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Abstract—The k-nearest neighbor graph is an important struc-
ture in many data mining methods for clustering, advertising,
recommender systems, and outlier detection. Constructing the
graph requires computing up to n2 similarities for a set of n
objects. This has led researchers to seek approximate methods,
which find many but not all of the nearest neighbors. In contrast,
we leverage shared memory parallelism and recent advances in
similarity joins to solve the problem exactly, via a filtering based
approach. Our method considers all pairs of potential neighbors
but quickly filters those that could not be a part of the k-nearest
neighbor graph, based on similarity upper bound estimates.
We evaluated our solution on several real-world datasets and
found that, using 16 threads, our method achieves up to 12.9x
speedup over our exact baseline and is sometimes faster even than
approximate methods. Moreover, an approximate version of our
method is up to 21.7x more efficient than the best approximate
state-of-the-art baseline at similar high recall.

I. INTRODUCTION

Computing the nearest neighbor graph for a set of objects
is a common task in many data analysis fields, including
clustering, online advertising, recommender systems, and data
cleaning. In this work, we focus on objects represented as
sparse non-negative vectors and compute the proximity be-
tween two objects as the cosine similarity of their vectors.
Given a set of n objects D = {d1, d2, . . . , dn}, the k-nearest
neighbor graph (k-NNG) G = (V,E) is a directed graph
which consists of a vertex set V , corresponding to the objects
in D, and an edge for each pair (vi, vj) when the similarity
value sim(di, dj) between the ith and jth objects is among
the k highest values in the set {sim(di, dl) | l 6= i}. In a
recent work [1], we introduced L2Knng, a serial method that
efficiently constructs the exact k-NNG by ignoring unimpor-
tant object pair comparisons. For each object in D, L2Knng
considers all other objects as potential neighbors. However,
most objects that are not one of the k nearest neighbors are
pruned (removed from consideration) without fully computing
their similarity. To improve pruning effectiveness, L2Knng first
identifies, for each object, k similar objects that may not be
its nearest neighbors. We proposed L2Knng-a for this task,
a fast approximate graph construction method that achieves
high recall in less time than other state-of-the-art methods.

In this work, we investigate cosine similarity k-NNG con-
struction in the shared memory parallel setting. The filtering
performed during graph construction is data dependent and not

TABLE I
NOTATION USED THROUGHOUT THE WORK

Symbol Description
D set of objects
k size of desired neighborhoods
di vector representing object di
di,j value for jth feature in di

d≤p
i ,d>p

i prefix and suffix of di at dimension p
σdi smallest similarity value in Ndi
I inverted index
µ candidate list sizes
γ number of neighborhood enhancement updates
ε number of objects in an inverted index tile
ζ number of non-zeros in an inverted index tile
η number of objects in a query tile

easily predicted, which poses load balance challenges. Further-
more, marshaling neighborhood updates may cause contention
in both the initial approximate graph construction and the
exact filtering phases of L2Knng. We address these issues
by devising tiling and neighborhood update strategies that
avoid locking, provide overall balanced loads for threads, and
display very good strong scaling characteristics. We evaluate
the effectiveness of our strategy on three real-world datasets,
over a large range of neighborhood sizes. Results show that,
using 16 threads, our approximate method is 1.5x – 21.7x more
efficient than the best approximate state-of-the-art baseline,
and our exact variant achieves 3.0x – 12.9x speedup over an
efficient exact baseline, while incurring less than 1% filtering
imbalance.

II. DEFINITION & NOTATIONS
We adopt a similar notation as in [1], which is summarized

in Table I. Since cosine similarity is invariant to changes
in the length of vectors, we assume that all vectors have
been scaled to be of unit length (||di|| = 1,∀di ∈ D). Given
that, the cosine between two vectors di and dj is simply
their dot-product, which we denote by

〈
di,dj

〉
. We denote

by the minimum (neighborhood) similarity σdi
the minimum

similarity between object di and one of its current k neighbors.
An inverted index is a set of m lists, I = {I1, I2, . . . , Im},
one for each feature, containing pairs (di, di,j), where di is
an indexed object that has a non-zero value for feature j and
di,j is that value.

III. METHODS
We will first introduce L2Knng and present some improve-

ments to its serial execution, and then present pL2Knng, our
parallel method for cosine k-NNG construction.IA3 2016; Salt Lake City, Utah, USA; November 2016
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TABLE II
APPROXIMATE GRAPH CONSTRUCTION PERCENT TIMES

dataset k sort sel ins sim upd
RCV1 10 3.17 5.57 0.16 88.04 3.07
RCV1 100 4.44 5.70 0.26 80.30 9.30
RCV1 500 1.11 5.27 0.06 83.48 10.07

WW500 10 24.07 0.94 1.15 73.06 0.78
WW500 100 7.92 0.91 0.31 89.57 1.29
WW500 500 2.46 0.82 0.10 94.77 1.84

The table shows, for the initial graph construction phase of the L2Knng-a
method, the percent of execution time of different tasks within the algorithm.

