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Fast Partitioning of Vector-Valued Images∗

Martin Storath† and Andreas Weinmann‡

Abstract. We propose a fast splitting approach to the classical variational formulation of the image parti-
tioning problem, which is frequently referred to as the Potts or piecewise constant Mumford–Shah
model. For vector-valued images, our approach is significantly faster than the methods based on
graph cuts and convex relaxations of the Potts model which are presently the state-of-the-art. The
computational costs of our algorithm only grow linearly with the dimension of the data space which
contrasts the exponential growth of the state-of-the-art methods. This allows us to process images
with high-dimensional codomains such as multispectral images. Our approach produces results of a
quality comparable with that of graph cuts and the convex relaxation strategies, and we do not need
an a priori discretization of the label space. Furthermore, the number of partitions has almost no
influence on the computational costs, which makes our algorithm also suitable for the reconstruction
of piecewise constant (color or vectorial) images.
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1. Introduction. Image partitioning is an important and challenging basic task in image
processing [30, 37]. Most prominently, it appears in image segmentation where the goal is
to group image parts of similar characteristics such as colors or textures in order to extract
essential information from the image [65, 60, 21, 25]. It is a basic building block of almost every
image processing pipeline and is particularly important in medical image analysis [56] and
object detection [51], to mention only two examples. The partitioning problem also appears
in the context of stereo vision, where optimal partitionings are employed for the regularization
of disparity maps [9, 74, 40, 57]. Furthermore, the problem of denoising cartoon-like images
may also be interpreted as a partitioning problem [54, 53].

The image partitioning problem is usually formulated as a minimization problem of a cer-
tain cost functional. This functional consists of a data fidelity term providing approximation
to the data and a term taking care of the regularity of the partitioning. Here a reasonable
regularity term is the total boundary length of the partitioning which leads to the classical
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Potts model [58, 31, 49, 4, 50, 9, 69]. It is given by the minimization problem

(1.1) u∗ = argminu γ · ‖∇u‖0 + ‖u− f‖22.

Here, the data f is an image taking values in R
s, and the data fidelity is measured by an L2

norm. u is a piecewise constant function whose jump or discontinuity set encodes the bound-
aries of the corresponding partitioning. Since the partition boundaries agree with the support
of the gradient ∇u (taken in the distributional sense), we use the symbol ‖∇u‖0 to denote
the length of the partition boundaries induced by u (always assuming that these boundaries
are sufficiently regular). In contrast to this rather technical interpretation in the continuous
domain setting, the simplest interpretation of the symbol ‖∇u‖0 in a discrete setting is as the
support size of the discrete “gradient” ∇u consisting of the directional difference operators
with respect to the coordinate axes.

The empirical model parameter γ > 0 controls the balance between the two penalties. A
large value of γ favors few large partitions, which is often desired in the context of segmenta-
tion. For image restoration, data fidelity is usually more important. So one chooses a smaller
γ.

The partitioning model (1.1) is named after R. Potts, who introduced the jump penalty
in a fully discrete setting in the context of his work on statistical mechanics [58] generalizing
the Ising model. Geman and Geman [31] were the first to use such kinds of functionals in the
context of image segmentation. They take a statistical point of view and interpret minimizers
of (1.1) as maximum a posteriori estimates (again in a fully discrete set-up). From a calculus
of variation point of view the problem (1.1) has been studied in a fully continuous setting in
the seminal works of Mumford and Shah [49, 50]. For this reason, the Potts model is often also
called the piecewise constant Mumford–Shah model. In the image processing context, further
early contributions are the work of Chambolle [14] and of Greig, Porteous, and Seheult [35].

1.1. State-of-the-art minimization strategies. The multivariate Potts problem (1.1) is
nonconvex, and it is NP-hard [9] (in the discrete setting). This means that finding a global
minimizer is (at least presently) a computationally intractable task. Nonetheless, the problem
has significant importance in image processing. For this reason, much effort has been made
to find efficient approximative strategies.

A frequently used but still NP-hard simplification is to a priori choose a set of finite labels.
This means that u is only allowed to take values in an a priori chosen small finite subset of
R
s. Then this simplified problem is approached by sequentially solving binary partitioning

problems. These binary partitioning problems can in turn be solved efficiently by a minimal
graph cut algorithm. In this context, the α-expansion algorithm of Boykov, Veksler, and
Zabih [9] is the benchmark to compete with; see, e.g., the comparative study [64].

In [38, 39, 40], Hirschmüller proposes a noniterative strategy for the Potts problem which is
called cost aggregation. This method sums the energies of all piecewise constant paths coming
from different directions that end in the considered pixel and that attain a given discrete label
in that pixel. The label with the least aggregated costs is finally assigned to that pixel. An
advantage of this single-pass algorithm is its lower computational cost. However, this comes
with lower quality results in comparison with graph cuts.

In recent years, algorithms based on convex relaxations of the Potts problem (1.1) have
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1828 MARTIN STORATH AND ANDREAS WEINMANN

gained a lot of interest; see, e.g., [57, 44, 2, 16, 10, 33, 43]. In contrast to direct approaches,
they are less affected by certain metrization errors originating from the discretization of the
jump penalty. In particular, they yield better results when an accurate evaluation of the
boundary length is required. This is, for example, the case in the context of inpainting of
large regions [57]. As a tradeoff, their computational cost is much higher than that of graph
cuts [33].

The major limitation of the above methods (graph cuts, cost aggregation, and convex
relaxation) lies in the discrete label space. Typically, the computational costs grow linearly
with the number of discrete labels. Since the number of discrete labels scales exponentially
with the dimension s of the codomain, the computational costs grow exponentially in s. For
example, for partitioning a typical multispectral image with s = 33 channels, one has to deal
with at least 233 labels. A recent advance in that regard has been achieved by Strekalovskiy,
Chambolle, and Cremers [63]. They propose a convex relaxation method which has a reduced
scaling in terms of the label space discretization. Its complexity is governed by the sum of
the squared number of labels per dimension. In addition to complexity, another drawback of
discrete label spaces is that one has to choose a discretization beforehand, which requires an
appropriate guess on the expected labels.

Another approach is to limit the number of values which u may take. In contrast to
the above methods, the possible values of u are not a priori restricted, but only the number
of different values is bounded by a certain positive integer k. For k = 2, Chan and Vese
[20] minimize the corresponding binary Potts model using active contours. They use a level
set function to represent the partitions. This level set function evolves according to the
Euler–Lagrange equations of the Potts model. A globally convergent strategy for the binary
segmentation problem is presented in [18]. The active contour method for k = 2 was extended
to vector-valued images in [19] and to larger k in [66]. We refer the reader to [23] for an
overview on level set segmentation.

