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Fast Parametric Modeling of Radio Astronomy

Reflector Antenna Noise Temperature

Dirk I. L. de Villiers, Senior Member, IEEE

Abstract—This communication presents an approximate
method to rapidly estimate the antenna noise temperature of
a reflector antenna system as a function of the geometric
parameters describing the reflector dishes. The initial estimate is
established by neglecting the main reflector from the calculation
domain, thus speeding up the calculations significantly. The
accuracy may be improved by aligning the estimated results
with those from full model simulations, performed at a limited
set of points scattered through the parameter space, by a linear
regression correction on the residuals. Results of applications on
a variety of reflector configurations for some commonly used
parameter sets confirm the accuracy of the method to be better
than 1%, with speed-ups of more than an order of magnitude
typical.

Index Terms—Noise, radio astronomy, reflector antennas.

I. INTRODUCTION

Antenna noise temperature is an important performance

metric in the design of several types of ground based reflector

antenna systems – most notably ground station antennas for

deep space communication [1] and radio telescope antennas

[2], [3]. Specifically the receiving sensitivity, which is the

ratio of effective area and noise temperature of the antenna

system, is of interest, with maximization of this metric often

being the primary objective of ground based reflector antenna

designs. The most time consuming part of the calculation of

the receiving sensitivity typically lies in finding the antenna

noise temperature, since this requires the calculation (or mea-

surement) of the radiation pattern of the reflector system over

the full 4π steradian sphere, and a subsequent integration of

the weighted pattern. An early example of a reflector system

optimized for receiving sensitivity is reported in [4]. To make

the repeated calculation of the radiation pattern (including feed

dish interactions) required for the optimization tractable, this

example used a custom multiple reflection approach.

The development of modern radio telescope systems, such

as MeerKAT [2] and SKA [3], has sparked renewed interest

in finding fast and reliable ways of calculating antenna noise

temperature for use in optimization routines to design these

systems. Recent publications [5]–[8] have focused on rapid

estimation of antenna noise temperature in offset Gregorian re-

flector configurations, since this is the choice for the MeerKAT

and SKA reflector optics. In all cases the basic premise used

to increase the calculation speed is that the main reflector

can be removed from the calculation domain – if a suitable

correction is applied to the field radiated towards the missing

main reflector. The significant speed-up obtained in this way

is attributed to the reduced size of the electromagnetic (EM)
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problem, as well as to the slower angular variation in the far-

field pattern that is to be integrated (due to the reduced total

antenna size). The idea was first presented in [5] (although it

has been informally used in the past - see for instance [9]),

with a further correction factor added to improve the accuracy

over wide bandwidths in [7], [8].

The work in [5]–[8] focused on estimation of the antenna

noise temperature as a function of frequency for a specific feed

and antenna structure in the offset Gregorian configuration.

This communication builds on the idea of omitting the main

reflector from the calculation domain to model the antenna

noise temperature of a reflector system as a function of the

geometric parameters describing the reflectors. Since these

parameters are often the inputs to a parameter study or

optimization routine, such a computationally cheap parametric

model of antenna noise temperature may significantly speed up

the process. Accuracy of the model is maintained by casting it

into a so-called surrogate based modeling framework [10]. In

this context a surrogate model is constructed by aligning a fast

to evaluate, but less accurate, coarse model to an accurate, but

typically slow to evaluate, fine model. The surrogate model is

thus a corrected version of the coarse model, providing high

accuracy at low computational cost. In this work the coarse

model is the antenna system with the main reflector removed,

and the fine model the full reflector system. The alignment (or

correction) of the coarse model is done by evaluating the fine

model at only a few points in the parameter space, and fitting

a regression function through the resulting residuals between

the fine and coarse models. This regression function is added

to the coarse model as a correction term. Since the underlying

coarse model is physically based on the same system as the

full fine model, it generalizes well over the parameter space.

The details of the model construction and alignment are

described in Section II, and several examples of the method

applied to different reflector antenna types (prime focus

paraboloid, symmetrical Cassegrain, and shaped offset Grego-

rian) are provided in Section III. It will be shown that the an-

tenna noise temperature may be accurately modeled – to within

less than 1 % error – over wide multi-dimensional parameter

spaces, at a fraction of the computational cost required when

the full reflector system models are directly evaluated. Lossless

and matched antenna structures are assumed throughout, so

that the only contribution to the antenna temperature is that

from the background radiometric noise.

