m, the ordering of
cliques of G satisfying Lemma 2.5.1.

12. Remove vertices v from maximal cliques Hj  of G if it is in some 
Hi with i < j  in the ordering <m.
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13. Order vertices of G in each clique //,- based on the PEO numbers assigned 
to them (lower to higher).

End.

We will now show that the above algorithm correctly computes the SPEO on vertices 

of a graph G which is strongly chordal. >From Lemma 2.3.1 it is clear that the graph 

1(H)  of a strongly chordal graph is chordal. In Step 5 the ordering R h ..., Rk of the 

maximal cliques defines the <m ordering as follows. We will assume that Rt is the 

union of all vertices in the maximal cliques of G contained in i?(-, since /?j is a maxi

mal clique of 1(H).  Let Kt_x = -  { R ^  n  /?, }, Ki+1 = Ri+1 -  {Ri+1 n  R t }, Kt =

Ri -  {AT,-! u  Ki+1}. For /t_j e  K ^ ,  e  Kt , li+l e  Ki+1, clearly, /i _ 1 n  /,■ and /,• n  

li+i are incomparable by inclusion. Hence, using the ordering of the /?, ’s of 1(H)  the 

<m ordering of the maximal cliques of the graph G is determined. Now, we are to 

order the vertices in each /?,■ satisfying the <mL ordering. Note that since G is 

strongly chordal, every triangle in 1(H)  contains a ‘containment edge’. For a given 

triangle (x, y,  z)  the ordering done in Steps 7-9 clearly satisfies the <mL ordering. 

Steps 10-12  performs the transitive closure of the orderings <m' and <mL.

The implementation of the algorithm SPEO is done as follows. We will first 

state the following remark without proof.

REMARK 2.5.2: The following problem can be solved in 0( logP)  time using P pro

cessors on CRCW-PRAM. Let M  be an array of size P containing 0’s and l ’s. At 

the end of the execution of the algorithm an array element M(- contains a 1 if and only
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if Mi  contained a 1 initially and all Mj  = 0  for 1 < y < i < P .

Steps 1-4 can be implemented in 0  (log2n ) time using O (n + m ) processors on a 

CRCW-PRAM. Step 5 is determined by finding the minimum vertex number in each 

Ri and sorting the /?, ’s based on the minimum vertex numbers. The operation can be 

done in O (logn) time using O(n +m)  processors. For sorting the parallel sorting 

algorithm of Cole [24] can be used.

>From Lemma 2.3.7 for a graph with n -vertices and m -edges there are at most 

0( (n  + m )  ) triangles. Using an argument similar to the one given for the recogni

tion complexity in Section 3, Steps 6-10 can be implemented in O (log2n ) time with 

0( (n  + m )3/2/log2n ) processors. Step 10 can be implemented in O (logn) time using 

M( n)  processors [56]. Steps 11-12 can be implemented in 0( logn)  time with 

O(n + m)  processors from REMARK 2.5.2. Step 13 can be done in O(logn) time 

with O(n)  processors using integer sorting algorithm of Cole [24]. We now state the 

following theorem.

Theorem 2.5.3: The strongly perfect elimination ordering of the vertices of a strongly 

chordal graph G with n -vertices and m -edges can be determined in O (log2n ) time 

with 0( ( n  +m  )3/2/log2« + M  (n)) processors on a CRCW-PRAM.®

6. MAXIMUM MATCHING IN STRONGLY CHORDAL GRAPHS

In this section we will present a result for finding the maximum matching in 

strongly chordal graphs. A matching is a subset of edges in which no two edges are



adjacent. A maximal matching is a matching to which no edge in the graph can be 

added. A maximal matching with largest number of edges is called the maximum 

matching. A matching is a perfect matching is all vertices are covered by the edges in 

the matching. Determining a maximum matching in general graphs is in randomized 

NC [57]. It was shown by Dahlhaus and Karpinski [26] that maximum matching in 

chordal graphs is as hard as matching in bi-partite graphs which is as hard as general 

graphs. Rabin and Vazirani [78] and Mulmuley et. al. [71] have shown that is a graph 

has a unique perfect matching then the matching can be computed in O (log2n ) time. 

It is known that maximum matching is NC-reducible to perfect matching, hence max

imum matching can be solved in O (log2n ) time for strongly chordal graphs if it is 

shown to have a unique prefect matching. It was shown by Dahlhaus and Karpinski 

[26] that there is a unique perfect matching for strongly chordal graphs.

The actual algorithm for finding a matching involves determining edges in the 

following manner. Let < be the strongly perfect elimination ordering of the vertices 

of the strongly chordal graph. For every pair of edges (u 1? u2), (v 1} v2), with (u l5 v x) 

e E (the edge set) and u^ < v2 and v 1 < u 2 take (u j, v and (u.2, v2) into the match

ing. The proof of the above method is presented in [26]. Since the computing of 

strongly perfect elimination ordering is necessary for computing the maximum match

ing we state the main result.

Theorem 2.6.1: The maximum matching of a strongly chordal graph G with n ver

tices and m edges can be computed in O (log2« ) time using 

0( (n + m )3;2/log2« +M(n) )  processors on a CRCW-PRAM.
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Proof: The proof follows from Theorem 2.5.3 and above discussion.*

7. CONCLUSION

The recognition results obtained in this chapter are summarized in the following 

table.

Graph G 
(n vertices, m edges)

Hypergraph H, the 
maximal cliques of G

Previous recognition 
complexity

Our recognition 
complexity

Time Processor Time Processor

Chordal a-acyclicity O aogM R l] 0 ( n  +m)  [21] - -

Strongly Chordal P-acyclicity 0(log2n) [8] 0 (« 4)[8] O (log2n ) 0  ((n +m )3/2/log2n)

Ptolemaic y-acyclicity - - 0  (log2«) 0{n + m )

Block Berge-acyclicity - - O (log2n ) 0(n +m)

Table 1. - Time and processor complexity for recognition of the above graphs.



Chapter Three

PARALLEL ALGORITHMS FOR MINIMAL CONSTRUCTION OF A CLASS
OF CHORDAL GRAPHS

1. INTRODUCTION

This chapter presents parallel algorithms for the construction of strongly chordal 

(P-acyclic hypergraph), ptolemaic (y-acyclic hypergraph), and block (Berge-acyclic 

hypergraph) graphs given an arbitrary graph by adding a minimal set of edges. The 

parallel algorithm of Dahlhaus and Karpinski [27] determines the minimal set of 

edges needed to construct a chordal graph from an arbitrary n -vertex m -edge graph in 

O (log3/!) time with O (run) processors on a CRCW-PRAM. Construction of a chor

dal graph from an arbitrary graph is also referred to as determining the minimal elimi

nation ordering or minimal fill-in. It is well known that minimum fill-in is NP- 

complete [92]. In this chapter we outline a method to obtain a minimal strong elimi

nation ordering (MSEO) given an arbitrary graph.

Determining the MSEO has several advantages. Clearly, problems which are 

NP-complete (see Chapter 1) on chordal graphs can now be solved in polynomial time 

on the minimally constructed strongly chordal graph. Also, determining the MSEO is 

equivalent to converting an arbitrary (0 , l)-matrix into a totally balanced matrix by

39
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using minimal fill-in’s [4]. In relational database theory it was shown that p-acyclic 

schemes satisfied desirable properties which the a-acyclic schemes did not [11]. So 

determining the MSEO can be thought of as designing P-acyclic relational databases 

from cyclic ones by adding a minimal set of attributes in each schema. A new elimi

nation ordering of vertices called a doubly perfect elimination ordering (DPEO) for a 

ptolemaic graph or y-acyclic hypergraph is defined. Using DPEO we present a paral

lel algorithm to find the minimal set of edges needed to make an arbitrary graph a 

ptolemaic graph.

2. MINIMAL CONSTRUCTION OF STRONGLY PERFECT ELIMINATION 
ORDERING (MSEO)

For the sake of completeness we present the following definitions again.

Definition 3.2.1 (Perfect Elimination Ordering): A vertex v is simplical if the graph 

induced by v and its neighbors is a clique. An ordering of the vertices v ls v2, ..., v„ 

with V; simplical in the graph induced by {vf, vi+1, ..., v„} for all i is called a perfect 

elimination scheme or ordering (PEO). ■

Definition 3.2.2 (Strongly Perfect Elimination Ordering): A perfect elimination order

ing (<) of the vertices Vj, ..., vn is a strongly perfect elimination ordering (SPEO) if 

and only if for any x , y , x  , y  , such that (x ,y ), ( x , y  ), (x' ,y)  e  E andx <x  , y  <y



we have (x , y  ) e E . The edge (x' ,y ) is called the deficient edge. We say that the 

edge ( x , y )  creates (x , y ).■

Our method of constructing an MSEO will be to first construct an MEO using the 

algorithm of Dahlhaus and Kaipinski [27] and then each edge will be examined to 

determine the "deficient edge" as defined in Definition 3.2.2. The following lemma 

proves that given a strongly chordal graph G with PEO (<), the ordering < is not an 

SPEO ordering.

Lemma 3.2.3: A PEO (<) of a strongly chordal graph need not be an SPEO.

Proof: Counterexample. See Figure 3.2.1.■

2

1

4
The above ordering of the vertices is not an SPEO  ordering 
sin ce ed ge (1 ,6 )  creates the ed ge (3 ,7 )

Figure 3.2.1: A strongly chordal graph with 
PEO numbering which is not an SPEO.
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Algorithm Construct_MSEO;
Input : A Graph G with n -vertices and m -edges. 
Output : A strongly chordal graph Gsc.

Begin
1. Obtain Gc the chordal graph of G .
2. Check if Gc is strongly chordal and if so output Gc ; Stop.
3. Obtain PEO (<) of the graph Gc .
4- Vsc K  ’ &sc Ec .
5. Process each edge ( jc , y ) of Ec in parallel as follows
6 . If (jc  , y ) and ( x , y )  e  Ec withjc <x  andy < y  then
7. ADD edge (x,  y  ) to Esc.
End.

Lemma 3.2.4: Let < be the PEO ordering of the graph G which is minimally con

structed into an SPEO (G ). For each edge ( x \ y )  in G -G  there exists an edge (jc , y ) 

in G which defines (x , y  ) in G .

Proof: Let G be chordal and not strongly chordal. Let us assume that an edge (x", y  ) 

e  G -G  creates (x , y  ). We will show that there exists an edge (jc , y ) e  G which 

created (jc , y ). Let (p , q)  be the edge that creates (x'\ y  ). This impliesp < x ,q  < 

y ", and (p , y"), (q , x  ) e  G . Now, since G is chordal either (p , jc " ) or (q , y ' ) e  G . 

Also from assumption y < y  and jc < jc . This implies ( x=p, y=y)  or (x=q,y  =y ) 

will create (jc , y ), hence, the Lemma. ■

Figure 3.2.2 gives an example of a chordal graph with PEO numbering of the vertices 

and the dotted lines correspond to the "deficient edges" determined the PEO ordering.
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Note that the graph in Figure 3.2.2 is a strongly chordal graph when the dotted edges 

are included.

3

4

Figure 3.2.2: A chordal graph with minimal edges (dotted) 
making it strongly chordal.

Theorem 3.2.5: Given an arbitrary graph G with n -vertices and m -edges algorithm 

Construct_MSEO correctly determines the minimal set of edges needed to make G 

strongly chordal.

Proof: Since every strongly chordal graph is also a chordal graph, Step 1. determines 

the minimal set of edges needed to make an arbitrary graph chordal. In Lemma 3.2.3 

it was shown that a PEO of a strongly chordal graph need not be an SPEO. In Step 2. 

we check if the graph obtained at the end of Step 1. is strongly chordal and if so we 

stop. If the graph obtained is not strongly chordal, then, we determine the a PEO of 

the graph and minimally transform the PEO into an SPEO by adding the deficient



44

edges. This is done in Steps 5-7. From Lemma 3.2.4 it is clear that all the deficient 

edges will be determined. Hence, the theorem.!

Theorem 3.2.6: The complexity of the algorithm Construct_MSEO which is to be 

implemented on a CRCW-PRAM is listed as follows:

(a) O (log3/!) time and O (ran) processors when the input graph is an arbitrary graph.

(b) O (log2n ) time and 0( (n  + m)3/2/log2/i) processors when the input graph is a 

chordal graph.

A

(c) O (log /z) time and 0 ( n  +m)  processors when the input graph is a chordal graph 

and not a strongly chordal graph.

(d) 0 (1) time and 0 ( n  + m ) processors when the input graph is a chordal graph 

with PEO and not a strongly chordal graph.

Proof: Step 1. can be executed using the algorithm of Dahlhaus and Karpinski [27] in 

O (log2n ) time using 0{nm)  processors. Step 2. can be executed in O (log2/!) time 

using 0((/z + /n )3/2/log2/i) processors using the algorithm presented in Chapter 2. 

Step 3. can be executed in O (log2/!) time using the algorithm of Klein [60]. Steps 4-7 

can be executed in O (1) time using O(n + m ) processors. The complexities given in

(a)-(d) follows directly from above.®
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3. MINIMAL CONSTRUCTION DOUBLY PERFECT ELIMINATION ORD
ERING (MDEO)

In this section we introduce a new elimination ordering of the vertices of the 

ptolemaic graph. Using this elimination ordering we determine the minimal set of 

edges needed to make an arbitrary graph a ptolemaic graph.

Definition 3.2.7: A strongly perfect elimination ordering (<) is called a doubly perfect 

elimination ordering if and only if for each vertex p  and edges ( p , y ) ,  ( p , x )  e  E,  

and (jc, y ), (x,  y'), (*', y )  e  E  with x  < x ,  y  < y \  we have ( / ,  y \  ( x , x ) ,  (y, y ) e 

E.

Theorem 3.2.8: A graph G is ptolemaic if and only if it has a doubly perfect elimina

tion ordering (DPEO).

Proof: There are two parts to this proof.

(if-part): Let G be ptolemaic and we will show it has a DPEO. Since, G is ptolemaic 

it has an SPEO. This implies for ( x , y ) ,  (x, y \  (x\  y )  e  E with x  <x ,  y  < x  we

* f  r  /

have (x , y  ) e  E.  Now, since G is chordal we have either (x , x )  or (y, y ) e  E . 

Assume we have (x , x)  e  E and (y , y ) £ E.  There can exists a vertex p such that

f  /  /  /

( p , x )  and (p , y ) e  E . The graph induced by vertices (jc, x  , y , y , p ) is not ptole

maic, contradicting our assumption. This completes the if-part.

(only-if): Let < be the DPEO of a graph G . We will show that the graph G is ptole-
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maic. Since a DPEO is also a SPEO, the graph G is strongly chordal. For each p  

with (*, y), (.x , x ) , ( y ,  y ), (.x , y ), (p, x  ), (p, y )  such that x < x  and y  < y  the 

graph induced by vertices ( p , x , y , x  , y  ) is ptolemaic.■

Algorithm Construct_MDEO;
Input : A Graph G with n - vertices and m -edges.
Output : A Ptolemaic graph Gp .