A. Serial improvements in L2Knng

L2Knng execution consists of two phases. First, in the
approximate graph construction phase, L2Knng finds an ini-
tial k neighbors for each of the objects in D by calling
L2Knng-a. The minimum neighborhood similarities in each
of the neighborhoods of the approximate graph are then used
as pruning thresholds in the filtering phase, which outputs the
exact nearest neighbor graph.

Our serial improvements in L2Knng focused on the approx-
imate graph construction phase of the method, which itself
consists of an initial construction (IC) phase and a graph
enhancement phase (GE). At a high level, each of the steps
in the L2Knng-a execution is composed of the following
tasks. Input data or the current neighborhoods are sorted
by value and indexed to facilitate the selection of neighbor
candidates (srt). Then, for each query object, a candidate list
of potential neighbors is selected (sel) that may improve the
current neighborhood. Data associated with the query object
is optionally entered into a data structure that can facilitate
fast dot-product computations or pruning (ins). Then, dot-
products are computed between the query and each of the
chosen candidates (sim), skipping some pruned candidates.
Finally, some of the neighborhoods are updated (upd) with
computed similarities that improve them.

In an effort to gauge where the algorithm spends most of
its time, we instrumented the L2Knng-a code with timers for
each of the tasks. Table II shows the percent of the overall
execution time in each phase taken by each of the tasks during
the initial graph construction, when searching for 10, 100, and
500 nearest neighbors in two datasets described in Section IV.
The results of this experiment show that L2Knng-a spends
the majority of its execution time selecting candidates and
computing similarities between query and candidate objects.
Indexing and sorting can also account for a significant portion
of the execution time when k is small.

Given these observations, we focused our efforts on improv-
ing the similarity computation, sorting, and candidate selection
tasks in L2Knng-a. We improved our sort routines by first
applying a select procedure [2], which partitions the lists to
be sorted such that the leading µ values are greater or equal
to the remaining values, which reduced the complexity of
sorting a list of size l > µ from O(l log l) to O(l + µ logµ).
We simplified the candidate selection process by eliminating
reverse neighbor selection and prefix dot-product computations
for the purpose of identifying candidates. We improved the

TABLE III
EFFICIENCY IMPROVEMENT IN L2Knng

dataset method k=10 25 50 75 100
WW200 L2Knng-a 1.10 1.26 1.18 1.21 1.15
WW200 L2Knng 1.63 1.68 1.71 1.70 1.70
WW500 L2Knng-a 1.31 1.27 1.35 1.26 1.31
WW500 L2Knng 1.49 1.60 1.62 1.73 1.69
RCV1 L2Knng-a 1.09 1.15 1.18 1.23 1.39
RCV1 L2Knng 1.46 1.50 1.49 1.54 1.44

neighborhood update efficiency by using a select procedure to
reduce the number of neighborhood heap updates from µ to
k. Although we attempted several strategies to improve vector
dot-products, none proved more efficient than the sparse-dense
dot-product strategy used in L2Knng-a. The details of these
changes can be found in [3].

Table III shows the results of comparing the serial execution
of our updated L2Knng variants against the original ones de-
scribed in [1], as speedup of the enhanced L2Knng variants, for
k ∈ {10, 25, 50, 75, 100}. We executed all methods with one
round of neighborhood enhancement (γ = 1) and tuned the
candidate list size µ to achieve 95% recall for all approximate
methods. Improvements over 1.5x are presented in bold. While
our updates led to modest improvements for approximate
graph construction, they contribute to achieve 1.44x – 1.73x
speedup in the case of the exact version of L2Knng, which is
affected by both the efficiency and effectiveness of L2Knng-a.

B. PL2Knng

Algorithm 1 describes our parallel k-NNG construction
method, pL2Knng. Our method follows the same computation
strategy as L2Knng, incorporating the improvements described
in Section III-A. Namely, an approximate graph is first con-
structed, which provides filtering thresholds when deriving
the exact neighborhood graph. Then, for each query object,
pL2Knng indexes some of its prefix values, ensuring that the
query object can be found in subsequent searches by objects
that belong in the query neighborhood or whose neighborhood
the query can enhance. Using the index, pL2Knng selects
a list of candidates for the query, which are a superset of
its neighbors, a process we call candidate generation (CG).
Upper-bound estimates on the similarity are used to prune
some of the candidates. Finally, pL2Knng completes the sim-
ilarity computation in the candidate verification (CV) stage,
performing additional pruning based on several upper-bound
estimates, and updates the query and candidate neighborhoods
if the result can enhance them. For full details on the filtering
process, see [1].