The partitioning methods mentioned so far mainly appear in the context of image seg-
mentation. Here good results can be achieved despite the limitations on the codomain of
u. For the restoration of piecewise constant images, however, one rather deals with many
small partitions, which makes the a priori choice of discrete labels a challenging problem. To
overcome these limitations Nikolova et al. [54, 53] propose methods for restoration of piece-
wise constant images which do not require a priori information on the number of partitions
and their values. They achieve this using nonconvex regularizers which are treated using a
graduated nonconvexity approach. We note that the Potts problem (1.1) does not fall into
the class of problems considered in [54, 53].

Another frequently appearing method in the context of restoration of piecewise constant
images is total variation minimization [59]. There the jump penalty ‖∇u‖0 is replaced by the
total variation ‖∇u‖1. The arising minimization problem is convex and therefore numerically
tractable with convex optimization techniques [67, 3, 34, 17, 22]. However, total variation
minimization tends to produce reconstructions which do not localize the boundaries as sharply
as the reconstructions based on the Potts functional (cf. the experimental section and [62]).
In order to sharpen the results of total variation minimization, various techniques such as
iterative reweighting [13], simplex constraints [42], and iterative thresholding [11, 12] have
been proposed.
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Yet another approach for the nonconvex two-dimensional Potts problem is to rewrite it
as an “inverse” ℓ0 minimization problem [26, 72, 1]. Here the cost for getting an ℓ0 problem
are equality constraints in the form of discrete Schwarz conditions [26] as well as a data term
of the form ‖Au− f‖2, where A is a full triangular matrix. For the resulting ℓ0 minimization
problems, typically iterative thresholding methods are applied; see [5, 6] for related problems
without constraints as well as [26, 1] for related minimization problems with constraints.
Another approach to ℓ0 minimization problems are the penalty decomposition methods of
[45, 46, 75]. They deal with more general data terms and constraints by a two-stage iterative
method. The connection with iterative hard thresholding is that the inner loop of the two-
stage process is usually of iterative hard thresholding type. The difference between the hard
thresholding based methods and our approach in this paper is that we do not have to deal with
constraints and the full matrix A but with the nonseparable regularizing term ‖∇u‖0 instead
of its separable cousin ‖u‖0. Hence we cannot use hard thresholding. A further difference is
that we use an alternating direction method of multipliers (ADMM) approach instead of a
majorization-minimization type approach.

1.2. Our contribution. In this work, we present a fast strategy for the Potts problem for
vector-valued images. For an n×m image f with values in R

s, we consider a discrete domain
version of (1.1) which explicitly reads

(1.2) u∗ = argmin
u∈Rm×n×s

{

γ
∑

i,j

∑

(a,b)∈N

ωab · [ui,j,: �= ui+a,j+b,:] +
∑

i,j,k

|uijk − fijk|2
}

.

Here ui,j,: is a vector sitting at pixel (i, j), and the Iverson bracket [·] yields one, if the expres-
sion in brackets is true, and zero otherwise. The neighborhood system N and the nonnegative
weights ω define a discrete boundary length of the corresponding discrete partitions. In the
simplest case, we may use the coordinate unit vectors as neighborhood relation and unit
weights. This corresponds to the jump penalty ‖∇1u‖0 + ‖∇2u‖0 which counts the nonzero
elements of the directional difference operators ∇1 and ∇2 applied to u. Since this measures
the boundary length of the partitions in the (anisotropic) Manhattan metric, the results may
suffer from block artifacts; see Figure 3. In order to avoid these effects, we consider larger
neighborhoods and derive appropriate weights to obtain a more isotropic discretization.

In order to approach the Potts problem (1.2), we reformulate it as a suitable constrained
optimization problem. We then apply the ADMM. As a result, we obtain more accessible
subproblems. The crucial point is that these subproblems reduce to computationally tractable
optimization problems, namely univariate Potts problems. These univariate Potts problems
can be solved quickly and exactly using dynamic programming. Here, we base our approach on
the classical algorithms of [49, 50, 14] and the efficient implementation introduced in [70, 29].
In this work, we propose an acceleration strategy for the dynamic program which, in our
experiments, resulted in a speed-up of the algorithm by a factor of four to five.

Univariate subproblems appear in a different form and a different context in the cost
aggregation method. In [38, 39, 40] discretely labeled one-dimensional subproblems with
fixed value at pixel p are used to determine the output at pixel p in a noniterative way. In
contrast, our ADMM splitting approach naturally leads to the iterative solution of univariate
subproblems. The data for these subproblems are not discretely labeled, and the problem has
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1830 MARTIN STORATH AND ANDREAS WEINMANN

Figure 1. The proposed method needs only 94.0 seconds (on a single CPU-core) for processing a large color
image without having to discretize the codomain. (Left: Original, 768 × 512 pixel. Right: Our segmentation
with γ = 1.0.) [Original image credit: http://r0k.us/graphics/kodak/.]

no constraints.
The algorithm introduced in this article does not need any discretization in the codomain

of u. This is an advantage compared to methods based on graph cuts, convex relaxations,
and cost aggregation, which require a finite set of discrete labels.

The main feature of our algorithm is its efficiency with respect to runtime and memory
consumption. One reason is that our ADMM based method for the Potts problem, in all our
experiments, needs only a few iterations to converge. This observation confirms the statements
in the literature which report on the high performance of ADMM methods in image processing
problems [34, 52, 61, 7, 73, 62]. Another reason is that we solve the most time consuming
parts of the algorithm using the highly efficient dynamic program mentioned above.

Compared to the graph cut method of [9, 8, 41] and the convex relaxation method of
[57], the computational costs of our approach are significantly lower already for color images
with a relatively coarsely resolved discretization of the color cube [0, 1]3. The advantage
becomes even stronger for higher-dimensional codomains because the computational costs of
our method only grow linearly in the dimension of the codomain. This contrasts with the
exponential growth of the costs of the other methods. Due to the linear scaling, we can even
process images taking values in a high-dimensional vector space in a reasonable time. Here
a prominent example is multispectral images which may have even more than 30 channels
[27, 28]. We illustrate in several experiments that our method is well suited for problems with
both image segmentation (Figure 1) and the restoration of cartoon-like images (Figure 2),
respectively.

We show that the proposed algorithm converges. Due to the NP-hardness of the problem,
we cannot expect that the limit point is in general a minimizer of the cost function (1.2).
However, in practice, we attain slightly lower functional values than graph cuts. The visual
quality of our results remains at least equal to and is often even slightly better than that of
graph cuts.