Begin
1. Obtain Gsc the strongly chordal graph of G .
2. Check if Gsc is ptolemaic and if so output Gsc; Stop.
3. Vp <r— Vsc; Ep «— Esc.
4. Process each edge (x ,y ) of Esc in parallel as follows
5. If (x , y \ (x ,y  ), (Rt x \  (R, y  ) e  Esc withx <x  andy < y ' 

for some/? with/? >x  o rR >y  and (/? , y ), (/?,x )  € Ep Then
6 . ADD edges ( x , x  ), (y ,y  ) to Ep .
End.

Figure 3.2.3 gives an example of a strongly chordal graph which is made a ptolemaic 

graph by minimal addition of edges (dotted).

3

4

Figure 3.2.3: A strongly chordal graph with minimal edges (dotted) 
making it a ptolemaic graph.
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Theorem 3.2.9: Given an arbitrary graph G with n -vertices and m -edges algorithm 

Construct_MDEO correctly determines the minimal set of edges needed to make G 

ptolemaic. The algorithm Construct_MDEO which runs in CRCW-PRAM has the 

following complexity.

(a) O (log3/!) time and O (nm) processors when the input graph is an arbitrary graph.

(b) O (log2/! time and 0( (n  + m )3/2/log2n +M(n) )  processors when the input graph 

is a strongly chordal graph.

(c) 0 (1) time and 0 ( n  + m ) processors when the input graph is strongly chordal 

and its SPEO is given.

Proof: The correctness of the algorithm is similar to the one presented for Theorem 

3.2.5. Step 2. can be checked in O(log2/!) time using O (n + m ) processors using the 

algorithm presented in Chapter 2. The SPEO of a strongly chordal graph can be 

obtained in O(log2/!) time using 0( (n  + m )3/2/log2/i +M(n) )  processors (Chapter 2). 

Steps 3-6 can be executed in O (1) time using 0 ( n  + m )  processors.®

4. MINIMAL CONSTRUCTION OF BLOCK GRAPHS

We have seen earlier that block graphs are biconnected components and each 

block of the biconnected components is a completely connected subgraph. Taijan and 

Vishkin [91] present a parallel algorithm to determine all the blocks of a graph in



48

O (logn) time using O (n + m ) processors on a CRCW-PRAM model. Now, the con

struction of block graphs can be easily done using the following simple algorithm.

Algorithm Construct_Block_Graph;
Input : A Graph G with n -vertices and m -edges.
Output : A Block graph Gb.

Begin
1. Determine all the blocks of the graph G .
2. Completely connect the vertices in each block.
End.

Figure 3.2.3 gives an example of a graph whose biconnected components are com 

pletely connected making it a block graph.

f

a

Figure 3.2.3: A graph with minimal edges (dotted) 
making it a block graph.

Theorem 3.2.10: Given an arbitrary graph G with n -vertices and m-edges algorithm

Construct_Block_Graph correctly determines the minimal set of edges needed to



make G a block graph. The algorithm Construct_Block_Graph which runs in 

CRCW-PRAM has a time complexity of O (logn) time and uses O(n + m ) proces

sors.

Proof: The correctness of the algorithm can be easily verified. Step 1. of the above 

algorithm takes 0(logn ) time and uses 0 (n  + m ) processors. Step 2. can be done 

using pointer jumping techniques to create the adjacency list.B
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5. CONCLUSION

The results obtained in this chapter are summarized in the following table. All 

algorithms are designed for a CRCW-PRAM.

Input Graph G 

(n vertices, m edges)
Output Graph

Algorithmic

complexity

Time Processor

Arbitrary Chordal O (log3n ) 0(nm)

Arbitrary Strongly Chordal 0  (log3n) 0(nm)

Arbitrary Ptolemaic O (log3n) 0(nm)

Arbitrary Block 0  (logn) 0  (n + m )

Chordal 

(not strongly chordal)

Strongly Chordal O (log2n) 0( n  +m )

Chordal with 

PEO and not 

strongly chordal

Strongly Chordal 0(1) 0 ( n + m )

Chordal Strongly Chordal 0  (log2n ) 0((n +m )3/2/log2n)

Strongly Chordal 

with SPEO
Ptolemaic 0(1) 0  (n + m )

Strongly Chordal Ptolemaic 0  (log2n ) 0((n  +m )3,2/log2n +M(n))



Chapter Four

EFFICIENT PARALLEL ALGORITHMS FOR DOMINATION PROBLEMS 
ON STRONGLY CHORDAL GRAPHS

1. INTRODUCTION

The main goal of this chapter is to develop linear-time sequential and efficient 

parallel algorithms for various domination problems on strongly chordal graphs. A 

dominating set of a graph G = (V\ E ) is a set of vertices D such that for every vertex 

x  in V there exists some vertex y  in D such that (x , y ) is in E . A dominating set is 

connected if the subgraph G[D]  induced by D is connected, total if G [D ] has no iso

lated vertex, and independent if vertices in D  are pairwise non-adjacent in G . Given 

a strongly chordal graph G with n vertices and m  edges, we present sequential algo

rithms with 0 ( n  +m)  time complexity and fast parallel algorithms with O(log2n ) 

time complexity using 0 (n  + m ) processors on a CRCW-PRAM model for the fol

lowing problems:

(1) Dominating set

(2) Domatic number, i.e., determine the maximum integer K  and disjoint vertex sets 

V X, V 2, VK such that each Vt- is a dominating set

(3) Connected dominating set

51
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(4) Total dominating set

It has been shown earlier that directed-path graphs, ptolemaic graphs, block 

graphs, interval graphs, and threshold graphs are also strongly chordal, hence, our 

results extend to those graphs also.

The domination problem is used in facility location problems, where each vertex 

represents a customer and a potential site for a facility. A feasible solution 

corresponds to a set of facilities located at D £  V such that every customer is adjacent 

to some facility. An optimal solution is a minimum cardinality set of facilities with 

this property.

The domination problem is NP-complete for undirected path graphs [63], split 

graphs [62], bipartite graphs [62] and 2-CUBS [25], Polynomial time algorithms for 

the domination problem are available in trees [63], series-parallel graphs [63], permu

tation graphs [25], interval graphs [59] and strongly chordal graphs [20].

Several variations of the domination problem have been studied in the past. A 

A;-dominating set of a graph G = (V, E)  is a set of vertices D such that for every ver

tex x  in V there exists some vertexy in D satisfying d ( x , y ) < k .  Usually, "domina

tion" is used for 1-domination. A dominating set D of G is independent if the ver

tices of D are pairwise non-adjacent, connected if the subgraph G[D] induced by D
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is connected, and total if G [£> ] has no isolated vertex.

Domination problems for a special class of graphs called the strongly chordal 

graph [37] or sun-free chordal graph [20] are investigated here. An undirected graph 

is chordal if every cycle of length at least four contains a chord, i.e., an edge between 

two vertices that are not consecutive in the cycle. Chordal graphs are an important 

subclass of perfect graphs [47]. A strongly chordal graph [37] is a chordal graph that 

in every even cycle with at least six nodes contains a strong chord (i.e., a chord join

ing two nodes with an odd distance in the cycle).

Chang [20] presented a linear time algorithms for the fc-domination problems in 

strongly chordal graph given the simple elimination ordering of its vertices. In [4] an

<5

0 (n  ) algorithm on an n vertex strongly chordal graph for obtaining the simple elimi

nation ordering is presented. Farber [38] presented a linear time sequential algorithm 

for the weighted 1-domination problem and weighted independent 1-domination prob

lem given the strongly perfect elimination ordering of the vertices of the strongly 

chordal graph.

Recently, He and Yesha [51] presented an efficient parallel algorithm for the 

k -domination problem on trees. Bertossi and Moretti [16] developed parallel algo

rithms for several weighted domination problems on circular-arc graphs. Parallel
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algorithms on chordal graphs have attracted some attention recently. Philip Klein [60] 

presents efficient parallel algorithms on chordal graphs. Klein presents parallel algo

rithms to determine the maximal cliques and maximum independent set of a chordal 

graph in O (log2n ) time using 0 (n  + m ) processors on a CRCW-PRAM model. We 

use the results of Klein to obtain efficient parallel algorithms for the domination prob

lems and its variants.

Our method of solving the domination problems involves determining the struc

ture of the intersection graph of the maximal cliques of a strongly chordal graph. By 

the use of an intersection graph we are able to obtain a dominating set which is con

nected and hence a total dominating set.

It was shown by D’Atri and Moscarini [3] that a ptolemaic graph and a block 

graph are also strongly chordal. It is also known that directed-path graphs, interval 

graphs, and threshold graphs are also strongly chordal, hence our results extends to 

those graphs also.

The model of computation used in our parallel algorithms is the parallel random 

access machine or PRAM in which all processors have access to a common memory 

and run synchronously. Both simultaneous reading as well as writing on common 

memory locations are allowed. Furthermore, in the case of simultaneous writing, an
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The rest of the chapter is organized along the following lines. Section 2 presents 

sequential and parallel algorithms for the construction of the intersection graph of the 

maximal cliques of a chordal graph. We derive several properties of the intersection 

graph of a strongly chordal graph. In Section 3 we derive sequential and parallel algo

rithms for the domination problems based on the properties derived in Section 2. We 

summarize in Section 4. The results obtained in this chapter appear in [Radhakrish- 

nan and Iyengar] [83].

2. THE INTERSECTION GRAPH OF A STRONGLY CHORDAL GRAPH

In this section, we will define the intersection graph 1(H)  of the maximal cliques 

H  of a strongly chordal graph G and present a linear time sequential and efficient 

parallel algorithm to construct the intersection graph. We next derive several proper

ties of the intersection graph of the strongly chordal graph.

Definition 4.2.1 [Intersection Graph]: Let H be the maximal cliques [Si, S 2, ..., Sr }, 

1 < r < n , of a chordal graph G . We can treat H  as a hypergraph by treating each 

maximal clique in H  as a hyperedge. The intersection graph 1(H)  of H  is a graph 

containing edges 5,- e  H  as nodes and edges (Sh Sj)  labeled I (Si n  Sj), if Sj n  Sj *
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0 . The size of an edge label = 5,- n  Sj is | S,- n  Sj | .■

The following equivalence was proved by D’Atri and Moscarini [3].

Theorem 4.2.1: A graph G is chordal, strongly chordal, ptolemaic, or block if and 

only if the hypergraph formed using the maximal cliques H  of G is a-acyclic, p- 

acyclic, y-acyclic, or Berge-acyclic, respectively. ■

Definition 4.2.2 [Hypergraph Acyclicity]:

A hypergraph H  is P-acyclic [36] if it does not contain the following sequence 

(Si, Jtj, S 2, x 2, ..., Sm,x m,S m+i) satisfying the following conditions:

(i) x l t ..., xm are distinct nodes of H ;

(ii) S !,..., Sm are distinct edges of H , and Sm+1 = 5 f,

(iii) m > 3, that is, there are at least 3 edges involved; and

(iv) Xi is in 5,- and Si+l (1  <  z <,m) and in no other Sj M

Fagin [36] proved the following hierarchy of concepts (no reverse implication 

holds)

Berge-acyclicity => y-acyclicity => P-acyclicity => a-acyclicity.

Gavril [45] provided a linear time sequential algorithm to determine the maximal 

cliques of a chordal graph. Since a strongly chordal graph is a chordal graph, we can
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in linear time. Klein [60] presented a parallel algorithm to determine the maximal 

cliques and a minimum clique cover of a chordal graph in O (log2/:) time with 

O in + m ) processors on a CRCW-PRAM. The following combinatorial lemma holds 

for chordal graphs (see [60]).

Lemma 4.2.2: Let Sv be the set of all maximal cliques of a chordal graph containing 

vertex v . | Sv | = 0 (n  + m ) M

We now present a linear time algorithm for constructing the intersection graph 

1(H)  given the maximal cliques H  represented as a vertex-clique incidence lists.
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Algorithm Construct_Intersection_Graph;
Input: Maximal cliques H  represented as vertex-clique incidence list M .

M  (i ) is the list for clique 5,-.
Output: Intersection graph 1(H)  represented as an incidence list L .

L (i) is the pairs (i l5 / j ) , (ik, lk), where lj = S,- n  Sj *  0 .
Data structures:
(1) An n x n uninitialized matrix R with columns and rows labeled with clique numbers.
(2) R ( i , j )  points to a set which stores 5,- r> Sj *  0 .
(3) A ‘Flag’ field in each R (i , j ) which is uninitialized.
(4) A multi-set P (i) for each clique Sf. P (i ).j means that the j  th element of P ( i), and

Si n  Sp<jjj 5* 0 .

Begin
1. For / := 1 t on  do
2. For j  := 1 to \M(i ) \  do
3. For k. := 1 to |M (/) | do
4. l f ( j  *  A:) then

Begin
5. Add vertex vt- into the set in R(J,  k  );
6 . Add the number k into the multi-set P (j );
7. F lag(/,£) := 0 ;

End;
8 . For / := 1 to Number_of_cliques do
9. For j  := 1 to IPO')! do
10. If FlagO»P 0  )-j) = 0 then 

Begin
11. Add the set in R (i , P (i ) . j) into L (i);
1 2 . FlagO\PO').y') = l;

End;
End.

We will show that the above algorithm has a linear time complexity. First we make 

the observation from Lemma 4.2.2 that the sum of the sizes of all edge labels of the 

intersection graph 1(H)  is 0 ( n  +m).  The number of times Step 5 would be executed
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is clearly 2.(n +m).  Also the sum of the sizes of all P ( /)’s is 2.(n + m). Thus, Step 

10 would be executed at most 2.(n + m )  times; hence, the time-complexity of the 

algorithm Construct_Intersection_Graph is O (n + m ).

Given a Chordal graph G with n vertices and m edges its maximal cliques H  

can be determined in 0(log2n) time with 0 (n  + m )  processors on a CRCW-PRAM 

[60]. Let the maximal cliques be represented as a vertex-clique incidence lists M. 

Let M(i )  correspond to the incidence list of vertex v,-. The intersection graph 1(H)  

can be constructed as follows. Allocate processors / >r, j , ..., P r i%\M{r) \210

incidence list of vertex vr . The processor P r i j  stores the following information: (a), 

the vertex vr , (b). the clique number 5,-, (c). the adjacent clique number Sj f* St . The 

total number of processors is 0 (n  +m),  since the sum of the sizes of all edge labels is 

O (n + m ). Arrange all the processors sorted first by the field (b) and then by the field

(c). Now, from the sorted order the edges and its labels from each clique 5,- can be 

easily determined. The sorting can be done in O (logn) time with O(n + m ) proces

sors using the integer sorting algorithm of Reif [85], Thus, the intersection graph 

1(H)  can be constructed in O(logn) time with O(n +m)  processors.

2.1. Properties of the intersection graph of a strongly chordal graph

We first derive two necessary conditions for strongly chordal graphs in terms of 

the intersection graph of its maximal cliques.
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Theorem 4.2.3: The intersection graph 1(H)  for a set of maximal cliques H  of the 

graph G is chordal, if G is strongly chordal.

Proof: When graph G is strongly chordal we know from Theorem 4.2.1 that H  is P- 

acyclic. We will show by contradiction that 1(H)  is chordal. Let H  be P-acyclic and 

1(H)  not chordal. Consider the sequence ( S i , x lt S 2, x 2, S 3, x 3, S 4, x 4, S t) in 1(H).  