II. SURROGATE MODEL CONSTRUCTION

A. Antenna Noise Temperature Definition

Antenna noise temperature is calculated from the so called

noise temperature integral as [1], [7]

TA(f |r0) =

∫

4π
Tb(f,Ω)P (f,Ω|r0)dΩ
∫

4π
P (f,Ω)dΩ

, (1)

where TA denotes the antenna noise temperature and

P (f,Ω|r0) the total antenna radiation pattern power per unit

solid angle, Ω, when pointing in the direction of the unit vector

r0 at frequency f . The brightness temperature distribution of

the scene surrounding the antenna is denoted by Tb(f,Ω),
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which for a rotationally symmetric distribution may be speci-

fied in terms of only the polar angle θ as Tb(f, θ). A complete

description of the brightness temperature model Tb is provided

in [11], with some further discussions on different levels of

simplification of the model available in [6], [7]. In general,

the method descibed in this communication is not limited to

the brightness temperature models in [7], [11], and simpler or

more complete models may be used if required. The definition

in (1) is valid for a single medium and polarization, and it

should, in general, be separated to account for the polarization

dependent ground emission and scattering as described in [1],

[7]. For ease of notation, and without loss of generality, (1)

may be written as

TA(f, θp) =

∫

4π

Tb(f,Ωp)G(f,Ω)dΩ, (2)

where G denotes the antenna gain pattern (since the denom-

inator of (1) represents the total radiated power). The effect

of varying elevation (or tipping) angle θp of the system is

accounted for by rotating Tb around the y-axis by −θp, and

thus using a rotation matrix to find the mapping Ω → Ωp.

A detailed expansion of the rotation mapping is given in,

for instance, [1, Ch. 1], and Ωp corresponds to the primed

coordinates in [7]. Zenith pointing is aligned with the z-axis.

Symmetry plane cuts of the three types of reflector systems

discussed in this communication are shown in Fig. 1, where

some of the important parameters as well as coordinate system

definitions are indicated.

B. Calculating Coarse Model Responses

Following the idea in [5], coarse models of TA, which are

physically based on the full models but significantly faster to

evaluate, may be constructed by removing the main reflector

from the calculation domain. Single reflector systems require

calculation of the feed radiation pattern, and in the same way

dual reflector systems the calculation of the feed and sub-

reflector radiation pattern. The coarse model gain patterns are

indicated as Gc, and the resulting antenna temperature as T c
A.

In all cases the portion of the pattern Gc radiating towards

the main reflector will be assumed to be reflected towards the

sky, and the brightness temperature in that region will thus be

modified to the sky temperature in the θp direction to give

T c
A(f, θp) =

∫

4π

T c
b (f,Ωp)G

c(f,Ω)dΩ, (3)

with

T c
b (f,Ωp) =

{

Tb(f,Ωp), Ωp − ΩM,

Tb(f, θp), Ωp ∩ ΩM.
(4)

Here standard set notation is used for the solid angle regions

Ωp and ΩM, with the definition of the latter illustrated in

Fig. 1 as the region, in the radiation pattern coordinate system,

subtended by the main reflector. Note that, for the offset

Gregorian case, the region indicated by ΩM corresponds to

the main reflector region indicated in [7, Figs. 5-6] and the

mask in [5, Fig. 3(c)].

The fast calculation time of the coarse model is due to

the reduced number of unknowns in the calculation space
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Fig. 1. Symmetry plane cut of a prime focus paraboloid (top), symmetrical
Cassegrain (middle), and offset Gregorian (bottom) reflector system. Some
of the physical parameters and coordinate system definitions are shown, as
well as some of the optical ray paths in the transmit sense. Note that ΩM

represents a solid angle.

(especially important in full-wave simulations), as well as

the slower angular variation of the radiation pattern due to

the smaller electrical size of the antenna. The latter effect

is particularly obvious when Physical Optics (PO) is used,

since the field calculation often becomes a bottleneck in the

algorithm when large number of field points are required [12].