To support reproducibility, we provide the MATLAB/Java implementation of the algo-
rithms under http://pottslab.de.
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Figure 2. Denoising a piecewise constant image using the proposed method. (Left: Noisy image with
Gaussian noise of σ = 0.3, PSNR 10.5. Right: Restoration with γ = 0.9, PSNR 24.4.) [“Aladin—Genie Appear
from Magic Lamp,” shadowstudio c©123RF.com]

1.3. Organization of the paper. We start out by presenting the basic ADMM strategy
for the Potts problem in section 2. In section 3, we provide a more isotropic discretization and
extensions for vector-valued images and images with missing data. In section 4, we present the
dynamic program to solve the subproblems of the ADMM iteration. Numerical experiments
are the subject of section 5.

2. ADMM splitting for the Potts problem. In this section, we present a basic ADMM
strategy for the Potts problem. For the sake of notational simplicity, we start with scalar-
valued images f ∈ R

m×n and simple (anisotropic) neighborhoods. (We elaborate on vector-
valued images and on a more isotropic discretization of the jump penalty in section 3.)

Consider a four-connected neighborhood; i.e., two pixels are neighbors if only their hor-
izontal or vertical indices differ by one. The neighborhood weights ω of (1.2) are uniformly
equal to 1. Then the jump penalty reads

(2.1) ‖∇u‖0 = ‖∇1u‖0 + ‖∇2u‖0 :=
∑

i,j[uij �= ui+1,j ] +
∑

i,j[uij �= ui,j+1].

Using this expression, we rewrite the Potts problem as the bivariate constrained optimization
problem

γ ‖∇1u‖0 + γ ‖∇2v‖0 + 1
2‖u− f‖22 + 1

2‖v − f‖22 → min, s.t. u− v = 0,

where u, v ∈ R
m×n. The augmented Lagrangian of this so-called consensus form (cf. [55]) is

given by

(2.2) Lµ(u, v, λ) = γ‖∇1u‖0 + γ‖∇2v‖0 + 1
2‖u− f‖22 + 1

2‖v − f‖22
+ 〈λ, u− v〉+ µ

2‖u− v‖22.
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The constraint u − v = 0 is now part of the target functional, and the parameter µ > 0
regulates how strongly the difference between u and v is penalized. The dual variable λ is
an (m × n)-dimensional matrix of Lagrange multipliers, and the scalar product is given by
〈x, y〉 = ∑

i,j xijyij . Completing the square in the last two terms of (2.2) yields

(2.3) Lµ(u, v, λ) = γ‖∇1u‖0 + γ‖∇2v‖0 + 1
2‖u− f‖22 + 1

2‖v − f‖22
+ µ

2‖u− v + λ
µ‖22 −

µ
2‖λ

µ‖22.

We approach this problem using ADMM. In the ADMM iteration we first fix v and λ, and
we minimize Lµ(u, v, λ) with respect to u. Then we minimize Lµ(u, v, λ) with respect to v,
keeping u and λ fixed. The third step can be interpreted as a gradient ascent step in the
Lagrange multiplier λ. Thus, the ADMM for the Potts problem reads

(2.4)

⎧

⎪⎨

⎪⎩

uk+1 = argminu γ‖∇1u‖0 + 1
2‖u− f‖22 + µ

2‖u− (vk − λk

µ )‖22,
vk+1 = argminv γ‖∇2v‖0 + 1

2‖v − f‖22 + µ
2 ‖v − (uk+1 + λk

µ )‖22,
λk+1 = λk + µ(uk+1 − vk+1).

Using the identity

ν(a− b)2 + µ(a− c)2 = (ν + µ)a2 − 2a(νb+ µc) + νb2 + µc2

= (ν + µ)

(

a− νb+ µc

ν + µ

)2

− (νb+ µc)2

ν + µ
+ νb2 + µc2

(2.5)

with ν = 1, we rewrite the first and the second lines of (2.4) to obtain

(2.6)

⎧

⎪⎨

⎪⎩

uk+1 = argminu
2γ
1+µ‖∇1u‖0 + ‖u− (1 + µ)−1 (f + µvk − λk)‖22,

vk+1 = argminv
2γ
1+µ‖∇2v‖0 + ‖v − (1 + µ)−1 (f + µuk+1 + λk)‖22,

λk+1 = λk + µ(uk+1 − vk+1).

We observe that the first line of (2.6) is separable into n subproblems of the form

(2.7) uk+1
:,j = arg min

h∈Rm

2γ

1 + µ
‖∇h‖0 + ‖h− (1 + µ)−1 (f:,j + µvk:,j − λk

:,j)‖22

for j = 1, . . . , n. Likewise, the minimizer of the second line of (2.6) is given by

(2.8) vk+1
i,: = arg min

h∈Rn

2γ

1 + µ
‖∇h‖0 + ‖h− (1 + µ)−1 (fi,: + µuk+1

i,: + λk
i,:)‖22

for i = 1, . . . ,m. The crucial point is that these subproblems are univariate Potts problems
which can be solved exactly and efficiently using dynamic programming. We will elaborate
on the solution algorithm for these subproblems in section 4.

We initialize the ADMM iteration with a small positive coupling parameter µ0 > 0 and
increase it during the iteration by a factor τ > 1. Hence, µ is given by the geometric progres-
sion

µ = µk = τkµ0.
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This strategy ensures that u and v can evolve quite independently at the beginning and that
they are close to each other at the end of the iteration. We stop the iteration when the
difference of u and v falls below some tolerance. We note that the increment of the coupling
parameter is not used in standard ADMM approaches for convex optimization problems.
However, we use such an increment since it has turned out to work well in our practical
applications. In particular, the geometric progression yields satisfactory results while being
very fast.

As is typical for energy minimization methods, there is no unique theoretically founded
strategy for finding the regularization parameter γ. Intuitively, γ can be interpreted as a
scale parameter: choosing a high value of γ results in a few large partitions, whereas a small
γ value gives an approximation to the data having more jumps. In connection with one-
dimensional Potts functionals, different approaches for an automated choice of γ are reported
in the literature. For example, strategies based on Akaike’s and Schwarz’s information criterion
are employed to estimate γ; see, e.g., the overview article [71]. Furthermore, strategies based
on testing the residual for noise [24] or the interval method of Winkler et al. [71] are used. The
latter strategy chooses the largest parameter interval for γ where the same solution persists.
The drawback of the previous methods is their high computational cost or their specialization
to one dimension which makes them (almost) not applicable in higher dimensions. Potential
alternatives are general concepts from the theory of inverse problems such as the Morozov
discrepancy principle [48] or the L-curve method [36]. In this paper we choose the parameter
empirically.

Our approach to the Potts problem is summed up in Algorithm 1.

Algorithm 1: ADMM strategy to the Potts problem.

Input: Image f ∈ R
m×n, model parameter γ > 0, initial value µ0 > 0, step size τ > 1.