The nodes x 2, x 3, and x 4 are all distinct (otherwise there would be a chord con

necting opposite vertices). The sequence is a P-cycle, which means that H  contains a 

P-cycle, a contradiction. Therefore, 1(H)  is chordal when G strongly chordal.■

Theorem 4.2.4: If H  is P-acyclic, then every triangle (Sit S j ,S k) in 1(H)  satisfies the 

condition Sp n S q £,Sp n  Sr and Sp n S q &Sq n S r for somep  * r  in [ i , j , k ] .

Proof: Let Sq n Sq = r x, S q n Sr = r 2, Sr c \Sq -  r 3, and H  be p-acyclic. If r x o r 2 

n r 3 = 0 , then we have a P-cycle, a contradiction to the assumption. If r x n r 2 n r 3 

= x  and x  c z r ^ i  = 1,2, 3, then we have a P-cycle by Definition 4.2.2, a contradiction. 

The case where (r1 = r 2) n  r 3 = 0  does not exist, and either r 3 = r x or the contain

ment stated in the Theorem holds. ■

The other properties of the intersection graph are stated in the following propositions.

Proposition 4.2.5: Let //, be a maximal clique of 1(H)  of a strongly chordal graph. 

Let lt be an edge label whose size is minimum among all edge labels in Ht *. The
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label /,• is contained in each vertex of Hi *.

Proof: Since /,- is the edge label whose size is minimum it is contained in every other 

edge in //,• from Theorem 4.2.4. This implies lt is in every vertex of / / f (i.e., adja

cent to all vertices of G in //, *).■

Proposition 4.2.6: Let H *  and H *  be two maximal cliques of 1(H)  of a strongly 

chordal graph with minimum edge labels /,• and l j , respectively. We have /,• n  lj = 0 .

Proof: If /j n  lj * 0 , then, every vertex in Hj* is connected to every vertex in H *  

(from Proposition 4.2.5) which implies //,• * =Hj * , a contradiction.■

Proposition 4.2.7: Let 1(H)  be a non-trivial intersection graph of a connected 

strongly chordal graph. At least one vertex of each maximal clique //,• * (the vertex in 

Hi * is a maximal clique of the graph G ) is in another maximal clique Hj  * of /  (H).

Proof: Since G is connected the above trivially holds. ■

The following theorem shows that the set of vertices obtained from each 

minimum edge label forms the dominating set. The dominating set thus obtained is a 

connected one and hence a total dominating set.

Theorem 4.2.8: Let D = [ax, a 2, .... ak ) be a vertex chosen from each of the 

minimum edge labels l \ , l 2> •••> h  of each of the clique in the minimum clique cover (a
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minimum set of cliques which covers all vertices) of the intersection graph 1(H)  of a 

strongly chordal graph G . Set D  is a minimum dominating set for G which is also 

connected if G is connected, hence a total dominating set.

Proof: Clearly, D is a dominating set for G from Proposition 4.2.5 and Proposition 

4.2.6 and the fact that each clique in the minimum clique cover contains a unique ver

tex. It is connected from Proposition 4.2.7. A dominating set which is connected 

does not have any isolated vertices, hence it is a total dominating set.l!

It was shown by Farber [38] that the domatic number of a strongly chordal graph 

is the minimum degree of a vertex of the graph plus one. The domatic number is 

clearly, minimum( | / 11,..., | lk | ), where /,• is the minimum edge label of the maximal 

clique Ht * of 1(H)  of a strongly chordal graph.

3. DOMINATION PROBLEMS -  SEQUENTIAL AND PARALLEL ALGO
RITHMS

From Theorem 4.2.8 it is clear that domination problems on strongly chordal 

graphs can be solved by determining the minimum edge label of each of the clique of 

the minimum clique cover of the intersection graph 1(H)  of the strongly chordal graph 

G . We present the following algorithm to determine the minimum edge labels.

Algorithm Domination;
Input: A strongly chordal graph G=(V, E ) with n vertices and m edges.
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Output: A minimum cardinality dominating set D c  V.

Begin
1. Compute the maximal cliques H  of G .
2. Construct the intersection graph 1(H).
3. Compute the minimum clique cover H* of 1(H)
4. From each clique H *  e H* choose an edge with minimum edge label size.
5. Choose a vertex from each such edge and add it to D .
End.

The correctness of the above algorithm follows from Theorem 4.2.8. We will 

now estimate the sequential time complexity of the above algorithm. Since G and 

1(H)  are both chordal (Theorem 4.2.3), using Gavril’s [45] algorithm Steps 1 and 3 

can be executed in 0 ( n  + m ) time. Step 5 takes O(n)  time once the minimum edges 

are chosen. The minimum size edges can be chosen in O (n + m)  time given the max- 

imal cliques H  . From the discussion in Section 2 the intersection graph 1(H)  can be 

constructed in 0 ( n  +m)  time. We have the following theorem.

Theorem 4.3.1: The dominating set for a strongly chordal graph with n -vertices and 

m -edges can be computed in O (n +m)  sequential time.®

It can be clearly seen that the algorithm Domination is in NC since Steps 1-5 are 

all in NC from the discussions in Section 2. We have the following theorem.

Theorem 4.3.2: The dominating set for a strongly chordal graph with n - vertices and 

m -edges can be computed in O (log2n ) parallel time with 0 ( n  +m)  processors on a
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CRCW-PR AM. ■

It is clear that the k -domination problem on a strongly chordal graph can be 

solved by solving the 1-domination problem on the k th power of the strongly chordal 

graph. The kth power of a graph G = (V, £ )  is the graph G h = (V, E k) with ( x , y ) s  

E k if and only if 1 <, dG (x ,y ) ^  k . Lubiw [67] proved that powers of a strongly chor

dal are strongly chordal. Now, the Arth power of a graph can be easily obtained in 

O (logn) time using O («3) processors on a CRCW-PRAM and in O (n3) time sequen

tially.

4. CONCLUSION

We summarize the results obtained in this chapter in the following table. All the 

parallel algorithms are designed for a CRCW-PRAM model and n and m are the 

number of vertices and edges of the input strongly chordal graph, respectively.
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Problem Previous Result [4] Our Result

Sequential

time

Sequential

time

Parallel

time-processor

1-domination 0 ( n 3) 0 { n + m ) 0(log^i)-0(w +m )

1-connected domination 0 ( n 3) 0(n  + m ) 0  (log2)* )-0 (n + m )

1-total domination 0 (n 3) 0 ( n + m ) O (log2/! )-0 (n + m )

k -domination 0 ( n 3) 0 (n 3) O (log2/! )-t? (n3)

k -connected domination 0 (n 3) 0 (n 3) O(\oghi)-O(n3)

k -total domination - 0( n3) 0  (log2n)-0 (n3)

1-Domatic Number - 0 ( n + m ) O (log2/! ) - 0 ( n + m )

k -Domatic Number - 0 (n 3) O (log2/! );0 (n3)

Table 1: Sequential time complexity, parallel time and processor complexity of 
various domination problems on strongly chordal graphs.

There are several open problems. It is not yet know whether linear-time sequen

tial algorithm (except with preprocessing cost of O (n 3)) exists for &-domination prob

lems on strongly chordal graphs. Parallel algorithms for weighted domination prob

lems are also open.



Chapter Five

THE COMPLEXITY OF PROCESSING IMPLICATION ON QUERIES AND
CHORDAL GRAPHS

1. INTRODUCTION

The query implication problem (Q x —» Q-£) on two queries Q x and Q2 is to deter

mine whether the data retrieved by the query Q 1 is always a subset of the data 

retrieved by Q 2. The query implication problem has applications in the areas of com

putational geometry, distributed databases, and others. In this chapter we study the 

general implication problem in which all six comparison operators: = ,* , < ,> , < , > ,  as 

well as conjunctions and disjunctions, are allowed. It is shown here that the general 

implication problem is not even in NP and in fact complete in IF  2. In the simple 

case where the comparison operator is only *=’, we show that the implication problem 

is NP -Complete. We define a class of queries called ‘acyclic queries or chordal’ and 

show the existence of polynomial-time algorithms for the implication problems which 

are shown to be NP-Complete. The results contained in this chapter appear in 

[Radhakrishnan and Iyengar [80]].

We use the above results to estimate the time-complexity of determining whether 

two update transactions consisting of insert and delete operations are equivalent.

66
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Conjunctive queries arise in the area of query optimization in relational databases 

[6 8 ], We show that the testing implication of two conjunctive queries with inequali

ties is IT7* 2-Complete.

A query condition is a conjunction of literals and each literal is of the form ‘A © 

X  ’, where A is an attribute, X  is an attribute or a constant and 0  is one of the six com

parison operators =, *, < ,< ,> ,  >. A query condition on a d -dimensional cartesian 

space specifies a set of points to be retrieved. The query implication problem Q j -» 

Q 2, is to determine if any point in the d -dimensional cartesian space that satisfies Q j 

will also satisfy the query set Q 2, or in otherwords testing if the points retrieved by 

query Q x is always a subset of the points retrieved by query Q 2. Assuming that the 

set of points in the d  -dimensional cartesian space is finite, we can solve the implica

tion problem by actually retrieving points that satisfy 0 i and check each point 

retrieved to see if it satisfies Q 2. So, there is a polynomial time algorithm which will 

solve the implication problem for a finite set of points in the cartesian space. We are 

interested in determining the complexity of solving the implication problem without 

any knowledge of the point space.

A detailed study of the query implication problem was presented by Xian-He et. 

al [90]. They showed that the general implication problem is NP -Hard by transform

ing the satisfiability problem into the general implication problem. They present a
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polynomial time algorithm to solve the implication problem when disjunctions and the 

V ’ operator are not allowed. We show that the general implication problem is l f 2- 

Complete. This does not mean that the transformation to the satisfiability problem in 

[90] is incorrect. It only means that the transformation to satisfiability problem could 

have been very well done using literals of the form ‘A = c ’ or ‘A * c \  where c is a 

constant. Our work does a "fine-grain" estimation of the complexities of the implica

tion problem by considering different allowable comparison operators and literals.

The problem of determining the equivalence of update transactions consisting of 

insert, delete, and modify operations on a relational database was presented by Abi- 

teboul and Vianu [2], Determining transaction equivalence is useful in optimizing a 

given transaction. The delete condition and modify condition were simple selections 

containing literals ‘A = c ’ and ‘A * c  \  where c is a constant. Finding the complexi

ties of the query implication problem based on query conditions is useful in determin

ing the complexity of the update transaction equivalence. We consider this problem 

in Section 5.

Relational database query containment, equivalence, and minimization problems 

have received considerable attention (see [61]). The equivalence problem is that of 

finding whether two queries always retrieve the same data. The containment problem 

is to determine whether the results of one queiy are always a subset of the results of
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another query. The minimization problem is the problem of finding a query 

equivalent to the given one and having the fewest number of joins. For arbitrary rela

tional calculus or relational algebra queries these problems are undecidable. For more 

details see [61]. A class of queries called conjunctive queries with inequalities were 

studied by Klug [61]. It allows queries of the kind "get all students whose GPA is 

greater than 3.5." Estimating the complexity of the implication problem would help in 

estimating the complexity of problems involving conjunctive queries with inequali

ties. We study this problem in Section 4.

The problem of relations with null-values in relational databases has received 

considerable attention [6 6 ]. Null-values are values present, but currently not known. 

A relation with null values represents data with incomplete information. An incom

plete information database represents sets of possible worlds [1]. Data complexity of 

a query is defined as a function of the database size. Abiteboul, Kanellakis, and 

Grahne [1] determine the data complexity of querying and the complexity of contain

ment test of one query in the other in the case of incomplete information database. 

The incomplete information database they consider are very general in that they allow 

conditions on null values. Our results on the query implication problem are obtained 

by transforming the query containment problem on incomplete databases with condi

tions on nulls to the query implication problem. This is discussed in Section 2.
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In Section 3 we consider a class of query conditions called the ‘acyclic’ ones and 

show the existence of a polynomial time algorithm for implication problems which are 

shown to be NP -Complete. This is done along the lines of Goodman and Shmueli 

[48] who show that certain NP -Complete problems can be done in polynomial time 

when the input is restricted to tree schemas.

Finally, to end the introduction we note that the following derivability problem 

the is same as the query implication problem which arises in distributed databases 

[90]. Given a query Q and a set of /  stored fragments T X, T 2, .... 7 / ,  can the query Q 

be computed from the /-fragments? If Q and T 1, T 2, ..., Tf  are reducible to boolean 

expressions i.e., query conditions, then the derivability problem becomes the query 

implication problem.

2. THE COMPLEXITY OF QUERY IMPLICATION PROBLEM

First we define different types of query conditions and present the complexity of 

the implication problem of two sets of query conditions belonging to each of the dif

ferent types.

Definition: A query condition (QC) is a conjunction of literals. Literals are of the 

form Z1 © 72, where both Z1 and Z2 are not constants and 0  is a comparison opera

tor. The conditions are on the attributes of the relation R ( X 1, ..., Xn). Based on the



allowable comparison operator in the query condition, various types of query condi

tions are defined as follows:

(i) QC1: © = { = } ;  Z2 is a constant.

(ii) QC2: © = {=, *} ; Z2 is a constant.

(iii) QC3: © = {=}; Z2 can be a variable or a constant.

(iv) QC4: © = {=, *} ; Z2 can be a variable or a constant.

(v) QC5: © = {=,<,<=} ; Z2 is a constant.

(vi) QC6 : 0  = {=,<,<=} ; Z2 is a variable or a constant ■

A set of query conditions C represents the set of all possible tuples to be 

retrieved. An instance of a set of query conditions C is a set of tuples which satisfies 

the query conditions in C.  If the query conditions C are of type QC1, then C 

represents a single instance. If the query conditions C are of type QC2, then C 

represents more than one instance. So, in general the query conditions can be thought 

of as representing a set of possible worlds (instances). Codd-tables were used to 

represent a set of instances of a relation with null values. A Codd-table is a relation of

constants and distinct variables called nulls, which stands for values present, but unk

nown. Given a set of query conditions C in QC1, we can construct the Codd-table as 

follows. Create a table T  with columns Z 1,X 2, ..., Xn , the attributes of the relation R . 

For each query condition C( in C , create row i in T.  If there is a literal Xj = c,  where
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c is a constant, then place c in the column j  of row i . For the rest of the columns in 

row i place unique variables not placed in the table so far. The resulting table is 

clearly a Codd-table.

Abiteboul, Kennellakis, and Grahne [1] extended the Codd-table T  to contain 

conditions on the variables in the Codd-table. The conditions associated with the 

table T in two ways:

(i) A global condition <3> associated with the entire table, and

(ii) a local condition <J>(0  associated with each tuple t in T .

The global conditions are of type QC3 or QC4. A table T  with both global and local 

condition is called a c-table. A table T  with only a global condition is called a g- 

table. When the ® of the g-table is of type QC3, then the g-table is called an e-table. 

A g-table T  with global condition O of type QC4 containing literals with only V ’ 

operators is called an i-table. We will now formally define an instance of an x-table 

(x is Codd-,c-,g-,e-, or i-).