1) Block processing: In order to enable cooperative pro-
cessing of different query objects in its filtering phase,
pL2Knng indexes objects prior to filtering. The index is split
into several sections, called tiles, corresponding to a set of
consecutive objects in the object processing order, and each
index is used in turn to find neighbors. The index size is
highly data dependent. Each object indexes a different number
of values that depends on the magnitude of those values and
the current minimum similarity in the object’s neighborhood.



Algorithm 1 The pL2Knng algorithm.
1: function PL2KNN(D, k, ζ, ε, η)
2: N̂ ← pL2KNN -a(D, k)
3: Set object processing order. z ← 0; r ← 0; i← 1; I ← ∅
4: while i ≤ n do
5: j ← i
6: for each i = j, . . . , n do . Identify next tile
7: S ← FindIndexSplit(di, σdi)
8: z ← z + nnz(d>

i ); r ← r + 1
9: if z ≥ ζ or r = ε then

10: i← i+ 1; break
11: for each q = j, . . . , i in parallel do . Create index I
12: Index(dq, I, S, σdq )

13: for each l = j, . . . , n, in increments of η do . Filter
14: for each q = l, . . . ,min(l+η −1, n), in parallel do
15: cq ← GenerateCandidates(dq, I, k)
16: VerifyCandidates(dq, cq, I, N̂ , k)
17: I ← ∅. Update un-indexed object processing order.
18: end while
19: return N̂

Since many different sections of the index may be accessed
concurrently, it is beneficial for the index to fit in the cache
memory available on the system. The size of each tile is thus
dynamically chosen in pL2Knng such that the tile contains at
most ε indexed objects and ζ indexed non-zeros.

After indexing a set of objects, pL2Knng splits the set of
query objects (those that come after the first indexed object
in the processing order) into query blocks of size η. Threads
are then dynamically assigned a small number of consecutive
queries at a time from a block, which they process sequentially.
Our method keeps track of the k-nearest neighbors of an
object by using a heap data structure. Note that, after finding
neighbors for a given query object, a thread can safely update
the query neighborhood heap. However, it cannot also update
the neighborhood of a candidate without locking, as another
thread may be trying to concurrently update the same heap.
As such, pL2Knng keeps a candidate list in memory for
each of the objects in the query block, deferring candidate
neighborhood updates until all query block objects have been
processed. The parameter η should be chosen to ensure η × ε
values can be stored in memory, as each candidate list has
a maximum size of ε. Moreover, moderately small η values
can ensure the candidate lists are cache-resident, leading to
improved performance. The same query block cache-tiling
strategy is also used in the IC and GE phases of our method.
However, each candidate list size is µ there, so the memory
necessary to store candidates is η ×max(µ, ε).

The processing order of objects in pL2Knng is in non-
increasing value of their minimum neighborhood similarity
σdi . After completing the filtering process using the current
index, the index can be discarded. The filtering, however, leads
to improved minimum neighborhood similarities of un-indexed
objects. As a result, pL2Knng updates the object processing
order of un-indexed objects, improving index reduction and
pruning during searches using the following index tile.

2) Neighborhood updates: Each thread updates the query
neighborhood as soon as it has finished the filtering process

Fig. 1. Segmentation of candidate lists for neighborhood updates.

TABLE IV
DATASET STATISTICS

dataset # objects # features # non-zeros
RCV1 804,414 45,669 62M

WW200 1,017,531 663,419 437M
WW500 243,223 660,600 202M

for its list of candidates. Given a set of candidates C with
|C| > k, we first select [2] the top-k values in the list, filtering
out those less than σq , and then sequentially insert them in the
query heap. Our strategy for updating candidate neighborhoods
is slightly different. Each thread is assigned a sequential
block of n/p candidate objects whose neighborhoods they are
responsible to update, where p is the number of threads. When
a candidate list is constructed, candidates are added in the
order they are found during the candidate selection process,
which results in a semi-random ordering. After updating the
query neighborhood, the thread re-arranges the similarities in
the candidate list to ensure efficient candidate list updates.
Filtering out similarities that cannot improve their respective
candidate neighborhoods, the thread partitions similarities into
p sections s.t. the ith section contains similarities for objects in
the ith candidate block, which will be updated by the ith thread
after the query block has finished being processed. The thread
also records the starting and ending offset of each segment
in the candidate list. Figure 1 shows this strategy for objects
d1–d5 from a set of 16 objects, given 4 threads.