Local: Iterated solutions u, v ∈ R
m×n, dual variable λ ∈ R

m×n, coupling parameter µ > 0.
Output: Computed result u ∈ R

m×n to the Potts problem (1.1).
begin

v ← f ; µ ← µ0; λ ← 0; /* init */
repeat

for j ← 1 to n do

u:,j ← Minimizer of subproblem (2.7) using Algorithm 2; /* cf. (section 4) */
end

for i ← 1 to m do

vi,: ← Minimizer of subproblem (2.8) using Algorithm 2; /* cf. (section 4) */
end

λ ← λ+ µ(u− v) ; /* update of dual variable */
µ ← τ · µ ; /* increase coupling parameter */

until reached stopping criterion;

end

We eventually show the convergence of our ADMM strategy.
Theorem 1. Algorithm 1 converges in the sense that there exists a u∗ such that uk → u∗

and vk → u∗.
The proof is given in Appendix A.
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(a) Original (481× 321 pixel). (b) Anisotropic discretization
(13.4 sec).

(c) Near-isotropic discretization
(20.5 sec).

Figure 3. The near-isotropic discretization produces smoother boundaries at the cost of about double com-
putation time (γ = 2). [Original image credit: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
bsds/.]

3. Extensions for the ADMM splitting of the Potts problem. We so far have explained
our ADMM approach to the Potts problem with scalar-valued data and a simple neighborhood
relation. We now present modifications for vector-valued images (e.g., color images) as well
as a more isotropic discretization of the boundary length term ‖∇u‖0 of (1.1). We further
deal with missing data points.

3.1. Increasing isotropy. In the last chapter we used the simple anisotropic discretization
of ‖∇u‖0 given by (2.1). That discretization favors region boundaries which are minimal in the
Manhattan metric (compare with [14]). This may lead to block artifacts in the reconstructions;
see, for example, Figure 3(b).

In order to better approximate the Euclidean length we pass to eight-connected neigh-
borhoods. Due to symmetry, this neighborhood is given by the following four vectors: N =
{(1, 0), (0, 1), (−1, 1), (1, 1)}. We now derive appropriate weights ω for formula (1.2). A mini-
mal requirement is that jumps along straight lines with respect to the compass and the diagonal
directions are penalized by their Euclidean length. For reasons of symmetry, we have, for the
compass weights, ωc := ω1,0 = ω0,1 and, for the diagonal weights, ωd := ω−1,1 = ω1,1. Now
consider an (n × n) binary image u which has a jump along a straight line into a compass
direction. We are searching for weights ωc, ωd such that the jump penalty for this image
amounts to γn. Plugging u into the Potts model (1.2), we get for large n the jump penalty

γ
∑

i,j

∑

(a,b)∈N

ωab · [uij �= ui+a,j+b] ∼ γn(ωc + 2ωd).

Letting the right-hand side equal the desired penalty γn, we obtain the condition

ωc + 2ωd = 1.

Proceeding in the same way with the diagonal directions, we get

2(ωc + ωd) =
√
2.

Solving this linear system of equations, we obtain the weights

ωc =
√
2− 1 and ωd = 1−

√
2

2
.
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We see that the above requirements already determine the weights ωc and ωd uniquely.
Using the above weights, we can write the jump penalty as

‖∇u‖0 = ωc (‖∇1u‖0 + ‖∇2u‖0) + ωd (‖∇12u‖0 + ‖∇21u‖0)
:= ωc

(∑

i,j[uij �= ui+1,j] +
∑

i,j[uij �= ui,j+1]
)

+ ωd

(∑

i,j [uij �= ui−1,j+1] +
∑

i,j [uij �= ui+1,j+1]
)
.

(3.1)

Plugging this into (1.1), we get the following splitting of the Potts problem:

γωc (‖∇1u‖0 + ‖∇2v‖0) + γωd (‖∇12w‖0 + ‖∇21z‖0)
+ 1

4(‖u− f‖22 + ‖v − f‖22 + ‖w − f‖22 + ‖z − f‖22) → min,

subject to the constraints

u− v = 0, u− w = 0, u− z = 0,
v − w = 0, v − z = 0, w − z = 0.

Notice that we now have four coupled variables u, v, w, z (instead of the two variables in
section 2) and that each of these are pairwise coupled. The augmented Lagrangian then reads

Lµ = γωc (‖∇1u‖0 + ‖∇2v‖0) + γωd (‖∇12w‖0 + ‖∇21z‖0)
+ 1

4(‖u− f‖22 + ‖v − f‖22 + ‖w − f‖22 + ‖z − f‖22)
+ 〈λ1, u− v〉+ µ

2‖u− v‖22 + 〈λ2, u− w〉+ µ
2 ‖u− w‖22

+ 〈λ3, u− z〉+ µ
2‖u− z‖22 + 〈λ4, v − w〉+ µ

2‖v − w‖22
+ 〈λ5, v − z〉+ µ

2‖v − z‖22 + 〈λ6, w − z〉+ µ
2‖w − z‖22

(3.2)

with the six Lagrange multipliers λi ∈ R
m×n, i = 1, . . . , 6. Some algebraic manipulation yields

the ADMM iteration

(3.3)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uk+1 = argminu
4γωc

1+6µ‖∇1u‖0 + ‖u− u′‖22 ,
wk+1 = argminw

4γωd

1+6µ‖∇12w‖0 + ‖w − w′‖22 ,
vk+1 = argminv

4γωc

1+6µ‖∇2v‖0 + ‖v − v′‖22 ,
zk+1 = argminz

4γωd

1+6µ‖∇21z‖0 + ‖z − z′‖22 ,
λk+1
i = λk

i + µai,

with the data

u′ = 1
1+6µ [f + 2µ(vk + wk + zk) + 2(−λk

1 − λk
2 − λk

3)],

w′ = 1
1+6µ [f + 2µ(uk+1 + vk + zk) + 2(λk

2 + λk
4 − λk

6)],

v′ = 1
1+6µ [f + 2µ(uk+1 + wk+1 + zk) + 2(λk

1 − λk
4 − λk

5)],

z′ = 1
1+6µ [f + 2µ(uk+1 + vk+1 + wk+1) + 2(λk

3 + λk
5 + λk

6)]
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and the updates

a1 = uk+1 − vk+1, a2 = uk+1 − wk+1,
a3 = uk+1 − zk+1, a4 = vk+1 − wk+1,
a5 = vk+1 − zk+1, a6 = wk+1 − zk+1.

Compared with the anisotropic version (2.6), each iteration has additional steps which
however consist of the same building blocks as before. The essential difference is that we
additionally solve univariate Potts problems with respect to the diagonal directions (lines 2
and 4 of (3.3)). In Figure 3, we see that the extra computational effort pays off in a visual im-
provement; the segment boundaries are much smoother using this discretization. Convergence
of the above algorithm can be shown under the same conditions as for Algorithm 1. We omit
the proof since it uses the same arguments as the proof of Theorem 1. Due to the additional
Lagrange multipliers it would become excessively lengthy (without giving new insights).