An valuation a  is a function from variables and constants to constants, such that o(c ) 

= c for each constant. A valuation a  naturally extends to a tuple t of a table T,  pro

ducing a complete tuple or a fact, and to the entire table T, producing a relation. Let 

O and <j)(r) be the global and local condition associated with the table T  and for each 

tuple t of T,  respectively. We say that o  satisfies <I> and 0(f) if its assignment of
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constants to variables makes formulas O and <))(r) true. The conditional table 

represents a set of instances I  = {R \ there is a valuation o  satisfying <E>, such that 

relation R  consists of those tuples a(t)  for which a  satisfies <J>(r)}.

If I  q and 7 are two sets of instances, the containment problem (CONT) is to check 

whether one is contained in the other. The following Theorem on the containment of 

instances represented by various tables was given in [1].

Theorem 5.2.1: Let 70 and 7 be the two sets of instances. We have,

(i) CONT(/o, / )  is polynomial time if 70 and 7 are represented by a Codd-table.

(ii) CONT(7o, 7) is NP-Complete if 70 and 7 are represented by an e-table.

(iii) CONT(70, 7) is U2P -Complete if 70 and 7 are represented by a c-table, g-table, or 

an i-table.ES

Theorem 5.2.2: Let C t and C 2 be two sets of query conditions of type r. The com

plexity of implication testing is as follows:

(i) Polynomial time if r is QC1.

(ii) NP-Complete if r is QC2.

(iii) NP-Complete if r is QC3.

(iv) Tl2p -Complete if r is QC4.
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(v) Polynomial time if r is QC5.

Proof : We will prove each one of the above cases as follows.

(i). From a previous discussion it can be easily shown that a Codd-table is equivalent 

to a set of query conditions in QC1. Hence from Theorem 5.2.1 the implication of 

two sets of query conditions in QC1 can be tested in polynomial time.

(ii). We will first show that it is NP-Complete to test the implication of two DNF 

expressions. We then give the transformation of a DNF expression to a set of query 

conditions in QC2 and thus show that it is NP-Complete to test the equivalence of two 

sets of query conditions in QC3. Let F j and F 2 be two DNF expressions. We have to 

test the implication F j  - » F 2 for tautalogy. F x - » F 2 isa  tautalogy iff NOT(Fx) v F 2 

is tautalogy. For NOT (Fj) v  F 2 to be a tautalogy either F 2 is a tautalogy or F j  is a 

non-tautalogy. Checking whether F 2 is is a non-tautalogy is NP-Complete [44]. 

Now, for each DNF expression F{- we generate a set of queiy conditions C, in QC2 as 

follows. Let Fij be a disjunct in the expression F,-. The query condition in C, is 

formed by placing a literal Xx = q  in Ci;- for each literal X t in F (y. For the literal X, in 

F^  place the literal Xx & q  in Ciy. The resulting set of query conditions is clearly in 

QC2, hence it is NP-Complete to test the implication of two sets of query conditions 

in QC2.

(iii). We will show that an e-table can be transformed into a set of query conditions in 

QC3 and thus show from Theorem 5.2.1 that testing implication of two sets of query
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are labeled with X l, X 2, ..., Xn . For each row Tt- of the e-table a query condition C, is 

formed as follows. If (the 7 th column of the ith row of T)  is equal to M,  then 

form a conjunct Xj - M  in Q . The resulting set of query conditions are clearly in 

QC3. From Theorem 5.2.1 we conclude that the testing implication of two sets of 

query conditions in QC3 is NP-Complete.

(iv). The U2P -completeness result for testing two sets of query conditions in QC4 fol

lows from the transformation of a g-table to a set of query conditions in QC4 similar 

the above and by using Theorem 5.2.1.

(v). The implication of two sets of query conditions in QC5 can be tested in polyno

mial time by syntactic checks after minimization of each query condition. Klug [61] 

presents a simple method to minimize query conditions which are in QC5.H

3. ACYCLIC QUERY CONDITIONS

Goodman and Shmueli [48] have shown that the satisfiability of a yfc-CNF expres

sion with m -clauses can be determined in 0 (m.(k. 2k)2) time for acyclic formulas. 

Acyclic formulas are defined as follows. A boolean formula F is in k -Conjunctive 

Normal Form (CNF) with m-clauses if F = F 1 a  .. . a  Fm , where each conjunct Fi is 

of the form (/ j v  ... v  lk) and each literal /,• is either a boolean variable Xj or its nega

tion Xj. With each F = F 1 a  ... a  Fm we associate a schema C = (S l5 ..., Sm), by
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defining

Si = {xj | Xj or Xj appears in F,-}. C is a acyclic schema if the graph G = (V, E) 

with V = { rl5 xp }, wherex t is in some Sj,  1 < j <m and E = {(x, , xp ) | jcf andxp 

are in some Sj,  1 <,j <,m}, is chordal and conformal [36]. In fact, there is a linear 

time sequential algorithm to determine if a given schema is acyclic [92]. The schema 

C is reduced if 5,- £  Sj implies i = j . A formula F  with schema C is acyclic (resp. 

reduced) if the schema C is acyclic (resp. reduced).

Using the construction of a boolean formula in Theorem 5.2.2 we can naturally 

extend the acyclic formula to acyclic query conditions for query conditions in QC2. 

We say a query condition set QC1 with boolean formula F j  acyclic if the F  j is an 

acyclic formula. For two sets of acyclic query conditions Q 1 and Q2 with formulas 

F j  and F 2, we will show that the implication problem Q i -» Q2 is in polynomial time 

as follows. In order to show Q x Q 2 it is  suffices to show that F j —» F 2 or F 2 —> 

F j. Consider that F 2 does not have more than m -clauses with at most k literals per 

clause. The truth-assignments for F 2 can be obtained in O (m. (k. 2k )2) time [48]. We 

can similarly generate truth-assignments for F 2 and in polynomial time we can check 

whether truth-assignments of F 2 are a subset of the assignments of F 1

Theorem 5.3.1: The implication problem for two sets of acyclic queries in DC2 can
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be solved in polynomial time.

Proof: Follows from above discussion. ■

It can be easily shown by construction that the above boolean expression can be 

constructed for a query set in QC3 similar to the one for QC2 and hence Theorem 

5.3.1 will hold for query sets in QC3.

4. CONJUNCTIVE QUERIES W ITH INEQUALITIES

Klug [61] considered a class of conjunctive tableau queries which contained ine

quality conditions on the attributes of the relations and showed that the containment 

problem is in n 2p . It was left open to determine if the containment is H2 -Complete. 

For a subclass of conjunctive queries with inequalities called the left- or righ t -  semi- 

interval queries Klug showed that the containment test is in NP. In this section we 

first show that it is NP-Complete to test the containment of left- or right- semi-interval 

tableau queries by transforming the problem to the containment problem of e-tables. 

The containment problem of conjunctive tableau queries with inequalities is shown to 

be n 2p -Complete by transforming the problem to the containment problem of g- 

tables.

A conjunctive query Q can be specified as follows: (1) a set X q  = {jtj, x 2, ..., xp } of 

distinguished variables, the sequence <Xj, ..., xp > being called the summary row, or
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just the summary; (2 ) a set Yq = {y l5 yq } of nondistinguished (existentially 

quantified) variables', (3) a set Cq = [c i , ... cr } of distinct conjuncts, each conjunct c,- 

being an atomic formula of the form R (zj, ... zm), where R is a relation name and 

each zf is a variable (either distinguished or nondistinguished); and (4) a set Lq = { / l  

..., lu } of inequalities, each inequality /,• being an atomic formula of the form z 1 0  z2, 

where z i and z2 are either variables or constants (but not both are constants) and 0  is 

= ,< ,< .  A conjunctive query with inequalities are all of the form x  0 y  is called a left 

semiinterval query (right semiinterval) if*  (y ) is a variable andy (*) is a constant.

We will now show that containment of test for left (right) semiinterval queries is 

NP-Complete. Consider the query of the following form.

Q\- [xl , y l, z l : ( B x l , y l, z l) iRl {xl , y l) &. R2( y i , z l) 8L x x = c 1 & y 1= c 2))-

The query Q i is a left (right) semiinterval query. The query Q j is equivalent to the 

query Q2.

Q2: {R 1JXl , R 1.y1.R2.z1: (3 i?1j ; 1, /? 1.y1,/? 2.y1,/?2.z1)

R i - y i = R 2-yi &/?i~ti = c 1 & /? 1.y1 = c 2)}

The query Q 2 is formed after taking the join of relations R l and R 2 and adding an



equality condition on attributes common to /? 2 and R 2. The quety Q 2 is not a left 

(right) semiinterval query, but given the queries in the of form Q2 we can form an 

equivalent query which is a left (right) semiinterval query. Given an e-table a set of 

queries of the form Q2 can be formed which can then be converted into a set of left 

(right) semiinterval queries. Now, using Theorem 5.2.1 we conclude that testing the 

containment of two sets of left (right) semiinterval queries is NP-Complete.

Consider the following query Q } with the inequalities containing an *  operator. 

Assume the domains of the attributes of all relations are integers.

Q t: {x , y  ,z • • •: 3 (x ,y  ,..)(/?( x , y , • • • ) & x  & z < c x & ...)}

The query Q j is equivalent to Q2 u  Q^,  where

Qi- [ x , y  ,z • • • : 3 ( x , y  ,..)(/?(*,y , • • • ) & *  <y  & z  ^C!&... )}

6 3 : ix >y .z • • • : 3  ( x , y  , . . )(R(x,y,  • • - ) & y  < x  & z  < c x & ...)}

Clearly, the g-table can be represented as a set of queries like Q lt which can be

further decomposed into queries like Q2 and £>3- Thus, from Theorem 5.2.1 testing

containment of two sets of conjunctive queries containing inequalities is U2P - 

Complete. It is now easy to show that testing equivalence of two sets of query condi

tions in QC6  is Tl2p -Complete.
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Theorem 5.4.1: Let Q 1 and <2 2 sets of conjunctive queries with inequalities.

(i) The containment test is NP-Complete if the conjunctive queries are left (right) 

semiinterval queries.

(ii) The containment test is n 2/> -Complete for conjunctive queries with inequalities. 

Proof: Follows from discussion above.!

Theorem 5.4.2: Let C 1 and C 2 be two sets of query conditions in QC6 . It is Yl2p - 

Complete to test if C ! is equivalent to C 2.

Proof: Can be easily shown using Theorem 5.4.l.B

5. EQUIVALENCE OF UPDATE TRANSACTIONS

A transaction t consists of update operators (insert, delete, and modify) which 

access tuples in T(U),  where U  is the set of all attributes forming the database 

scheme. The semantics of the update operators are described as follows.

(1) insert - Insert tuples in T  (U ).

(2) delete - Delete tuples satisfying condition C .

(3) modify - Modify tuples satisfying condition C to tuples C . (Note that modify is 

equivalent to delete tuples satisfying C and insert tuples of the form C ).

A delete operation is valid if there exist, tuples in the database D in state S (D (5)) 

matching the delete condition. Similarly an insert operation is valid if it inserts tuples



81

which are not already in D (S ). A transaction is valid if consists of valid delete and 

insert operations. For ease of presentation we do not consider the modify action and 

consider transactions with delete and insert operations only.

An update transaction described above changes the state of the database from S

/

to S  . In fact, every update operator changes the state of the database. We say a tran

saction is cyclic if there exists at least one sequence of actions A,-, Ai+1, ..., Ak such 

that after execution of the action Ak we obtain the database state S which was the 

state of the database before the execution of Af. A transaction which is not cyclic is 

termed acyclic. In this paper we consider only transactions which are acyclic. The 

following lemma shows that in polynomial-time we can decide whether a transaction 

is cyclic or acyclic.

Lemma 5.5.1 [2]: The determination whether an update transaction is cyclic or acy

clic can be done in polynomial time.H

We shall proceed to define transaction equivalence. The state of the database is 

determined by the set of tuples in T  (U ). Two transactions f,- and tj are equivalent if 

and only if they leave the database in the same final state. Testing whether the final 

states are equivalent amounts to testing whether at the end of both the transactions the 

database consists of the same set of tuples. This task is very expensive if we assume
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an infinite database. Here, we use a simple but efficient technique for finding 

equivalence of two acyclic update transactions.

Creation o f partitions containing tuples

For each transaction r(- we create two partitions, the delete (£>,) partition and the insert 

partition (/, ). The delete partition consists of tuples which are deleted and the insert 

partition consists of tuples which are inserted. When a delete action is processed we 

place tuples from the database and the insert partition which satisfies the delete condi

tion in Di . Tuples which have to be inserted are placed in It .

Lemma 5.5.2: If tt is an acyclic and valid transaction, then D, n  /,• = 0 .

Proof: We will prove by contradiction. Assume there exists a tuple Cy- e  D, n  /,. 

This is possible only if we have deleted tuple C} first and then added to the insert par

tition the tuple Cj , as described in the creation process of the delete and insert parti

tion. Since Cj  is disjoint (i.e., there is no other tuple C, in £>, or/, such that C, = Cj) 

from all other tuples, the delete and insert operations can be thought of as operations 

occurring next to each other in the transaction f, . We now have D(S)  -■>delete ( C j )

r

D ( S )  insert (Cj) D ($)• But, this is cyclic and contrary to our assumption of the acy

clicity of the transaction r,-. Hence the Lemma. ■
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We will now proceed to show that transaction equivalence is equal to testing for 

equivalences of partitions.

Theorem 5.5.3: Two acyclic, valid transactions /,• and tj are equivalent if and only if 

Dj =Dj  and /, = I j , where the D ’s are the tuples in the delete partitions and the I ’s 

are the tuples in the insert partitions obtained by the creation process described above. 

Proof:

(If-part): Assume tj and tj are equivalent, then D(S)  —>t. D (5 ) and D( S)  —>tj D (5 ). 

Now for transaction tj, D (5 ) = {D (S) - D j} u  /,-. Since the final database states of 

both transaction are the same we have [D (S) - Di } u  = {D (S) - D j} u  Ij.  Using 

Lemma 5.5.2 we can clearly see that D, = Dj and /,• = I j .

(Only-if-part): AssumeDt = Dj and/,• = Ij,  we have for transaction q the final state 

D ( S )  = { D ( S ) - D i } u I i 

= { D( S ) - Dj ) v I i

= D(S ) which is the final state for transaction t j .

Hence, transactions tt and tj are equivalent. H

Creation o f partitions consisting o f delete conditions and inserted tuples

For each transaction tt we create two partitions, the delete ( { Q }) partition and the

insert (/,•) partition. When a delete action of tj is processed we delete tuples in Ij
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satisfying the delete condition and place the delete condition in {C,-}. When we pro

cess an insert action we place the tuple to be inserted in It .

Theorem 5.5.4: Two acyclic, valid transactions and tj are equivalent iff the sets of 

delete conditions {C/} and {C j} are equivalent and /,• = Ij. Here the {C,}’s 

correspond to the set of delete conditions and I ’s correspond to the tuples in the insert 

partition obtained by the creation process described above.

Proof: Similar to the proof of Theorem 5.5.3.®

Now, from Theorem 5.5.4, we can see that the complexity of update transaction 

equivalence is determined by the complexity of testing the equivalence of two sets of 

delete conditions. Hence, if we consider the query conditions as delete conditions the 

complexity results in Theorem 5.2.2 will hold for update transaction equivalence also.