Errors in the coarse model arise mainly from from the neglect

of any diffraction effects caused by the main reflector. The

model thus becomes more accurate with increasing electrical

size of the main reflector. A correction factor is suggested in

[7], [8] for the offset Gregorian configuration, which improves

the predictions for different simulation frequencies. This factor

modifies the brightness temperature profile as a function of

frequency only, and cannot be easily generalized and extended

to a function of the geometric parameters of the system. Here

we are interested in changing the physical reflector parameters,

so a more general correction strategy, applicable to all reflector

geometries, is suggested in Section II-C.

C. Model Alignment

To compensate for the inaccuracy inherent in the coarse

model, a simple strategy is suggested to construct an improved

accuracy surrogate model with little extra computational over-

head. The strategy is especially useful when the surrogate

model is required over a wide parametric space, as would
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be the case in parametric studies and global optimizations.

For each f and θp (suppressed in the following notation) a

correction term is added to the coarse model to form the

surrogate model T s
A as

T s
A(x) = T c

A(x) + r(x), (5)

where x = [x1, x2, . . . , xN ]T indicates the dependence on the

vector of parameters describing the physical reflectors. The

correction term r(x) is estimated by fitting a linear regression

model on the residuals of the coarse and fine models, sampled

over a limited training set xi, as

ri(xi) = TA(xi)− T c
A(xi), (6)

where xi is selected as a star distribution to cover the full

parameter space [13]. The correction term regression model

assumes independent input variables (coupled variables may

also be included if the number of samples are increased), and

is limited to a second order polynomial of the form

r(x) = α0 +
N
∑

n=1

[

αnxn + βnx
2

n

]

, (7)

trained, in a least squares sense, on xi to find the parameter

vectors α and β [14]. Using this regression model, the

correction term r(x) is generalized over the full parameter

space from information collected at only a few samples xi.

T s
A is thus expected to be more accurate than T c

A over the full

extent of x.

III. EXAMPLES

To illustrate the method, examples of three types of reflector

systems are investigated. The parameter sets for each case is

chosen as representative of typical design and optimization

scenarios, but in many real world scenarios different sets of

parameters and constraints might be used. This is due to

the fact that the mechanical design of the reflector surfaces

often drives and constrains the electromagnetic design to

a large degree. The brightness temperature model for Tb

used in all cases is model 3 in [7]. This is the polarization

averaged reduced expression of the full brightness temperature

model, including atmospheric absorption by water and oxygen,

galactic and cosmic microwave background emission, as well

as ground emission and scattering, presented in [11, Sec. 4.3].

PO, augmented by Physical Theory of Diffraction (PTD), as

implemented in the commercial code GRASP [15], is used as

the solution method for the reflector systems. Near field effects

are accounted for by using the spherical wave expansion of

the feed radiation patterns. Simulations are performed on a

laptop computer with a dual core 2.1GHz Intel R©CoreTM i7-

4600U CPU and 8 GB memory. Recall that calculation of the

main beam (and first few sidelobes) of a reflector system is

significantly faster (typically at least an order of magnitude)

than calculation of the full pattern over the 4π sphere, as is

required for antenna noise calculations done here. This is due

to the smaller number of required field samples, but also due to

the coarser mesh required to resolve the slow spatial variation

of the current over the reflector surface for near broadside

radiated fields. Other radiation pattern responses of interest,

such as gain, sidelobe levels, and cross-polarization isolation,

may thus be directly calculated using the full reflector system.

All temperature plots are shown as the average over θp,

calculated as (f dependence suppressed)

T̄ (*)
A (x) =

1

Np

Np
∑

t=1

T (*)
A (θpt,x), (8)

with the star symbol indicating any of TA, T (s)
A , or T (c)

A , and

θp = [0◦, 3◦, 6◦, . . . , 75◦] (giving Np = 26). The accuracies

of the coarse and surrogate models (indicated by superscripts
c and s respectively) are evaluated on a validation set xv and

described by error functions of the form

ǫ(c,s)(xv) =
∆(c,s)(xv)

T̄A(xv)
, (9)

with

∆(c,s)(xv) = |T̄ (c,s)
A (xv)− T̄A(xv)|. (10)

Standard RMS errors, calculated over the full validation sets,

are indicated as ǫ(c,s)
RMS. Furthermore, the maximum absolute

differences between the fine model and the coarse and sur-

rogate models respectively are also given and calculated as

∆(c,s)
max = max{∆(c,s)(xv)}.