We note that the isotropy can be further increased by incorporating “knight move” finite
differences such as ui+2,j+1 − ui,j. The corresponding neighborhood system is given by N ′ =
{(1, 0), (0, 1), (−1, 1), (1, 1), (−2, 1), (−1, 2), (1, 2), (2, 1)}. Due to symmetry, this system
comes with three weights ω1, ω2, ω3—one for the compass directions, one for the diagonal
directions, and one for the knight move directions. We postulate that jumps with respect to
those basic directions are measured by their Euclidean length. This leads to the system of
equations

(3.4)

ω1 + 2ω2 + 6ω3 = 1,

2ω1 + 2ω2 + 8ω3 =
√
2,

3ω1 + 4ω2 + 12ω3 =
√
5,

which has the solution ω1 =
√
5− 2, ω2 =

√
5− 3

2

√
2, and ω3 =

1
2 (1 +

√
2−

√
5). An ADMM

iteration can be derived in analogy to (3.3). The iteration involves solving univariate Potts
problems with respect to eight directions (two compass, two diagonal, and four knight move
directions) and updating 28 Lagrange multipliers in each step.

Including finite differences with respect to diagonal directions was first proposed by Cham-
bolle [15]. There, the quality of a set of weights is measured by the anisotropy, which is
understood as the ratio between the lengths of the longest and the shortest unit vectors. It
turns out that the weights derived for the eight-neighborhood coincide with the weights we
have obtained with our approach (up to a normalization factor). However, when incorporating
“knight move” finite differences, the weights derived by our approach are different from the
weights of [15]. Using the anisotropy definition of [15], we even obtain a value of 1.03 for our
weights in contrast to 1.05 for the weights in [15]. (For comparison, the eight-neighborhood
weights have anisotropy 1.08.)

This approach can be extended to a general method for further increasing isotropy by
passing to larger neighborhood systems. The rule for including new neighbors is to add
directions to the neighborhood system if they are not yet covered. Here a direction (i, j) is
not covered if its slope i/j does not yet appear in the neighborhood system. For example, the
eight-neighborhood covers the slopes 0, 1,−1,∞. Hence, the knight moves are not yet covered
since its slopes are ±1

2 and ±2 and they can be added to the system. The next vectors to
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include in the neighborhood system are (±1, 3), (±3, 1) and (±2, 3), (±3, 2), and so on. The
general scheme corresponds to the standard enumeration of the rational numbers. Conditions
for the weights can be derived as follows. Let us assume that u is a binary (n×n) image with
an ideal jump along the direction (x, y) ∈ N . We first look at lines with a slope x/y between
−1 and 1 going from the left to the right boundaries of the image. (If the slope of (x, y) is
not in the interval [−1, 1], then we look at the π/2-rotated image and exchange the roles of x
and y.) The Euclidean length of this line is given by n

√

x2 + y2/x. Since we want the total
jump penalty of this image to equal that Euclidean length, we get a condition for the weights
of the form

γ
∑

i,j

∑

(a,b)∈N

ωab · [uij �= ui+a,j+b] = n

√

x2 + y2

x
.

It remains to evaluate the left-hand side of the equation, which can be done either manually for
small neighborhood systems or with the help of a computer program for larger neighborhood
systems. (When counting the weights we assume n to be very large so that boundary effects are
negligible.) We then obtain a system of |N | equations for the |N | unknowns. The dimension
of the system can be reduced by exploiting symmetries in the weights. We used this, for
example, in (3.4) to reduce the system from 8 to 3 unknowns using that ω1 = ω1,0 = ω0,1,
ω2 = ω1,±1, and ω3 = ω2,±1 = ω±2,1.

3.2. Missing data. We now consider the case where some of the pixels of the image f
are missing or destroyed. Since we do not want them to affect the reconstruction, we exclude
them from the data penalty term. This can be formulated conveniently using a weighted L2

norm defined by ‖x‖2w =
∑

i,j wij|xij |2 with nonnegative weights wij as follows. For missing
pixels Q ⊂ {1, . . . ,m} × {1, . . . , n} the associated Potts problem is given by

(3.5) min
u∈Rm×n

γ · ‖∇u‖0 + ‖u− f‖2w,

where the missing pixels are weighted by zero, i.e.,

wij =

{

0 if (i, j) ∈ Q,

1 else.

In analogy to (2.4) we obtain the ADMM iteration

⎧

⎪⎨

⎪⎩

uk+1 = argminu γ‖∇1u‖0 + 1
2‖u− f‖2w + µ

2‖u− (vk − λk

µ )‖22,
vk+1 = argminv γ‖∇2v‖0 + 1

2‖v − f‖2w + µ
2‖v − (uk+1 + λk

µ )‖22,
λk+1 = λk + µ(uk+1 − vk+1).

Here, the weights w influence only the data fidelity terms. Using identity (2.5) with ν = wij ,
we get

(3.6)

⎧

⎪⎨

⎪⎩

uk+1 = argminu 2γ‖∇1u‖0 + ‖u− u′‖2w+µ,

vk+1 = argminv 2γ‖∇2v‖0 + ‖v − v′‖2w+µ,

λk+1 = λk + µ(uk+1 − vk+1),
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Figure 4. Left: Image corrupted by Gaussian noise of σ = 0.2; 60% of the pixels are missing (marked as
black). Right: Restoration using our method (γ = 0.3). [Original image credit: http://www.eecs.berkeley.edu/
Research/Projects/CS/vision/bsds/.]

where u′ij =
wijfij−µvkij−λk

ij

wij+µ and v′ij =
wijfij−µuk

ij+λk
ij

wij+µ . Now both subproblems are univari-

ate Potts problems with a weighted L2 norm as the data penalty term. Figure 4 shows a
restoration problem with missing and noisy data.

3.3. Vector-valued images. We now extend the proposed method to vector-valued images
of the form f ∈ R

m×n×s with an s ≥ 1. Prominent examples are color and multispectral images
(Figure 5). Most of our experiments deal with color images where we have s = 3 and the
arrays f:,:,k, k = 1, . . . , 3, correspond to the red, green, and blue channels. For a multispectral
image we can have about 30 channels; each channel f:,:,k corresponds to a certain wavelength.

For vector-valued data, the data term and the jumps term are given by

‖u− f‖22 =
∑

i,j,k

|uijk − fijk|2 and ‖∇u‖0 =
∑

(a,b)∈N

ωa,b · [ui,j,: �= ui+a,j+b,:].

Here, we have a jump if two neighboring vectors ui,j,: and ui+a,j+b,: are not equal. We note
that the jump penalty cannot be evaluated componentwise. This leads to the following mod-
ifications of the ADMM algorithms (2.6) and (3.3). The intermediate solutions u, v, w, z and
the multipliers λi are in R

m×n×s. The updates of the Lagrange multipliers can be carried
out componentwise. The univariate Potts problems can be solved using the same dynamic
program as for the scalar-valued case with the modifications explained in section 4.