6 . CONCLUSION

We have shown that the general query implication problem is not even in NP but 

complete in Tlp 2• We have estimated the complexities of implication problems by 

restricting the allowable comparison operators and variables and constants that can be 

compared. We have shown that the implication problem on queries which are ‘acy

clic’ can be solved in polynomial-time using the technique in [48]. As applications 

we have estimated the complexity of equivalence testing of two update transactions



and containment of conjunctive queries with inequalities arising in relational data

bases. The higher-order complexities of the implication problem only warns about the 

time involved in solving the problem but does not preclude the existence of any algo

rithm to solve the problem. It would be interesting and useful to design an algorithm 

to the solve the general implication problem or restricted problems.



Chapter Six

EFFICIENT PARALLEL ALGORITHMS FOR THE MANIPULATION OF
DIRECTED HYPERGRAPHS

1. INTRODUCTION

The main focus of this chapter would be to develop efficient parallel algorithms 

for the manipulation of directed hypergraphs. Directed hypergraphs are generaliza

tion of directed graphs in which an arc (i, j )  may involve more than two nodes i.e., 

11 | > 1  and | j  | > 1. If |y | > 1, we call j  as a compound node and there are arcs 

from node i to all the components of j  ( j i u  . . .  u  j k = j ). Directed hypergraphs are 

viewed as structures to represent functional dependencies, where an arc ( i , j )  is inter

preted as i "functionally determines" j . Using the well defined manipulations defined 

on functional dependencies we would like to manipulate directed hypergraphs. Hence 

our focus would be to manipulate functional dependencies using directed hypergraphs. 

In the next paragraphs we would mention the main results obtained in this chapter and 

give an overview of the manipulations that can be done to a directed hypergraph. Pre

vious results and approaches are also discussed. The results presented in this chapter 

appear in [Radhakrishnan and Iyengar [81]].

86



MAIN RESULTS:

Given a set of functional dependencies E and a single dependency a, we show 

that the algorithm to test whether E implies a  is log-space complete in P . The above 

implication problem is the membership-test for functional dependencies or interpreted 

as finding a directed path between two nodes in the directed hypergraph. The func

tional dependencies E are represented as a directed hypergraph H% [8]. We first 

present a parallel algorithm which solves the above implication problem using P pro

cessors on an EREW-PRAM in 0{e!P  + n.logP) time and on an CRCW-PRAM in 

O (e/P +n)  time, where e and n are the number of arcs and nodes of the graph H^.  

For graphs with fixed degree and diameter, we show that the closure H%+ can be 

computed in NC. The closure operation is finding all the possible arcs in a directed 

hypergraph. We present NC algorithms to obtain a non-redundant and an LR- 

Minimum cover for the set of functional dependencies E. All our algorithms on an 

«-node directed hypergraph with fixed degree and diameter can be implemented to 

run in O (log2n ) time with M(n)  processors on an CREW-PRAM model, where M (n ) 

is the cost of multiplying two binary matrices. The algorithms are efficient based on 

the transitive closure bottleneck phenomenon [56]; that is, any improvement in the 

time and processor complexity of the transitive closure algorithm will result in an 

improvement by the same amount for the algorithms presented here.
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MANIPULATION OF FUNCTIONAL DEPENDENCIES (DIRECTED HYPER
GRAPHS) AN INTRODUCTION

Functional dependencies (FDs) and their manipulation plays a decisive role in 

the design, use, and maintenance of relational databases. The elimination of data 

redundancy and the enhancement of data reliability can be done by imposing restric

tions on the data. Functional dependencies provide a way to impose restrictions on 

data and prior knowledge about them are useful in designing better relational data

bases [6 8 ,93].

Given a set of attributes T: A i , A 2, ..., Ak , a relation scheme R (T j) is a subset of 

attributes T l i nT .  A  relation R over the scheme R (T j) is the subset of the cartesian 

product DOM(A j) x DOM(A2) x ... x DOM(Ar ), where A x, ..., Ar are the attributes in 

T  j. An element of the cartesian product is called a tuple. Afunctional dependency X  

—> Y  (whereX ,  F c f j )  holds in R iff, given two tuples ti  and t2 of R , t = t2X  

implies fj .F = t2.Y. Given a set of FDs 2, it is important to determine those func

tional dependencies which are not explicitly expressed but derived from those con

tained in 2. Such a derivation is possible using Armstrong’s sound and complete set 

of axioms (see [6 8 ,93]). The Armstrong’s axioms are as follows.

Reflexivity: If F c l ,  thenX  —> F .

Transitivity: If X  —> F andF —> Z , thenX  -» Z .
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Union: IfX  —> Y andX  - > Z , thenX  —» YZ.

The manipulation of X involves the following.

(i) (Membership-Test): Given a set of dependencies X and a dependency a, find

whether X implies a  using the Armstrong’s axioms.

(ii) (Closure-Finding): Determine X* the closure of X consisting of all dependencies

that can be derived from X using the Armstrong’s axioms.

(iii) (Minimal Key-Finding):Finding a minimal set X  e  T  of attributes, such that X  

-» T  is a member of X+. The attribute set X  is called the minimal key of the rela

tional scheme R (T).

(iv) (LR-Minimal cover): Finding a set of dependencies Xr from X such that Xr + = X* 

with the following properties.

(a) For any dependency o  in Xr , (Xr -  o)+ & X+.

(b) We say an attribute A in X  of the dependency X  Y as extraneous if

X  -  A —> Y is in X+. No dependency in Xr has extraneous attributes on its 

left side as well as its right side.

The set Xr is called the LR-Minimal cover for X.

For discussion about LR-Minimum and the advantages of manipulating the given set 

of dependencies X (see [6 8 ,93]).



Several data structures and sequential algorithms for representation and manipu

lation of functional dependencies have been proposed in the past [8,30,43], A new 

graph-theoretic approach which leads to efficient algorithms for manipulation and 

representation of FDs were introduced in Ausiello et. al [8], In this approach, the 

given set of FDs were represented as a directed hypergraph and known graph algo

rithms like the transitive closure, transitive reduction, and finding 

strong connected components * were modified for manipulating FDs. Using the algo

rithms of Maier [6 8 ], an LR-Minimum is obtained; and with the LR-Minimum set of 

FDs, the synthesis algorithm [68] can be applied to get the relational schemes. 

Several theoretical issues based on directed hypergraphs were discussed in [9]. The 

algorithms of Diederich and Milton [30] for computing minimal covers and syn

thesizing relations into third normal form do not try to achieve a reduction in the com

putational complexity of the algorithms in [6 8 ]. They present interesting insights into 

the manipulation algorithms of [6 8 ] and suggest techniques for enhancement of those 

algorithms. For example, in standard methods for synthesizing relations, most depen

dencies have to be checked a second time for redundancy after grouping dependencies 

with equivalent left-hand sides. Using the method of Diederich and Milton the 

dependencies can be characterized in such a way they are checked only once. At the

present time we do not know of any parallel algorithm for manipulating functional

t  A set of nodes are in a strongly connected component if there are paths from every node to 
every other node in the strong component
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dependencies.

We will show by a simple reduction technique that the FD-Membership problem 

is P -Complete (Section 3). Using the directed hypergraphs [8] as the representation 

scheme for the given set of FDs, we derive parallel manipulation algorithms. Our 

algorithms unlike the algorithms of Ausiello et. al [8], are highly suitable for paralleli- 

zation. Our characterization of the FD-manipulations in terms of directed hypergraph 

representing the FDs are simpler compared to the ones presented in [8]. The algo

rithms for manipulating the functional dependencies use algorithms for computing 

transitive closure, transitive reduction, and strongly connected components. In order to 

construct efficient parallel algorithms for computing transitive reduction and strongly 

connected components it will be necessary to avoid the use of matrix powering or 

transitive closure as a subroutine; our inability to do so is sometimes called the transi

tive closure bottleneck [56]. The FD-manipulation algorithms necessarily have to use 

the transitive closure algorithm as a subroutine and hence, it is also affected by the 

transitive closure bottleneck phenomenon. We will show in this chapter that our 

parallel FD-manipulation algorithms are efficient based on the transitive closure 

bottleneck phenomenon. This is done by showing that all operations other than those 

involving the transitive closure as a subroutine take O (logn) time with processors at 

most equal to the size of the directed hypergraph representing a set of functional 

dependencies Z. First we present a parallel algorithm to obtain the closure H + of the
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directed hypergraph H . We show that our closure algorithm is in NC for fixed degree 

and diameter graph H  (Section 4). Section 5. presents algorithms to obtain a non- 

redundant and a LR-Minimum cover and it is also in NC for fixed degree and diameter 

graph H . From the LR-Minimal cover a minimal key can be easily determined.

2. PRELIMINARIES - DEFINITIONS AND NOTATIONS

Definition 6.1.1 (Directed Hypergraph): A directed hypergraph H = (V, E) consists 

of nodes and arcs as follows.

nodes-. The node set V  consists of simple and compound nodes. A compound node j

has components j \ ,  j 2 j r , r > 1 and each j k is a simple node. A simple node is a

node with only one component.

Arcs: The arc set E  has the following arcs:

(i) arcs ( i , j ) from one simple node to another,

(ii) arcs ( j , j  j ) , . .. ,(/ , j r ) from each compound node to its components.

(iii) arcs ( i , j )  from node i to compound node j  if and only if there are arcs ( i , j  j), 

..., (*, j r ), where j \ , ..., j r are the components of compound node j . If such an i 

exists we say that node j  is satisfied by node / .■

We say that there is a path from node i to node j , written <i , j >,  if and only if there 

are paths <i , k>  and <k, j >.  Also, there is a path from node i to a compound node
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j ,  if and only if there are paths ..., <i , j r>, where j h ..., j r are all the com

ponents of compound node j .

Definition 6.1.2 (Hypergraph Accessibility Problem (HGAP)):

Given a directed hypergraph H =( V, E) ,  and two distinguished nodes i , j  e V,  does 

there exists a path < i, j  > in H  .H

The above HGAP problem on a n -node directed graph containing only simple nodes, 

can be solved in O (log2n ) time with M (n ) processors, where M (n) is the cost of mul

tiplying two binary matrices [56].

We will assume that the set X is in reduced form  as follows

(a) there exist no two FDs X  —> Y and X  —> Y such that X  = X  , and

(b) for all FDs X —>F,X n f  = 0 .

Let the given set of FDs X be in reduced form and represented by a directed hyper

graph H-£ as follows. For each FD X —» Y create a compound node X and simple 

nodesXx ,... Xr and arcs (X, F), (X, X x) , ..., (X, X r ) in H^.  The nodes X l5..., Xr are 

components of node X . We will denote n = | X | = | Xj | + | Xr | the sum of the length 

of the strings of attributes appearing on the left (right) side of the dependencies. Also, 

e = 11X11 will denote the number of FDs in X. We will use the notation H  instead of 

H  j  when the context is clear and call H  as a graph instead of a directed hypergraph.
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Proposition 6.1.0: Let the given set of functional dependencies (FDs) be represented 

by a directed hypergraph H =(V ,E) .  The FD-Membership test on the dependency X  

—> Y is equivalent to the HGAP instance from node X  to node Y M

Example 1: See Figure 6.1. for a set of FDs and its corresponding directed hyper

graph.

A —»F  
A —> C 
A ->B  
C —>D 
FBD ->H  
BD - » /

Figure 6.1: A set of FDs and the directed hypergraph corresponding to it (from Ausiello et. al [1]).

Definition 6.1.3: We say a directed hypergraph H  = (V, E ) generates a set of func

tional dependencies E, when, for each arc (X, Y) in E a functional dependency X  —>

Y is generated. ■

3. THE P -COMPLETENESS RESULT AND A PARALLEL ALGORITHM

In this section, we show that the monotone circuit value problem is log-space 

reducible to HGAP and thus establish HGAP is P -Complete. The monotone circuit

A

F FBD H

BDC

B
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value problem is P -Complete (see [56]).

Definition 6.2.1 (Monotone Circuit Value Problem):

Given a finite set of g gates; for 1 < j < g , gate j  is either an input (0 or 1), an AND- 

gate AND(i7(1, ijt2, .... or an OR-gate OR(iy>1, ij>2, ..., ijjtQ))* where 1 <ijfl,

i j t2, ij,k(j) < j  ■> what is the value of the expression represented by gate g .

Lemma 6.2.1 (see [56]): The monotone circuit value problem is log-space complete 

i n P .H

Theorem 6.2: The HGAP is log-space complete in P .

Proof: We show by the following construction that the monotone circuit value prob

lem is log-space reducible to the HGAP. Consider the case where all the gates have 

two inputs for the sake of ease in presentation. We construct the following directed 

hypergraph H . For an AND-gate g t = g j  a  g k , create a compound node g t with two 

components g n  and g i2. Add arcs ( g j ,  gn ) and (gk , g i2). For an OR-gate = g j  v 

gk , add arcs ( g j , g n ), ( g j , g i2), (£*, £;i)> (gk* 812)- We c»n easily show by induc

tion that on an input 1 at gate g,-, an output of 1 is obtained at gate g ; if and only if 

there exists a directed path from node g; to node g  in H . The construction of H  can 

be done in log-space. Hence the theorem. ■
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Coro 6.2.1: The FD-membership test is log-space complete in P .

Proof: Follows directly from Proposition 6.1 and Theorem 6.2. ■

The negative result in Theorem 6.2. only tells us that HGAP is resistant to high- 

degree parallelism. We present a simple sequential algorithm for the HGAP which 

runs in time 0 (e +n) ,  where e and n are the number of edges and vertices of the 

graph H . A parallel version of the sequential algorithm runs in time 0( e / P  + n.logP) 

with P  processors on an EREW-PRAM and in time 0( e / P  + n ) with P  processors on 

an CRCW-PRAM. The technique used in the following algorithm is similar in spirit to 

the one presented for the monotone circuit value problem by Vitter and Simmons [95].
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(* Initially all vertices are marked "not visited." *)

Algorithm HGAP ( x , y )

Begin

1. Starting from x  determine all the k  vertices that can be reached from x  by using 
transitive closure; Mark all the k vertices "visited" including x .

2. If y  is one of the k vertices, then RETURN (’Found’); STOP.
3. If either k  = 0 or there is no arc (x , p ) such that vertex p  is a component of some 

compound node, then RETURN (’Nil’).
4. For each "unvisited" compound node j , such that there is at least one arc {x, j r ), 

where j r is a component of the node j ,  Do
Begin

5. If node j  is satisfied by x , then
Begin

6 . ADDarc (Jt,y)
7. HGAP ( /, y )

End
End

End.



It can be easily seen that if there should exist a path <x,y>  and, has not been deter

mined at the end of Step 3., then there exists at least one compound node in H  which 

is satisfied by x . The algorithm HGAP presented above can be parallelized in several 

ways. Each of the steps 1-7 can be parallelized. Step 4-7 is executed sequentially and 

the processors are assigned to keep track if node j  is satisfied by node x . Each of the 

P processors are assigned to check the presence of the arc from x  to the P th com

ponent of j .  Once each processor determines the presence/absence of arcs assigned to 

it, the time taken to check if node j  is satisfied by x  is O (logP) using binary-tree 

communication scheme among P processors. Essentially, we are computing AND of 

P binary values. On a CRCW-PRAM, we can determine the AND of P binary values 

using P processors in constant time.