A. Prime Focus Paraboloid

As a first example a prime focus fed paraboloid reflector

system is investigated. The feed antenna is a low-gain axially

corrugated horn, designed according to the equations provided

in [16] for three corrugations, and simulated using the Method-

of-Moments (MoM) in FEKO [17]. The reflector diameter

is D = 40λ, with λ indicating the wavelength. The focal

length is varied in the range F/D ∈ [0.35, 0.5], with the

training and validation sets chosen as xi = [0.35, 0.43, 0.5],
xv = [0.35 : 0.01 : 0.5]. Feed and strut supports are

neglected in the PO/PTD solution. The main effect of the

feed and support blockage on TA will be a ripple in the

response as a function of F/D because of the electrical length

variation between the dish and the feed [18] – a so-called

chromatic aberration. Since the exact structure of this ripple

is frequency dependent, it is best neglected when doing an

initial optimization or parametric study of F to keep the goal

function smooth and thus to avoid local optima.

Results for the PO/PTD simulations are shown in Fig. 2,

where the reference MoM results, of the full structure consist-

ing of the dish and feed, are also included. PO/PTD results

are used for the fine model, and the surrogate model is

seen to approximate the MoM result without the chromatic

aberration ripple. The RMS error level for the coarse model

(simulation time around 5 seconds per sample) is ǫ(c)
RMS = 3.0%

which is reduced to ǫ(s)
RMS = 0.3% for the surrogate model.

The maximum absolute differences are ∆(c)
max = 0.91 K and

∆(s)
max = 0.096 K. Acceptable accuracy may be achieved

using the coarse model directly, but the improvement achieved

when using the surrogate is obvious. Only three fine model

simulations (of around 20 seconds simulation time each) are

required to construct the surrogate.
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Fig. 2. Prime focus paraboloid antenna temperature results in (a), and
modeling errors in (b). In (a) the solid line indicates the surrogate model
temperature T̄ s

A(x), with the coarse and fine model verification sets T̄ c
A(xv)

and T̄A(xv) indicated by black stars and red dots respectively (note that the
dots lie almost exactly on the solid line). Red circles indicate the fine model
training set T̄A(xi), and crosses the MoM solution of T̄A(xv). In (b) the
coarse and surrogate model errors ǫc(xv) and ǫs(xv) are indicated by star
and dot markers respectively.

B. Symmetrical Cassegrain

The next example investigates the response of a symmet-

rical Cassegrain system, described by the equations in [19],

with the main reflector subtended angle fixed to 90◦. Here

an analytically defined axially symmetric Gaussian radiation

pattern is assumed for the feed, with an edge taper value

of 12 dB specified at 22◦. The main reflector diameter is

fixed at D = 100λ, since these types of reflector systems

are normally significantly larger than prime focus types to

reduce diffraction losses from the sub-reflector [20]. A two-

dimensional (2-D) parameter space is investigated over the

range x1 = d/D ∈ [0.05, 0.14], x2 = θe ∈ [17◦, 29◦]. The

training set is a star distribution (total of 5 samples), and the

validation set a regular grid with 37 samples in x1 and 13
samples in x2.

Due to the large size of the reflectors the coarse model

(simulation time around 5 seconds per sample; fine model

around 5 minutes) RMS error is already at ǫ(c)
RMS = 0.55%,

leaving little room for improvement in the surrogate model

with a slightly worse ǫ(s)
RMS = 0.70%. The maximum absolute

differences are ∆(c)
max = 0.127 K and ∆(s)

max = 0.126 K. Note

the ripple structure in the error response caused by the varying

effective seperation distance between the two reflectors – an

effect ignored in the coarse model.

C. Shaped Offset Gregorian

The final example considers a shaped offset Gregorian

system, illuminated by the same horn feed as in Section III-A.