4. Efficient solution of univariate Potts problems. A basic building block of our ADMM
algorithm is the solver of univariate Potts problems. In particular, the speed of our method
heavily depends on the time consumed for solving these subproblems. In this section, we first
review the basic dynamic program for solving univariate Potts problems. Then we extend the
dynamic program to weighted L2 norms (which are needed in the context of missing data)
and to vector-valued data. Finally, we introduce a new effective acceleration strategy, which
decreased the runtime in our experiments by a factor of about five.
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Figure 5. Our method processes large multispectral images in reasonable time (here 76.0 seconds for all
33 channels). Left: RGB representation of a multispectral image [27, 28] with s = 33 channels and 335 × 255
pixels. Right: RGB representation of the result of our method using all channels (γ = 0.125). [This image was
originally published in Visual Neuroscience [28] and appears here with the permission of Cambridge University
Press.]

4.1. The classical dynamic program for the solution of the univariate Potts problem.

The classical univariate Potts problem is given by

(4.1) Pγ(h) = γ · ‖∇h‖0 + ‖h− f‖22 → min,

where h, f ∈ R
n and ‖∇h‖0 =

∑

i[hi �= hi+1] denotes the number of jumps of h. This
optimization problem can be solved exactly using dynamic programming [49, 50, 14, 70, 29, 68].
The basic idea is that a minimizer of the Potts functional for data (f1, . . . , fr) can be computed
in polynomial time provided that minimizers of the partial data (f1), (f1, f2), . . . , (f1, . . . , fr−1)
are known. We denote the respective minimizers for the partial data by h1, h2, . . . , hr−1.
In order to compute a minimizer for data (f1, . . . , fr), we first create a set of r minimizer
candidates g1, . . . , gr, each of length r. These minimizer candidates are given by

(4.2) gℓ = (hℓ−1, µ[ℓ,r], . . . , µ[ℓ,r]
︸ ︷︷ ︸

Length r−ℓ+1

),

where h0 is the empty vector and µ[ℓ,r] denotes the mean value of data f[ℓ,r] = (fℓ, . . . , fr).

Among the candidates gℓ, one with the least Potts functional value is a minimizer for the data
f[1,r].

In [29] Friedrich et al. proposed the following O(n2) time and O(n) space algorithm. They
observed that the functional values of a minimizer Pγ(h

r) for data f[1,r] can be computed
directly from the functional values Pγ(h

1), . . . , Pγ(h
r−1) of the minimizers h1, . . . , hr−1 and the

squared mean deviations of the data f[1,r], . . . , f[r,r]. Indeed, using (4.2), the Potts functional
value of the minimizer hr is given (setting Pγ(h

0) = −γ) by

(4.3) Pγ(h
r) = min

ℓ=1,...,r
Pγ(h

ℓ−1) + γ + d[ℓ,r],
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1840 MARTIN STORATH AND ANDREAS WEINMANN

where d[ℓ,r] denotes the squared deviation from the mean value

d[ℓ,r] = min
y∈R

‖y − f[ℓ,r]‖22 = ‖µ[ℓ,r] − f[ℓ,r]‖22.

The evaluation of (4.3) is O(1) if we precompute the first and second moments of data f[ℓ,r]. If
ℓ∗ denotes the minimizing argument in (4.3), then ℓ∗−1 indicates the rightmost jump location
at step r, which is stored as J(r). The jump locations of a solution hr are thus J(r), J(J(r)),
J(J(J(r))), . . . ; the values of hr between two consecutive jumps are given by the mean value
of data f on this interval. Note that we have only to compute and store the jump locations
J(r) and the minimal Potts functional value Pγ(h

r) in each iteration. The reconstruction of
the minimizer from the jump locations only has to be done once for hn at the end; it is thus
uncritical.

4.2. Weighted data terms and vector-valued data. In order to apply the above dy-
namic program to univariate Potts problems with weighted data terms, we need the following
modifications. The symbol µ[ℓ,r] is now used to denote the weighted mean given by

(4.4) µ[ℓ,r] = argmin
y∈R

‖y − f[ℓ,r]‖2w =

∑r
i=ℓwifi

∑r
i=ℓwi

.

A straightforward computation shows that the weighted squared mean deviation d[ℓ,r] is given
by

d[ℓ,r] = min
y∈R

‖y − f[ℓ,r]‖2w =
r∑

i=ℓ

wif
2
i − 1

∑r
i=ℓwi

(
r∑

i=ℓ

wifi

)2

.

(If all weights are zero, then we let µ[ℓ,r] = 0 and d[ℓ,r] = 0.) Toward an efficient evaluation of
this expression, we rewrite it as

(4.5) d[ℓ,r] = Sr − Sℓ−1 −
(Mr −Mℓ−1)

2

Wr −Wℓ−1
,

where Wr =
∑r

i=1wi, Mr =
∑r

i=1 wifi, and Sr =
∑r

i=1wif
2
i . The vectors W , M , and S can

be precomputed in linear time. Thus, the evaluation of the weighted squared mean deviation
costs O(1).

If the data is vector-valued, i.e., if each fi is in R
s, then the vector-valued (weighted) mean

value is just given by componentwise application of (4.4). Then the corresponding squared
mean deviation reads

(4.6) d[ℓ,r] =

s∑

k=1

⎛

⎝

r∑

i=ℓ

wif
2
i,k −

1
∑r

i=ℓwi

(
r∑

i=ℓ

wifi,k

)2
⎞

⎠ .

Precomputing moments, using (4.5) componentwise, and summing up the results according
to (4.6) moments allows us to evaluate this expression in O(s). For vector-valued data, the
total complexity of the univariate Potts problem is O(n2s) time and O(ns) space.
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Algorithm 2: Accelerated dynamic program for the univariate Potts problem.