Theorem 6.3: The HGAP can be solved using P  processors on an EREW-PRAM in 

0( e l P  + n.logP) time or on a CRCW-PRAM in 0( e / P  +n)  time.

Proof: Follows from the discussion above. ■

4. CLOSURE OF A DIRECTED HYPERGRAPH

Computing the closure of a directed hypergraph H  is finding all the possible arcs 

in the graph H . The closure of the graph H  is the transitive closure on directed 

graphs when H  contains only simple nodes. Since, finding whether there exists a path
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<X, Y> is P -Complete, determining the closure is also P -Complete. In this section, 

we present a parallel algorithm whose execution time is dependent on the diameter 

and the degree of the graph H . The diameter of the graph H  is the maximum distance 

between any two nodes in H . The degree of the graph H  is the degree of a node hav

ing maximum number of arcs going out. For graphs with fixed diameter and degree 

algorithm, we show that the closure can be computed in NC. Having determined the 

closure the HGAP problem can be solved in constant time. In terms of the functional 

dependencies E, the degree of a node X  in is the number of FDs in E whose left 

hand side is in X  or equal to X . The distance between two nodes X  and Y in is 

the number of dependencies in E which have to be applied before X  determines Y . In 

the worst case the maximum distance and degree can both be equal to the number of 

FDs in E.

Algorithm //-Graph-Closure 

Begin

1. Perform transitive closure on H . Here we find all simple nodes that can be reached 
from node i and add arcs to nodes reachable from i .

2. Do Steps 3-9 Until no new arcs are added
3. For each node i In-Parallel
4. If there are arcs (/, j  j ) , ..., (i , j r ), where j  l5.., j r are all 

the components of compound node j , then
Begin

5. Add the arc ( i , j )  in H
6. For all arcs (/'»£) a^d arcs ( i , k )

End
7. For each node i In-Parallel
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Begin
8. Let J  = {j \  j k ) be the compound nodes such that there is an arc ( i , jp ), 

where jp is a component of node j  e  J  AND for all components p  of j ,  
there are arcs only from compound nodes in J.

9. Add arcs O’ , j ) for each j  e  J  and arcs ( i , k )  such that node k is adjacent 
to some compound node in J

End

End.

Theorem 6.4: The algorithm H  -Graph-Closure correctly determines the closure of 

directed hypergraph H  in O (log2n + MAX {diameter (H), degree (H ))*logn) with

0  (M (n)) processors on a CREW-PRAM.

Proof: It is straightforward to understand Steps 1-6 of the algorithm //-Graph- 

Closure. Step 8. performs the closure operation with respect to a node i. Let us 

assume that there should exist an arc 0 , j ) in the closure of H  and not in H  after the 

execution of Step 6. The absence of the arc (i, j ) implies that there exists a com

pound node k  in the directed path between node i to node j . Assume there is an arc 

(k , j ), if it is absent, we have the case described above. The arc O ', k)  is absent, oth

erwise, we would have the arc O '»j)-  For the arc (i, k)  to be present, there should be 

arcs from node i to every component of k . In Steps 7-9 determines the arcs from node

1 to the components of k.  It can be easily shown, that if there should exists an arc O '» 

j )  in the closure and has not been determined at the end of Step 6., then there exists at 

least one compound node k in J  of Step 8.
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In Figure 6.2. and Figure 6.3. we have depicted the worst-case scenario in terms 

of the number of iterations of Steps 3-9 before the arc (/, j )  is determined. We can 

easily show that at most MAX(diameter(//), degree(//)) iterations of Steps 3-9 would 

be necessary to determine the closure. Step 1. takes O (log2n ) time to determine the 

closure with O (M ( n )) processors (see [56]). Each of the Steps 3-9 can be executed in 

O (logn) time with 0 ( n  + e)  processors using suitable matrix structures on a 

CRCW-PRAM. ■
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t ii i

Figure 6.2: The number of iterations of steps 3-9 in algorithm H- 
Graph-Closure to determine the arc (i , j )  is at most equal to the degree 
of the above graph. The graph above consists of compound nodes with 
two components each.

3 — a

Hj— #» s
Xh

Figure 6.3: The number of iterations of steps 3-9 needed by algorithm 
H-Graph-Closure to determine the arc (/, j )  is at most equal to the 
diameter of the above graph.
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Example 2: The closure of the graph in Figure 6.1. is given in Figure 6.4.

FBD -

BO

Figure 6.4: The closure of the graph in Figure 6.1.

5. NQN-REDUNDANT AND MINIMUM DIRECTED HYPERGRAPHS

Given a set of functional dependencies E, we present algorithms to obtain a non- 

redundant and a minimum cover as defined by Maier [68]. Since, the FD-membership 

test is P -Complete, algorithms for determining a non-redundant and minimum cover 

are also P -Complete. In the previous section we presented the closure algorithm 

which was shown to be in NC for fixed diameter and degree graph H . We will now 

define several terminologies.

Left reduction involves removal of "extraneous" attributes from X  in each of the
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dependencies X  —» Y  in X. Given the set X, an attribute B is extraneous in X  —» Y if 

X  = Z B , X  & Z , and A 6 Z j+. There are two kinds of extraneous attributes. If X  = 

Z B , X  *  Z , and B e  Z 2+, then B is called an implied extraneous attribute and all 

other extraneous attributes are non-implied extraneous attributes.

We say two attribute sets P  and Q are equivalent in X written P = Q , \ i P  —> Q and 

Q —» P are in X+. Let X  —» Y be a dependency with X  c \Y  = 0  and let X  j, X 2, ... Xt 

be some subsets of X  such that (X1 = Y j), (X2 s  T2) , ..., (Xi =Ym) Tj u  7 2 u  ... 

u  Ym = Y . The dependency X Y  above is trivial and Y is textually contained in X .

A  non-redundant cover for X is the set Xr in which all dependencies cr in Xr , when 

removed is not in the closure Xr . If we assume that the right hand side of each depen

dency in Xr is a single attribute, then a minimal cover for Xr can be obtained by 

removing both the implied and non-implied extraneous attributes from the left hand 

side of each dependency in Xr [93]. A minimum cover is a minimal cover with a 

minimum number of functional dependencies than any other equivalent set. A 

minimal cover is a minimum cover which does not contain some two dependencies X  

—»A and Y —>B, such thatX  and Y  are equivalent.

We will give definitions for non-redundant, minimal, and minimum directed

hypergraph H .
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A hypergraph H  is non-redundant if it does not contain any redundant arcs. An arc 

( i , /') is redundant in H  if

(i) there are arcs ( i , k )  and ( k , j )  in H +, or

(ii) the node j  is textually contained in node i .

Condition (ii) identifies arcs which generate trivial dependencies. A non-redundant 

hypergraph is minimal if each compound node does not contain any implied extrane

ous attributes. The non-implied extraneous attributes are removed when redundant 

arcs satisfying condition (i) is removed. A minimal hypergraph is a minimum one if 

there are no two arcs ( / l5 J )  and (12, K)  in H , where I  \ and 12 are nodes in the same 

strongly connected component /  with J  and K  in different strong components. From 

a minimum hypergraph a minimum set of FDs can be easily generated.

The following algorithm obtains a minimum directed hypergraph Hm from the graph 

for a given set of dependencies S.
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Algorithm Minimize 

Begin

1. Let Hi  be the graph with arcs to compound nodes present in / / £+.
2. Compute the strongly connected components of the graph H
3. For each component i do in parallel 

Begin
4. If more than two arcs from the component i to the component j ,  

then REMOVE all except one from H x.
5. Choose a node X  as a representative of component i .
6. For all arcs (Y,Z) ,  such that Y is in i and Z not in i , REMOVE (Y , Z ) and add (X,Z).
7. Remove nodes j  from component i which is textually contained to some node k 

in component i .
End.

8. Process the acyclic graph formed by the strong components as follows:
Mark the arc ( / , /  ) from strong component /  to component J  for deletion when 
representative node j  of J  is textually contained in representative node i o f / .

9. Transitively reduce the acyclic graph formed by the strong components and mark
arcs to be deleted.

10. Remove implied extraneous attributes from each compound node i .
11. Remove arcs marked for deletion in Step 8 and Step 9.
12. For each one of the strong-components form a Hamiltonian-Circuit with the nodes

in the component
13. Remove redundant arcs formed due to the Hamiltonian-Circuits by Transitively

reducing the graph//j.
14. For each arc ( i , j ) ,  where j  is a compound node, do in parallel 

Begin
16. Add arcs (/, j \ ) , ..., O' , j r ), where are components of compound node j .
17. Add arcs (J, j {),..., (J,..., j r ).

End
18. Transitively reduce the resulting graph and remove the arcs to the compound nodes.

End.

The Steps 1-6 are easy to understand. In Step 7 node j  is removed from strong com

ponent I  if it is textually contained in node k in the same component I . Since j  and k
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are in the same strong component, if j  is textually contained in k , then k is also textu

ally contained in j . Hence, to avoid deleting both j  and k  from component / ,  ranks 

are assigned to each node in component I  and j  is deleted from component /  iff j  is 

textually contained in k and rank(/‘) < rank(&). The textual containment of two nodes 

in the same component can be tested as follows. Let j  and k be two nodes in the 

component /  with rank(/‘) < rank(&). Let (/, I x), ..., ( / , / / )  be the arcs from strong 

component /  to strong components I x, I h  respectively. For all strong components 

Im, 1 <m < I, we do the following. If km c  k  is in node Im, then for all nodes jm in 

Im with jm a  j  remove j m from j . If j  becomes empty, then j  is textually contained 

in k , otherwise it is not.

In Step 8 we delete the arc from strong component /  to strong component J  

when some node j  in J  is textually contained in some node i in / .  In fact, if j  and i 

are representative nodes chosen in Step 5, arc (/, J )  can be removed if j  is textually 

contained in /. Now, the test is carried out as follows. Let I x, ..., I( be the com

ponents such that there are arcs (I, I x) , ..., ( / , / / ) ,  1 <m <1, and the arcs from strong 

component J  are to only the strong components / 15..., Ix. We perform the opieration 

described previously on the node j  e  / ,  if j  becomes empty, the arc (/, / )  is redun

dant, i.e., j  is textually contained in node / e  / ,  otherwise, arc (/, / )  is not redundant. 

The arcs which are found redundant in this step are removed in Step 11 as they are 

required to determine and remove implied extraneous attributes.



The removal of implied extraneous attribute from every compound node i in 

component /  is done as follows. Let I / 2, /j be the strong components which 

have arcs from compound node I  containing i with no Ik having an arc from any of 

l j ,  1 <j  < I and each Ik contains a node z c i .  If each Ik , 1 <k < I is reduced, i.e., 

no compound node z c i  in Ik contains extraneous attributes, then pick a node z from 

each one of the Ik s. The union of all z ’s gives the compound node i without any 

implied extraneous attributes. The arcs to the compound nodes are redundant and 

Steps 14-18 performs the right reduction operation.

The minimal key for a set of dependencies 2  by taking the union of representa

tives of the strong components with indegree zero in the minimum hypergraph Hm of 

the graph H^.

Example 3: For an illustration of the algorithm Minimize see Figures 6.5(a) - 6.5(d).
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Figure 6.5(a): The graph H  j formed in Step 1 of the algorithm Minim
ize. The arcs to the compound nodes have been added after the closure 
of the original graph is determined. The arcs from a compound node to 
its simple components have been removed to lessen the cluttering of the 
Figure.

Figure 6.5(b): The graph Hy after the execution of steps 1-6 of the algo
rithm Minimize on the graph in Figure 6.5(a). The strong components 
can be clearly seen and the representatives are marked with circles 
around them. In Step 7, node GJ would be determined to be textually 
contained in BD and would be removed.
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Figure 6.5(c): The graph H x at the end of Step 13. of the algorithm 
Minimize.

BCK

Figure 6.5(d): The minimum directed hypergraph of the graph H  j in 
Figure 6.5(a) after the completion of the algorithm Minimize.
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Lemma 6.4.1: Given directed hypergraph H  the algorithm Minimize correcdy obtains 

the minimum directed hypergraph Hm.

Proof: We will first show that the graph Hm does not contain any redundant arcs.

Case (i): Let (/', j )  be the redundant arc and let i and j  be in different strong com

ponents determined in Step 2. Since (/ , j )  is redundant there can exist a node k such 

that there are arcs ( i , k )  and (k , j ). If node A: is in a different strong component, then 

the transitive reduction of the acyclic graph formed by the strong components would 

delete the arc (/, j )  in Step 9. If node k is in the component of i or j , then Steps 3-6 

would delete the arc (i, j ) .  Also the arc (i, j )  is redundant if node j  is textually con

tained in node i and it is removed in step 8. Hence the arc (i , j )  is not redundant.

Case (ii): Let the arc (/', j )  be redundant and let nodes i and j  be in the same strong 

component determined in Step 2. Since O', j )  is redundant there can exist a node k,  

and arcs (i, k)  and (k, j ) .  Node k  cannot be in a different component, since all nodes 

reachable by the node i are reachable by k using arcs ( i , k )  and (k , j ) .  If node k is in 

the same component as nodes i and j , then the Hamiltonian circuit formed for each 

strong-component would delete arc (i, j )  in Step 12. The arc (t, j )  is redundant if 

node j  is textually contained in node i . In Step 7 node j  is removed. Hence the arc 

0 ,  j ) is not redundant.

Case (iii): The construction of an Hamiltonian circuit in Step 12, creates redundant 

arcs as shown in Fig. 4.2(a). A transitive reduction on the entire graph Hi  in Step 13,
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removes redundant arcs.

Case (iv): The arc (/, j ) ,  where j  is a compound node; is redundant when there are 

arcs ( i , j  j ) , ..., (i , j t ), where j l t ..., j t are some or all of the components of compound 

node j  and each arc ( i , j k), where 1 <>k £ / , is redundant. In Steps 14-18 the arc ( i , 

j ) is removed and arcs (/, j  j ) , ..., ( i , j r) are added, where j\ , ..., j r are all of the com

ponents of j . The resulting graph is reduced using transitive reduction.

From the above we can clearly infer that Hm is non-redundant. It is minimal since in 

Step 10 the implied extraneous attributes are removed from each compound node and 

there are no arcs to compound nodes. Also, for two equivalent nodes X  and 7  there is 

only one arc from the component containing both X  and Y  and hence Hm is a 

minimum o n e .l

The presence of the arcs to compound nodes helps to treat the graph H  as a 

directed digraph which makes the application of parallel transitive closure algorithms 

possible. Given H x all the steps in the algorithm except for the Steps 7,8 and 10 can 

be implemented using parallel transitive closure algorithms in O (M (n)) time with 

0 ( n  + e)  processors on a CREW-PRAM.