The dishes are shaped, using the method described in [21] and

[22, Sec. II], to produce a desired aperture distribution given

a specified feed radiation pattern. Specifically, a Gaussian

feed with 12 dB taper at θe is assumed, and the dishes are

shaped to provide an aperture power density distribution of

the form described in [23, II] i.e. a hybrid uniform/Gaussian

distribution. This distribution is axially symmetric, with a

central region of uniform power density. Outside this central

region the power density decreases smoothly, as a Gaussian
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Fig. 3. Symmetrical Cassegrain antenna temperature results in (a), and
modeling errors in (b). In (a) the spline interpolation surface indicates
the surrogate model temperature T̄ s

A(x), with the coarse and fine model

verification sets T̄ c
A(xv) and T̄A(xv) indicated by black stars and red dots

respectively. Red circles indicate the fine model training set T̄A(xi). In (b)
the coarse and surrogate model errors ǫc(xv) and ǫs(xv) are indicated by star
and dot markers respectively. A spline interpolation is used to generate the
surface plot of ǫs(x),which thus interpolates the red dots.

function, to a specified edge taper value. The parameter space

of interest is again 2-D, with the first parameter describ-

ing the relative extent of the uniform aperture distribution

x1 = ρMM ∈ [0, 0.9], and the second the edge taper of

the aperture distribution x2 = b = [0 dB, 20 dB]. These

definitions are slightly different from those in [23]. The main

reflector projected diameter is D = 50λ, and the maximum

main and sub-reflector chord lengths are 60.67λ and 16.67λ
respectively. The projected separation between the reflectors

(onto a plane perpendicular to the main beam direction) is

1.67λ, and θe = 58◦. Results are shown in Fig. 4, with the

training set again a star distribution of 5 samples, and the

validation set a regular grid with 102 samples.

This example shows a marked improvement in accuracy

of the surrogate model when compared to the coarse model

(simulation time around 5 seconds per sample; fine model

around 90 seconds) from ǫ(c)
RMS = 4.7% to ǫ(s)

RMS = 1.0%.

The maximum absolute differences are ∆(c)
max = 1.46 K and

∆(s)
max = 0.36 K. It is also worth noting that the coarse model

is significantly more accurate in regions of low main reflector

edge illumination (b → 20 dB and ρMM → 0) due to the

reduced edge diffraction. In the design of, for instance, radio

telescopes with a large number of similar reflectors, such as the
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Fig. 4. Shaped offset Gregorian antenna temperature results in (a), and
modeling errors in (b). In (a) the spline interpolation surface indicates
the surrogate model temperature T̄ s

A(x), with the coarse and fine model

verification sets T̄ c
A(xv) and T̄A(xv) indicated by black stars and red dots

respectively. Red circles indicate the fine model training set T̄A(xi). In (b)
the coarse and surrogate model errors ǫc(xv) and ǫs(xv) are indicated by star
and dot markers respectively. A spline interpolation is used to generate the
surface plot of ǫs(x), which thus interpolates the red dots.

SKA [3], such high levels of accuracy are critical in the design

and optimization stage. In these systems – where hundreds or

even thousands of dishes are to be manufactured and installed

– a 1 % improvement in receiving sensitivity of each the

antenna systems translates to the equivalent of dozens (or even

hundreds) fewer reflectors required to achieve the same level

of receiving sensitivity.

IV. SUMMARY AND CONCLUDING REMARKS

This communication presented a fast approximation, valid

over large design parameters spaces, to the antenna noise

temperature contribution from background radiometric noise in

reflector antenna systems. The main reflector is removed from

the calculation domain to speed up the analysis, and accuracy

is retained by alignment of this coarse model response to

fine model responses calculated over a sparse set of training

points in the parameter space. Various types of reflector

configurations were evaluated using the suggested method,

and accuracy of better than 1% is obtained at speed-ups of

more than an order of magnitude. Noise contributions due to

the reflector surfaces (conduction losses and scattering due

to surface errors), which become more apparent at higher

frequencies, are not considered here. This will be the subject

of future research, where it is foreseen that a similar method

may be used for the fast and accurate parametric modeling of

the noise temperature contribution from the reflector surfaces.
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