Input: Data vector f ∈ R
n, model parameter γ > 0, weights w ∈ [0,∞)n

Output: Global minimizer h of the univariate Potts problem (4.1) with weighted data term
Local : Left and right interval bounds ℓ, r ∈ N; Potts values P ∈ R

n; first and second cumulative
moments M,S ∈ R

n+1; cumulative weights W ∈ R
n+1; temporary values p, d ∈ R (candidate

Potts value, squared mean deviation); array of rightmost jump locations J ∈ N
n;

begin

/* Find the optimal jump locations */
M0 ← 0; S0 ← 0; W0 ← 0 ; /* init cumulative moments and weights */
for r ← 1 to n do

Mr ← Mr−1 +wrfr; /* First moments */
Sr ← Sr−1 + wrf

2
r ; /* Second moments */

Wr ← Wr−1 + wr; /* Cumulative weights */
Pr ← Sr −

1
Wr

M2
r ; /* mean sq. deviation of f[1,r] */

Jr ← 0 ; /* init rightmost jump location */
for ℓ ← r to 2 do

d ← Sr − Sℓ−1 −
1

Wr−Wℓ−1

(Mr −Mℓ−1)
2; /* mean sq. deviation of f[ℓ,r] */

if Pr < d+ γ then Break; /* Acceleration (cf. Theorem 2) */
;
p ← Pℓ−1 + γ + d ; /* compute candidate Potts value p */
if p ≤ Pr then

Pr ← p ; /* store new best Potts value */
Jr ← ℓ− 1 ; /* update rightmost jump location */

end

end

end

/* Reconstruct the minimizer h from the optimal jump locations */
r ← n; ℓ ← Jr;
while r > 0 do

for i ← l + 1 to r do

hi ← µ[ℓ+1,r]; /* set mean value on partition */
end

r ← ℓ; ℓ ← Jr; /* go to next jump */

end

end

4.3. A new acceleration. The dynamic program we have just described runs through all
possible pairings of right and left interval bounds r = 1, . . . , n and ℓ = 1, . . . , r; cf. Algorithm 2.
This amounts to n(n + 1)/2 iterations. We give a condition which allows us to skip certain
iterations. In practice, using this condition, many of the iterations can be omitted, as we will
see next. In the next theorem we use the notation of Algorithm 2.

Theorem 2. Let r ∈ {1, . . . , n}. If Pr < d[k,r] + γ for some k = 2, . . . , r, then, for this r,
the inner iterations ℓ = 2, . . . , k − 1 of Algorithm 2 can be skipped.

Proof. Assume that Pr < d[k,r]+ γ for some k ∈ {2, . . . , r}. From Algorithm 2 we see that
the condition for introducing a new jump at location ℓ is

(4.7) Pℓ−1 + γ + d[ℓ,r] ≤ Pr.
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We show that the condition cannot be fulfilled for ℓ ∈ {2, . . . , k − 1}. To this end, we notice
that the mapping ℓ �→ d[ℓ,r] is monotonically decreasing, i.e., d[ℓ,r] ≥ d[i,r] for all ℓ ≤ i. Further,
we observe that Pℓ ≥ 0 for all ℓ = 1, . . . , r. Hence we obtain

Pr < γ + d[k,r] ≤ γ + d[ℓ,r] ≤ Pℓ−1 + γ + d[ℓ,r] for all 2 ≤ ℓ ≤ k.

Hence, condition (4.7) cannot be met. Therefore, we can skip the iterations ℓ = 2, . . . , k − 1
in this case.

The accelerated dynamic program for the univariate Potts problem is outlined in Algo-
rithm 2. The speed-up we achieve is especially large for small jump penalties γ since the
deviation from the mean then exceeds the optimal Potts value relatively early. Regarding
the signals and images of this paper, we observed a speed-up by a factor of 4 to 5 using this
strategy.

5. Numerical results. In all experiments we start the iteration with the coupling param-
eter µ = 0.01 γ, which we increment by the factor τ = 2 in each step. The stopping criterion
is ‖u− v‖22 ≤ TOL · ‖f‖22 with the tolerance TOL = 10−10. The model parameter γ is chosen
empirically. In the denoising experiments, we have run the experiment for different values
of γ in steps of 0.05 and picked the one with the highest peak signal-to-noise ratio (PSNR).
In the image segmentation experiments, we have chosen a relatively large value for γ so that
the results consist of relatively few large segments. Except for Figure 4, we use in all experi-
ments the near-isotropic discretization of jump-penalty given by (3.1). The experiments were
conducted on a single core of an Intel Xeon with 3.33 GHz and 16 GB RAM. The original
images were taken from the Kodak Lossless True Color Image Suite (Figure 1), from 123RF.
com (Figure 2), from the Hyperspectral Images of Natural Scenes 2004 [27, 28] (Figure 5),
from the Berkeley Segmentation Dataset [47] (Figures 3, 4, 6), and from Wikipedia (Figure 7)
with permission of the Board of Trustees of the National Gallery of Art in Washington, DC.
The (noise-free) images are scaled to take on values in the cube [0, 1]s. Our MATLAB/Java
code is provided at http://pottslab.de.

5.1. Complexity and runtime. The time-critical parts of the proposed Potts ADMM
iteration (Algorithm 1) are the solutions of the univariate Potts problem, which appear in
the first and the second steps of (2.6). There, we have to solve n and m univariate Potts
problems of length m and n, respectively, each of which amounts to quadratic runtime and
linear space. More precisely, each step of the algorithm needs O(n2ms) and O(nm2s) time
and O(nms) space. Note that the required memory is linear in the storage cost of the image
f ∈ R

m×n×s. For n ∼ m, we have O(n3s) time and O(n2s) space complexity in each step
of the iteration. Expressing the complexity in dependence of the number of pixels N = n2,
we have O(N

3
2 s) time and O(Ns) space complexity. Typically, we require 20–40 iterations in

our experiments. In practice, the runtimes of the proposed method are on the order of one
minute for medium-size color images (of about 512 × 512 pixels).

There is room for acceleration, which is outside the scope of this work. Parallelization
seems very promising, which we expect to bring a significant speed-up. Theoretically, due
to the separable structure of our ADMM strategy, we can achieve O(Ns) time complexity in
each iteration using n parallel processors.
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5.2. Comparison to related approaches. We compare our method with two state-of-the-
art approaches to the Potts problem whose implementations are publicly available.

The first one is the α-expansion graph cut algorithm based on max-flow/min-cut of the
library GCOptimization 3.0 of Veksler and Delong [9, 8, 41]. Here we used the neighborhood
weights of (3.1) and 8×8×8 discrete labels. The second state-of-the-art method is the convex
relaxation method of Pock et al. [57]. Here we used 1000 iterations and only 4× 4× 4 labels
in order to achieve reasonable runtimes. We further compare our method with total variation
minimization using the split Bregman method [34] realized in the toolbox tvreg by Getreuer
[32]. We used a stopping tolerance of 10−6 and a maximum of 1000 iterations.

In Figure 6 we segment a noisy natural image. Total variation minimization often does not
produce sharp segment boundaries, whereas the results of the Potts minimization strategies
do. The three Potts strategies give reasonable segmentation results, although the graph cut
and convex relaxation methods are affected by the label space discretization.

In Figure 7, we reconstruct a cartoon image which was corrupted by Gaussian noise. To
measure the reconstruction quality, we use the PSNR. The PSNR of a reconstruction u with
respect to the noise-free image f̄ is given by

PSNR(u) = 10 log10

(

m · n · s · (maxi,j,k |f̄ijk|)2
∑

i,j,k |f̄ijk − uijk|2

)

.