The implementations of Steps 7, 8, and 10 are given in the following. We would 

first present a method to determine textual containment of two nodes in H j. We will



assume that Steps 1-6 have been executed on the graph H  We will show how to test 

the textual containment of two nodes in the same strong component first. We con

struct the following data structure for the graph For each compound node / ,  let 

j \ ,  j 2> —. j j  be the nodes such that each jp c  J . The set S(J)  consists of ordered 

pairs (jc , c),  where j c is the union of all jp ’s in strong component c. Keep all the 

S(J)  sets sorted first on the component number containing J  and next the rank com

pound node J  within the component. For each ordered pair (Jc , c)  in S(J)  we have a 

list of pointers L( j c , c). Each pointer /JC e L( j c , c)  points to an ordered pair in the 

set S ( K ) and K  is in the same component as J  with rank(/cT) > rank(/). In order to 

check the textual containment of node J  in node K  collect the pointers 

where each i points to an ordered pair in S (K). Now if j x u  j 2 u  ... u  j r 3  J ,  then 

J  is textually contained in node K.

The sum of the sizes of the S ( / ) ’s and the pointers in L (Jc , c ) ’s are both at most 

0 ( n  +e) .  The S(J)  sets can be ordered as required above in time O (logn) time 

using O(n)  processors on a CREW-PRAM. We will show that the S(J)  sets can be 

constructed in O (logn) time using 0 ( n  +e)  processors. The sets S ( / ) ’s can be con

structed by sorting the yt ’s c  J  based on the strong component number they are in and 

then taking a union of j t ’s which are in the same component c to form the ordered 

pair (jc , c ). The sorting and union operation using recursive doubling techniques can
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be done in O (logn) time with 0 (n  + e)  processors on a CREW-PRAM. Note that the 

ji ’s c  /  can be obtained during the construction of the graph H±. The collecting of 

pointers which point to the ordered pair in S (K) can all be done by sorting the 

pointers based on the list they point to and the test of textual containment can all be 

done in O (logn) total time for all compound nodes in the graph H j using 0 (n  + e)  

processors on a CREW-PRAM.

Step 8 of the algorithm can be implemented as described above. The most time 

consuming step in the entire algorithm is Step 10. Removal of implied extraneous 

attributes can be compared with the problem of finding the minimal key. In fact, 

given a minimum directed hypergraph Hm, the minimal key is the union of the 

representatives contained in the strong components whose indegree is zero. The prob

lem of left-reducing a dependency X  —» Y is finding a minimal key in the graph 

Hm(X ), where Hm (X ) is the graph induced by nodes Z c l  in Hm. Now, the removal 

of implied extraneous attributes from a compound node X  is done by finding all 

strong components containing a node Z  a  X  and assuming all such Z ’s do not have 

implied extraneous attributes we pick Z ’s from components which do not have an 

incoming arc. The union of all such Z ‘s gives the node X  without any implied 

extraneous attributes. The time taken to do this is dependent on the diameter of the 

graph H  j and can be easily done in O (logn) time for a constant diameter graph H  j 

with O (n + e ) processors on a CREW-PRAM. nodes.



115

Theorem 6.5: A minimum directed graph Hm of the directed hypergraph for a 

given set of functional dependencies X can be obtained using algorithm Minimize in 

<9 (log2/! + MAX (degree (Hj), diameter (H^)*logn)  using 0 ( M ( n )) processors on a 

CREW-PRAM.

Proof: The correctness of the algorithm Minimize follows from Lemma 6.4.1. Step 1 

takes (9(log2/i +MAX(degree(Hj), diameter(H-£ji)*logn) using 0 ( M ( n )) processors 

(Theorem 6.4). Steps 7 and 8 take O(logn) time and uses 0 (n  + e)  processors from 

the above discussion. Also, Step 10 can be implemented in O(diameter(Hj).logn) 

with 0 ( n  +e )  processors as discussed above. All other steps can be done in 

O (log2/!) time using O (M (n)) processors, since they all use transitive closure algo

rithms as a subroutine. All the steps require the CREW-PRAM model. B

From Theorem 6.5 we can see that for fixed degree and diameter graphs the 

complexity of the algorithm Minimize is O (log2/!) and uses 0 (M(n ) )  processors. 

Hence it is optimal based on the transitive closure bottleneck phenomenon.

6. CONCLUSION

Parallel algorithms for the manipulation of directed hypergraphs were presented 

in the chapter. It was first shown that manipulation of directed hypergraphs in 

inherently sequential. A parallel algorithm for the directed hypergraph reachability



problem is presented. Algorithms for finding the closure and determining the 

minimum equivalent directed hypergraph were also presented. All algorithms are 

shown suffer from the transitive closure bottleneck phenomenon. The algorithms 

were discussed in the context of manipulation of functional dependencies in relational 

databases.



Chapter Seven

PARALLEL ALGORITHMS FOR MULTI-DIMENSIONAL RANGE SEARCH

1. INTRODUCTION

In this chapter we present a parallel algorithm to obtain a set of points in a rec

tangular parallelepiped (range-search) in O (logn) time, with only 

(2.log n -  10.logn + 14), on an EREW-PRAM, where processors are allowed to com

municate through messages. We also present a non-trivial implementation technique 

on the hypercube parallel architecture with which the above time and processor bound 

can be achieved without any communication overhead. A parallel algorithm for range 

searching is developed here using the concept of distributed data structures. We use 

the range tree proposed by Bentley [12] as our data structure to be distributed. Our 

algorithm can easily be generalized for the case of d -dimensional range search. 

Range search has important applications in the areas of databases and computational 

geometry. The results presented in this chapter appear in [Radhakrishnan, Iyengar, 

Subbiah [84]].

2. RANGE SEARCH

Let S  be a set of n d -dimensional points in R d. A range query q is a d -range 

which is the cartesian product of d intervals. The output of the query is all points in S

117
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that lie within q . In the case of two dimensions the 2-range is a rectangle and for 

more than three dimensions the d -range is a hyperrectangle. Thus, the answer to the 

query q is a set of all points in S that are inside the rectangle or hyperrectangle as the 

case may be. Range search has several applications including databases and computa

tional geometry [77]. The range search is equivalent to database selection operator on 

a relation.

A considerable amount of work has been devoted to the range search problem 

[13,54]. Bentley [12] gives a thorough overview of various multi-dimensional and 

range searching problems. Several data structures and algorithms for range searching 

have been proposed and each has trade-offs between storage and time complexity. 

These structures include &-D-Tiee, multidimensional trie, super-B-tree etc. Bentley 

and Maurer [14] have shown the lower bound on the time complexity of range search 

on a set of n d  -dimensional data to be (d.logn). With the overlapping-ranges data 

structure [14] the time bound of O (d.logn) can be obtained at the expense of very 

high storage cost which is 0 ( n d). Most practical algorithms use a storage cost of 

0 ( n  \ogd~ln) to obtain a time bound of <9(logd-1n) [77]. Layered Range tree data 

structure [77] a variant of range tree has the above storage and time complexity; a 

reduction of 0(logn)  factor in storage and time complexity of the range tree. 

Chazelle [23] using the concept of filtering search reduced the storage cost to 

O (n. logd~1n/loglogn) while retaining the time complexity.
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Recently, there has been a growing interest in developing parallel algorithms for 

problems in databases and computational geometry. This interest has been enhanced 

due to the availability of more feasible parallel architectures like the hypercube and 

the mesh of processors. Bara and Frieder [10] have developed novel algorithms for 

the execution of relational database operations on a hypercube parallel machine. 

Algorithms for the execution of the relational join operator on the hypercube machine 

were also given by Omiecinski and Tien [74]. A number of parallel algorithms for 

computational geometry problems can be found in [7,29,69,55,89].

More recently, Katz and Volper [58] developed a parallel algorithm for retriev

ing the sum of values in a region on a two dimensional grid in O (logn) time with 

0 ( n m ) processors. In this chapter, we present a parallel algorithm for the range 

search problem using the range-tree as our data structure. In particular, we show that 

the 2-dimensional and 3-dimensional range search can be effected in 0(logn)  time 

with 3/2.logn -  1 (2.1og2n -  10.logn + 14) processors respectively, on an EREW- 

FRAM. The retrieval of the sum of the values can also be done in the above time and 

processor bounds.

One of the keys to efficient parallel searching is the distribution of the data points 

to be searched. To achieve such an efficiency we use the concept of distributed data 

structures. By distributed data structures we mean a typically large data structure,
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such as a B-Tree, K-d tree, Range tree and others, that is logically a single entity but 

that has been distributed over several independent processor stores. This concept is 

not new and frequently arises in the area of distributed data bases. Ellis [35] 

developed a distributed version of Extendible Hashing for database searching. Distri

buted data structures of scientific calculation and processing of sets were introduced in 

[86,72] respectively. One of the fundamental advantages of the concept of distributed 

data structure is that processors are assigned to data statically and overheads due to 

dynamic allocation are avoided. Also the concept of parallel processing of a single 

data structure have occurred in other forms such as concurrent access to a data struc

ture and issues relating to concurrency control [65].

The parallel model of computation used in this chapter is the EREW-PRAM 

(Exclusive-Read-Exclusive-Write Parallel Random Access Model). Here no two pro

cessors are to simultaneously allowed to read or write to the same memory location 

[56], Processors communicate through messages and it takes unit time to send/receive 

a message from/to an adjacent processor. Also in one unit of time a RAM instruction 

can be executed by a processor. For example, it takes O (logn) time for a single pro

cessor to search a sorted list of n elements and the in the same time broadcasting of a 

message on a n leaf binary-tree of processors can be completed.



3. THE RANGE TREE DATA STRUCTURE

The range tree was first introduced by Bentley after which several variants were 

proposed. We will first introduce the 2-dimensional range tree. The generalization to 

d dimensions can be easily visualized. Let S be the set of n 2-dimensional points. 

First sort the n points based on the value of the x  -coordinate. Imagine each point p 

as an interval [ocf, jcJ, where the first and second components are B [p] (begin point) 

and E[p] (end point). Now, the range-tree corresponding to the first dimension is a 

rooted binary-tree whose leaves contain the n points sorted and placed from left to 

right as intervals. An interior node v and its left (vj) and right (v2) children has an 

associated interval with B [v] = B[v{\  and £ [v ] = E [v2]. Now the second dimen

sional coordinates i.e., the y-coordinates are stored in the tree as follows. For each 

interval I = (B [v], £ [v ]) belonging to the node v in the tree, the y-coordinates of the 

points which project onto the interval / are stored as a binary-tree and the node v 

points to the root of the binary tree. Figures 7.2.a and 7.2.b show a set of points in the 

plane and its corresponding range tree, respectively.

X 1 2 3 4 5 6 7 8 16

Y 9 13 12 17 14 6 10 16 2

Figure 7.2.a - A set of points in the plane.
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[1 .2 ]

[ 1 . 8 ]
/  6 \

9 \
10
12
13

9 \ 14 / 61 2 \ 16 /  1013 \ 17 J 1417 X 16

[9,12],

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.2.b - The range tree corresponding to points in Figure 7.2.a.

For the case where each point in the plane represents a value and the range query 

is to sum the values in a specified region we need to store the values Sv at each node v 

of the range tree as follows. Let tv be the binary tree corresponding to the y- 

coordinates at node v. Let tvb and tve represent the left-most and the right-most 

leaves of the binary tree tv. The value Sv stored at node v is the sum of the values of 

the points whose x-coordinates and y-coordinates lie in the interval (B [v], E [v]) and 

(tvb , tve ), respectively. It is not difficult to show that the d -dimensional range tree 

can be constructed in parallel in O (d.logn) time using O(n)  processors by the use of 

Cole’s [24] parallel sorting algorithm on a EREW-PRAM.
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We present some properties of the range tree from [77].

Proposition 7.2.1: The number of nodes selected in the range tree during the range 

search on any dimension is at most 2.logn -  2 and there are not more than two nodes 

selected from each level of the range tree.H

Proposition 7.2.2: Range searching of an n -point d -dimensional file can be effected 

by an algorithm in time O{{log tt)d) using therange-tree technique.H

4. RANGE TREE DISTRIBUTION AND PARALLEL ALGORITHM

The key to the success of any parallel algorithm for range searching is deter

mined by the type of data distribution. With 0 ( n )  processors effective searches can 

be made, but, having such large number of processors is highly impractical. In this 

section, with range tree as the data structure, we present a simple data distribution 

scheme with which O {logn) search time using (2.1og2n -  10.logn + 14) processors is 

effected for the case of 3-dimensional data points. The technique we describe can 

easily be extended to the case of d  -dimensions. We will assume that the root and the 

leaves of the tree are at heights h {n =2h) and 1, respectively. We will assume that 

data values in each dimension are unique (in case some data values are the same, we 

can perturbate them slightly and, this commonly done (see [55]).
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3.1 Estimation o f processor and time-complexity

We now estimate the number of processors required to search in parallel for the 

case when d  = 2 and d = 3.

In Proposition 7.2.1 we note that at most l.logn — 2 range tree nodes are selected for 

any range queiy on a single dimension. This tells us that with 2.logn -  2 processors 

we can search the next dimension in parallel. Now, the time-complexity is given by 

the following simple equation:

Q ( l , n )  = 0 (lo g n )

Q(2, n) = Q(  1, n) + 0 (logn) = 0 (logn)

Here Q (1, n ) is the time taken to search the range tree in dimension 1. Let us say that 

another l.logn -  2 processors are available at each of the selected nodes during the 

processing of the dimension i . The next dimension z+1 can also be processed in 

parallel. Generalizing this scheme to d -dimensions we can see that the time- 

complexity is now given by the equation:

Q ( l , n )  = 0(logn)

Q ( d , n )  = Q ( d - 1, n ) + O (logn ) = 0  (d.logn)
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The total number of processors (P ( d , n )) required to search a range tree storing n d-  

dimensional points and achieve the above time-complexity is given by the equation:

P ( l , n ) = l  

P  (2, n ) = llogn  — 2

P ( d , n )  = P ( d - l  ,n) (llogn - 2 ) = 0 (logd~ln )

A simple observation that at most 2 nodes are selected at each of the heights 

from h -  2 to 1 (Proposition 7.2.1) helps to reduce the above loose processor bound to 

a great extent. The number of data points belonging to dimension i stored at node v 

at height r in the i - 1 -dimension range tree is 2r . Let t (v)  be the range tree 

corresponding to these points. The number of processors required to do a parallel 

search on i+l-dimensional points stored in f (v) is 2.log (2r ) -  2. We now present the 

estimation on the number of processors for d  = 3. From arguments above we have,

P (3, n ) = 2.[2.log (2h~2) -  2 + 2 Jog (2h' 3) -  2 + • • • + 2 Jog (2h ~ (A ~ 1}) -  2] 

P (3, n ) = 2.1og2« -  10.logn + 12

We need two more processors to search the two leaves that will be selected during the 

search of the tree corresponding to dimension 2. Hence the total number of processors 

needed to search the the 3-dimensional range tree is 2.1ogz« -  10.logn + 14. In the 

above processor estimation we have not included processors needed to search a tree
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stored in the node v at height h -  1. It is not necessary to have additional processors 

for node v , since if node v is selected during the search none of the nodes in the sub

tree rooted at v will be selected. Note that with at most 2.logn — 6 processors the node 

v can be processed. There are log2/* — S.logn + 7 processors assigned to the nodes of 

the subtree rooted at v and they ate sufficient to process the tree belonging to node v .