IV. EXPERIMENTAL METHODOLOGY

Table IV details the number of objects, features, and non-
zeros of the text-based datasets we used in our experiments.
The RCV1 [4] dataset is a standard benchmark corpus of
newswire stories provided by Reuters, Ltd., while WW200 and
WW500 contain documents with at least 200 and 500 distinct
features, respectively, extracted from the October 2014 article
dump of the English Wikipedia.

We compare our methods against three baselines.
PKIdxJoin is a straight-forward baseline that uses similar
cache-tiling as pL2Knng, but does not use any pruning
when computing similarities. GF is an approximate k-NNG
construction method proposed by Park et al. [5]. We have
created a shared memory parallel version of GF, which we
call pGF, using the same thread cooperation strategy as in
pL2Knng-a. Finally, NN-Descent is a shared memory parallel
approximate k-NNG construction method designed by Dong
et al. [6] to work with generic similarity measures. Additional



details on baselines, performance measures, and execution
environment can be found in [3].

V. RESULTS & DISCUSSION

Due to lack of space, we only present experiment results
on the efficiency of our approximate and exact methods, and
summarize strong scaling and load balance results. Additional
results on these topics, along with effectiveness and parameter
sensitivity experiments, are presented in [3].

A. Efficiency comparison
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Fig. 2. Approximate k-NNG construction efficiency.

We compared minimum execution times required for each
approximate method to achieve high recall (at least 95%), and
for each exact method to solve the problem, for k ranging
from 10 to 500. We executed each approximate method
under a wide range of parameters to find its best execution
time for each k value. Figure 2 shows the execution times
for approximate methods (left) and exact methods (right).
Our approximate method, pL2Knng-a, outperformed the best
approximate baseline by 1.5x – 21.7x. NN-Descent performed
well on the RCV1 dataset, but was not competitive for the
Wikipedia based datasets. It was unable to find a k-NNG with
high enough recall for k ∈ {10, 25} for the WW200 dataset,
probably due to its random choice of initial neighbors. Given
its heuristic choice for initial neighbors, pGF performed well
for small k values, but its execution time quickly increased
with k due to the iterative local joins that the method performs.
Our exact method significantly outperformed pKIdxJoin,
especially for small k values. PL2Knng is more efficient than
both approximate baselines for the Wikipedia datasets, and
only 2.2x slower for the highest k value in the RCV1 dataset.
On the other hand, our approximate method, pL2Knng-a,
greatly outperformed both exact and approximate baselines.

B. Strong scaling and load balance

We compared the scaling characteristics of the exact meth-
ods for k ∈ {10, 100}. Our method scales linearly up to 16
threads, outperforming pKIdxJoin in all experiments. While
pKIdxJoin achieves less than 8x speedup over its single

TABLE V
LOAD IMBALANCE IN pL2Knng

RCV1 WW200 WW500
k IG GE CG CV IG GE CG CV IG GE CG CV
10 0.2 0.1 0.1 1.1 0.7 0.3 0.1 0.6 1.8 1.3 0.2 0.8
100 2.7 0.1 0.2 1.7 4.2 0.3 0.1 1.6 11.3 2.2 0.1 0.3
500 9.4 0.5 0.2 1.6 12.7 1.0 0.1 1.7 12.5 5.4 0.2 0.5

threaded execution using 16 threads, pL2Knng is able to
achieve almost 14x speedup over its single threaded execution.

As an alternate way to characterize the parallel performance
of pL2Knng, we measured the load imbalance in the different
sections of our method: initial graph construction (IG), graph
enhancement (GE), candidate generation (CG), and candidate
verification (CV). Table V shows the percent of imbalance in
our experiments, for k ∈ {10, 100, 500}. Our method spends
the majority of its time in the filtering sections (CG and CV),
which display very good load balance in general, less than 1%
on average. The approximate construction of the graph, which
accounts for 6 – 24 % of the overall execution time, shows
slightly worse imbalance in the IG stage, up to 12.71%.

VI. CONCLUSION

In this work, we presented strategies to improve an earlier
serial method for cosine similarity k-NNG constriction, and
an efficient way to extract parallelism in this method, in the
shared memory setting. Our exact and approximate methods
combine cache-tiling with an efficient neighborhood update
strategy to solve the problem, using 16 threads, 3.0x – 12.9x
faster than the best exact and 1.5x – 21.7x faster than the best
approximate state-of-the-art baselines.
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