In the case, where there are fixed number of processors, say P , d -dimensional 

range search can be effected in O (log? n /P ) time. This bound is obtained as follows. 

During the search of the /-dimensional range tree the selected nodes are allocated 

among the P processors. For example, if O (logn) nodes are selected during the pro

cessing of dimension 2, each processor is allocated G (logn )/P nodes to be searched. 

In the range tree a search on d  -dimensions will select at most O (logd n ) nodes 

(analysis is similar to the one presented for P ( d , n )), hence, the above bound.

3.2 Distribution o f data among processors

In the case of shared memory model data contained in the range-tree need not be 

distributed among processors and idle processors are allocated dynamically to the 

selected nodes of the tree. The dynamic assignment of processors to nodes is an over

head to the system as it has to maintain a list of idle processors. Assuming that the 

selected nodes during the processing of dimension / is / ,  the time taken i< > assign idle
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processors to the selected nodes is 0(1).  Other obvious benefits of data distribution 

which include recovery and data reconstruction motivate the need for static assign

ment of processors to the nodes of the tree. In the previous subsection we have deter

mined the upper bound on the number of processors required to do a parallel range 

search in O (logn) time for the case of 2- and 3-dimensional data points. We now 

show how the processors are actually assigned and give the search strategy for the 

above cases. The case of d -dimensional is a natural extension of the approach 

presented here.

We will call an assignment of processors to the nodes of the range-tree proper if 

the number of processors used in the assignment is less than or equal to the number of 

processors estimated in Section 3.1 to achieve a time-complexity of O (d.logn), for a 

range search in -dimensions. We will now present a proper assignment scheme for 

the case of 2-dimensions first. Let T  be a 1-dimensional range tree of height h . Start

ing with the leaves at height 1 to height h -  3, we will allocate 2 processors to each of 

the heights, since at most two nodes are selected from each of those heights by Propo

sition 7.2.1. If processors p\ and pj are allocated at height r (1 < r < h —3), then start

ing from the left assign nodes at height r pi and p j , alternatively. This assignment 

would guarantee that the two selected nodes would be in different processors. Now, 

let pi and pj be allocated to height h -  2. The first and the second pairs of nodes at 

height h -  2 from the left are assigned p t and p j , respectively. The two nodes at
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height h -  1 are assigned the same processor that are assigned to their children. The 

root of T  is assigned any of the processor assigned to its immediate child at height 

h -  1. The total number of processors used in the assignment is (l.logn -  2). To 

search the third dimension, the tree corresponding to a node v is assigned new set of 

processors the same way as described in the case of 1-dimensional range tree. For two 

nodes v j and v2, their trees are assigned with the same set of processors if the proces

sor assigned to v x is the same as the processor assigned to v2. Thus, the above assign

ment scheme uses exactly the same number of processors as estimated in Section 3.1. 

Figure 7.3.a gives the assignment of processors for the tree in Figure 7.2.b.

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |

Figure 7.3.a - A proper assignment of processors for the tree in Figure 7.2.b.



The search strategy is very simple. Each processor assigned to a node v at 

height r is responsible for giving the search message to the appropriate processor at 

height r -  1. The search message is sent from a processor v at height r to a processor 

at height r - 1  if the query interval does not completely contain the interval 

(B [v], E [v]). If the interval containment is satisfied no more search message is 

issued from v and the tree at v is searched next. We know that each processor is 

assigned more than one tree node. The node interval to be chosen for comparison 

with the query interval and the processor to which the search message has to be sent 

are all done by the processor with the help of simple array indexes. We skip the 

details here.

Theorem 7.1: The range search on a 2-dimensional and 3-dimensional sets of n 

points can be done in 0(logn)  time with (l.logn - 2 )  and (2.1og2n -  10.logn + 14) 

processors, respectively. The sum of values in the range can also be done for the case 

of 2-dimension and 3-dimension in O (logn) time with the above processor bounds.

Proof: The sum of values in a range can be retrieved using the values Sv stored at 

each node of the range tree (see Section 2.). The rest of the result follows from the 

discussion above. ■
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5. RANGE SEARCHING ON THE HYPERCUBE MACHINE.

We will now proceed to give details on how the nodes of the tree can be mapped 

on to the hypercube for efficient searching. First we will present the 2-dimensional 

case. A good mapping is one which minimizes the communication time in the hyper

cube. Consider the processor assignment discussed in the previous section. A map

ping which takes the ith processor and maps it to the /th hypercube node would 

require a total communication time of O (logn.loglogn), since we require 0(logn)  

processors for range searching in 2-dimensions and 0 (lo g n ) is the height of the 

range-tree corresponding to the first dimension. Hence the total search time for 

range-searching in two dimensions using a range-tree on a hypercube would be 

O (,logn.loglogn). We now present a mapping which would reduce the total search 

time to O (logn) on the hypercube.

Consider the assignment of processors as discussed in the previous section to the 

nodes of the range tree corresponding to dimension 1. A processor at height r (p,) 

after checking its range will send the search message to another processor at height 

r -  1 (pj). If pi and pj are adjacent to each other in the hypercube the communica

tion time is a constant, otherwise, it can be as high as O (loglogn) the diameter of the 

hypercube. We now present a mapping (embedding) technique which gives constant

time communication time between processors in adjacent levels of the range tree.



It can be seen that a processor p t at height r is adjacent to two processors at 

heights r — 1 and r + 1. Based on the processor assignment discussed earlier and the 

adjacency relationship between processors we form a graph G called the processor 

assignment graph.

A processor assignment graph G consists of (l.logn  -  2) nodes and is connected 

as follows. The graph G consists of 4 chains c l5 c 2, c 3, and c4. The chains c 1 and c2 

contains odd and even numbered processors respectively (will be referred as odd and 

even numbered nodes). Two odd or even numbered nodes are adjacent in their 

respective chains iff they belong to adjacent levels of the range tree. The chain c 3 (c4) 

formed when an edge is drawn from every node a in (c2) to every node b in c2 

(c j), whenever a and b are in adjacent tree levels (see Figure 7.4.a).
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Figure 7.4.a - A processor assignment graph G .

We will show in Proposition 7.4.1 that the graph G cannot be embedded in the 

hypercube with dilation 1 (i.e., all adjacent nodes in G will not be adjacent when 

embedded in the hypercube). For dilation two embedding we require that the dimen

sion of the cube be 0(logn), i.e., with a cube containing nodes. In this case

the expansion, (i.e., the ratio of the number of hypercube nodes to the number of 

graph nodes) is exponential.

Proposition 7.4.1: The processor assignment graph G cannot be embe' 

hypercube with dilation one.

Proof: In a hypercube 2 nodes a and b can be adjacent at most to the ' 

two nodes c and d. In G two nodes a and b can be adjacent to t’ 

nodes. This implies either a should be adjacent to b or vice versa, 

is 2.B
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Lemma 7.4.2: The processor assignment graph G can be embedded on to an hyper

cube with dilation 3 and expansion 1.

Proof: Let k = l.logn -  2 be the number of nodes of the graph G . We form a grid R 

containing 2 rows and logn columns as follows. Let R (i ,j)  represent the i th row and 

the j th  column of the grid R. The embedding of the graph G on the grid R is done as 

follows:

1. /? (1,1) := 2; (* node numbered 2 in G )
2./? (1,2):= 4;
3./? (2,2) := 1;
4./? (1,3) := 3;
5. j  := 5;
6. For i := 4 To logn Do

Begin
7. R ( l,i ) := j;
8. R(2,i):= j+ 1;
9. j  := j  + 2;

End;

Figure 7.4.b is the grid obtained for the processor assignment graph shown in Figure 

7.4. a. The mapping from graph G to grid R is done with dilation 3 which can be 

easily verified. Now, the 2 x logn grid can be embedded on to the hypercube with 

dilation 1 and expansion 1 [22], hence the Lemma. ■



Figure 7.4.b - The embedding of the graph G in Figure 7.4.a onto a grid.

Theorem 7.2: Theorem 7.1. holds in the case when the processors are arranged as an 

hypercube architecture.

Proof: From Lemma 7.4.2 it is clear that the communication time for the search mes

sage to travel from one level to the adjacent one in the range tree is a constant. In the 

case of 2-dimensions after embedding G in a hypercube with (l.logn -  2) nodes, we 

can easily see that the range search can be done in O (logn) time. In the case of 3- 

dimensional range search the processor bound can be achieved with several hypercube 

machines of different sizes as follows. With the availability of two cubes of size 

(2.logn -  6), two cubes of size (2.logn -  8) and so on, the 3-dimensional range search 

can be done using a total of (2.1og2n -  IQ.logn +14) processors. This is done by 

embedding each of the subtrees optimally onto their respective hypercubes.■

It can also be easily shown that using a single hypercube with O (log2n ) processors a 

3-dimensional range search can be completed in O (logn) time.



6. PROCESSOR REDUCTION

In this section we will show that (3l2.logn -  1) processors are sufficient to effect 

a range search in O (logn) time for a set of points in the plane and thus saving 

((logn)/2 -  1) processors. The approach can be generalized to d -dimensions easily. 

The processor reduction is illustrated in the following example. Let T 25 6 be a range 

tree with 256 leaves. Time taken by a single processor to process the tree T 256 is 

the worst case 8 units of time (i.e., time taken to perform the range search on the range 

tree with 256 leaves). Two T 16 trees can be processed sequentially by a single proces

sor in 8 units of time. This means that with two processors, the tree T2 5 5, and two T 16 

trees can be processed in 8 units of time instead of using three processors and still 

requiring 8 units of time. We will generalize the above idea and estimate for a two 

dimensional range tree of height h . The range tree T2h~% requires h - 2  units of time. 

Since there are two such trees at height h -  2, we will allocate two processors. For 

similar reasons we have to allocate two processors for each of the heights from h -  2 

to (h -2)/2 -  1. For heights from (h -2)/2 to 1 we allocate a single processor. The 

total number of processors allocated to the entire tree is now (3/2.logn -  1). Finding a 

proper processor assignment scheme with reduced number of processors is easy.



7. CONCLUSION

The problem of range search was solved in parallel using the range tree data 

structure. The nodes of the range tree were distributed among the processors in such a 

way that the search can be carried efficiently in parallel. It can be easily shown that 

our our algorithm is optimal for the chosen data structure in the case of arbitrary 

dimension d = O (1), from Proposition 7.1.1. Based on the assignment of processors 

to the nodes of the range tree a processor assignment graph was created. The proces

sor assignment graph was embedded onto an optimal hypercube for the execution of 

the range search without any communication overhead. Finally, a processor reduction 

argument was presented.



Chapter Eight

CONCLUSION

In the foregoing chapters we have developed fast parallel algorithms on strongly 

chordal graphs, directed hypergraphs, and parallel algorithms for performing multi

dimensional range search. The graph structures examined in this thesis have wide 

range of applications which includes databases and computer networks.

In chapter 2, new characterizations of strongly chordal, ptolemaic, and block 

graphs in terms of the intersection graph of the maximal cliques of the graphs was 

developed. These characterizations paved way for the development of efficient paral

lel recognition algorithms. Note that the above graphs have been shown to have close 

relationships with the theory of relational databases. A parallel algorithm for deter

mining the strongly perfect vertex elimination scheme was also developed in chapter

2. Methods to construct strongly chordal, ptolemaic, and block graphs from arbitrary 

graphs by adding a minimal set of edges is presented in chapter 3. This result is 

significant, since it means that acyclic relational database schemes can now con

structed very fast in parallel by the addition of a minimal number of attributes to each 

scheme of the cyclic schemes. Parallel algorithms for various domination problems 

on strongly chordal graphs was developed in chapter 4. Note that domination prob

lems are NP-complete even on chordal graphs. The algorithms require linear

137
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sequential time on strongly chordal graphs. The algorithm for dominating set pro

duces a dominating set which is connected and hence a total dominating set.

It is known that if a problem X  is NP-complete, then there exists an NC algo

rithm for X  if and only if P = N P . In chapter 5, we prove several impossibility 

results with respect to designing NC algorithms for query implication testing which 

has several applications in relational databases and distributed processing. We show 

that for a set of queries which satisfies "chordality" conditions, polynomial time 

sequential algorithms for implication testing exists.

In chapter 6, we presented efficient parallel algorithms for manipulating directed 

hypergraphs. An important application of directed hypergraph is in the area of rela

tional databases where it is used for representing functional dependencies. A simple 

problem such as finding a directed path in the directed hypergraph is shown to be P - 

complete. This means NC algorithms for manipulating functional dependencies exists 

if and only if P = N P . But, by careful analysis of the structure of the directed hyper

graph we presented NC algorithms for the manipulation of the directed hypergraph if 

the degree and diameter of the graph is fixed.

Fast parallel algorithms for performing multi-dimensional range search was 

presented in chapter 7. A non-trivial implementation technique on the hypercube
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parallel architecture was also presented in chapter 7. This result is significant, since 

methods described in this chapter can be extended for performing parallel manipula

tions on many other multi-dimensional structures which have applications in robotics, 

CAD and other areas.

We now examine some issues and problems which have arisen out of our study. 

A lot of these problems are probably new.

1. Using the characterization provided for strongly chordal, ptolemaic, and block 

graphs in Chapter 2, efficient (linear?) sequential recognition algorithms can be 

developed. Anstee and Farber [4] provide an O (n8) time sequential algorithm for the 

recognition of strongly chordal graphs. This time bound can be easily reduced.

2. Efficient sequential algorithm for determining the strongly perfect vertex elimina

tion ordering can be developed and this would be quite useful, since no algorithm to 

obtain SPEO of a strongly chordal graph in less than O (n3) is known in the literature. 

Note that any time complexity which is less than O (n3) would imply that the domina

tion problems on strongly chordal graphs can be solved efficiently.

3. It was shown by Yannakakis [98] that minimum fill-in (i.e., minimum number of 

edges needed to make an arbitrary graph chordal) is NP-complete. We have presented 

algorithms for minimal fill-in of a strongly chordal graph, ptolemaic graph, and block
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graph. It would be interesting to find out whether minimum fill-in of these graphs are 

NP-complete.

4. Several domination problems on strongly chordal graphs were solved in Chapter 4. 

There are several other domination problems which are left open. No linear-time 

weighted 1-domination problems are known for strongly chordal graphs. Parallel 

algorithms for them are also not known. There is a relationship between Steiner tree 

problem and connected domination in a strongly chordal graph [97]. Algorithms to 

construct a Steiner tree for a strongly chordal graph is also not known.

5. There are well-known relationship between chordal graph and its subclasses and 

relational databases. It would be interesting to examine the parallel algorithms in 

terms of acyclic relational databases, for example construction of conflict-free multi

valued dependencies given a set of acyclic schemas in parallel [36].

6. On-line algorithms for the manipulation of directed hypergraphs would be interest

ing, where arcs and nodes are added dynamically.

7. Parallel algorithms for manipulation of data structures is an important area of 

research. It would be interesting to develop fast parallel algorithms to manipulate 

several multi-dimensional data structures which have applications in CAD and Robot

ics. The parallel algorithms developed in Chapter 7 can be extended to handle more



relational database operations thereby developing a parallel database environment.
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