Our first observation is that total variation minimization does not completely remove the noise,
although we tried to find an optimal parameter. To that end, we sampled the parameter λ
in steps of 0.05 and computed the corresponding minimizer. Then we chose that parameter
where the corresponding result had the highest PSNR. The results of all three methods for the
Potts problem are almost free of noise. Our method gives the highest reconstruction quality
among the three Potts strategies.

We give a detailed quantitative comparison of our method with the graph cut method and
the convex relaxation method in Table 1. There, we compare the final energy states of the
respective solutions u∗, that is, the functional values of (1.2). We observe that our method
attains lower energy states than the other methods.

The experiments show that the proposed method is significantly faster than the graph
cuts and the convex relaxation approaches.

6. Conclusion. We have proposed a new splitting approach to the Potts problem. We
applied our method for image segmentation as well as for the reconstruction of cartoon-like
images. We compared it with graph cuts and with a method based on a convex relaxation of
the partitioning problem, which are both state-of-the-art methods.

The main benefit of our strategy is its efficiency. Especially for vector-valued images,
our method is significantly faster than the graph cuts and the convex relaxation approaches.
At the same time, our approach has reconstruction quality as good as these state-of-the-art
methods. Furthermore, there is no need for an a priori selection of discrete labels.

The key idea of our strategy was to split the Potts problem into coupled, computation-
ally tractable subproblems using the alternating direction method of multipliers (ADMM).
We solved these subproblems using an acceleration of a classical dynamic program. In our
experiments, the acceleration gave a gain of factor five compared to the classical program.
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(a) Original (481× 321 pixel) (b) Gaussian noise (σ = 0.3) (c) Total variation [32] (42.5 sec)

(d) Convex relaxation [57], 43 dis-
crete labels (9910.7 sec)

(e) Graph cut [9, 8, 41], 83 dis-
crete labels (173.1 sec)

(f) Our method (31.0 sec)

Figure 6. Comparison of segmentations of a natural image (γ = 2.0). Total variation minimization (model
parameter λ = 4.0) tends to smooth out some of the segment boundaries (c). Among the Potts segmentation
approaches (d)–(f), the proposed method is the fastest. [Original image credit: http://www.eecs.berkeley.edu/
Research/Projects/CS/vision/bsds/.]

While the linear memory complexity of our algorithm is already optimal, there is still a
large potential for runtime reductions by parallelization, to which our approach is particularly
suited. Furthermore, the extension to Blake–Zisserman/Mumford–Shah penalties as well as
the inclusion of linear measurements are work in progress.

Appendix A. Proof of Theorem 1. We show the statement of Theorem 1 under the more
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(a) Original (432× 300 pixel). (b) Gaussian noise, σ = 0.3 (PSNR: 10.5).

(c) Total variation [32] (PSNR: 18.9; 4.0 sec). (d) Convex relax. [57], 43 discrete labels
(PSNR: 17.9; 9240.0 sec).

(e) Graph cut [9, 8, 41], 83 discrete labels
(PSNR: 19.2; 131.5 sec).

(f) Our method (PSNR: 19.6; 19.4 sec).

Figure 7. Denoising a cartoon image (γ = 0.75). Total variation minimization (λ = 0.35) does not
optimally recover the piecewise constant regions of the image. The label space discretization required by graph
cuts and convex relaxation negatively affects the reconstructions. The proposed method gives the best recovery
result both with respect to PSNR and visual impression. [“Look Mickey,” Roy Lichtenstein, 1961. c© Board of
Trustees, National Gallery of Art, Washington, DC]
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Table 1

Our method achieves lower energies than the convex relaxation method (CR) of [57] using 43 labels and the
graph cut method (GC) of [9, 8, 41] using 83 discrete labels. At the same time it is significantly faster. (The
application of the graph cut method and the convex relaxation method to the multispectral image exceeded the
available memory.)

Energy of solution Runtime in seconds

CR GC Ours CR GC Ours

γ = 0.5

Caps 17143.3 8805.2 7210.5 22412.9 321.7 97.3

Genie 6578.3 5551.4 5280.3 7825.0 74.5 23.9

Desert 9363.2 5540.4 5044.2 8842.8 91.3 25.8

Church 7448.9 4042.8 3722.7 8806.6 63.6 24.0

Peppers 9856.7 7945.5 7305.8 8930.4 88.3 25.6

Mickey 12963.6 11486.1 11305.1 8198.5 85.6 16.2

Multispectral – – 6232.0 – – 98.7

γ = 2.0

Caps 23965.8 17491.5 15796.1 22129.5 538.8 89.2

Genie 17508.2 16152.9 16112.7 8513.6 153.6 25.8

Desert 12594.8 9172.7 8803.5 8915.7 161.2 20.5

Church 11762.7 8665.6 8225.9 8973.2 126.8 20.3

Peppers 16553.7 15106.3 14305.8 9031.3 167.3 27.1

Mickey 31602.5 29025.5 28580.3 9008.6 95.7 17.6

Multispectral – – 11292.1 – – 120.4

general assumption that {µk}k is a monotonically increasing sequence fulfilling
∑∞

k=0 µ
−1/2
k <

∞, which is clearly fulfilled by the actually used geometric progression µk = µ0τ
k.

Proof. Our first goal is to show that the sequence {vk}k is bounded. Since the sequence
member uk+1 is a minimizer of the first line in (2.6), we get the estimate

2γ

1 + µk
‖∇1u

k+1‖0 +
∥
∥
∥
∥
uk+1 − f + µkv

k − λk

1 + µk

∥
∥
∥
∥

2

2

≤ 2γ

1 + µk

∥
∥
∥
∥
∇1

f + µkv
k − λk

1 + µk

∥
∥
∥
∥
0

≤ 2γmn

1 + µk
.

As a consequence we obtain that

(A.1)

∥
∥
∥
∥
uk+1 − f + µkv

k − λk

1 + µk

∥
∥
∥
∥
2

≤ C√
1 + µk

.

Here the positive constant C is given by C =
√
2γmn, where γ is the regularization parameter

and n,m are determined by the size of the image. Likewise, the second line of (2.6) yields

(A.2)

∥
∥
∥
∥
vk+1 − f + µku

k+1 + λk

1 + µk

∥
∥
∥
∥
2

≤ C√
1 + µk

.
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Summing up the terms within the norm symbols in (A.1) and (A.2), and afterward using the
triangle inequality, we get that

∥
∥
∥
∥
uk+1 + vk+1 − 2f + µkv

k + µku
k+1

1 + µk

∥
∥
∥
∥
2

≤ 2C√
1 + µk

.

Rewriting this inequality yields

(A.3)

∥
∥
∥
∥

uk+1 + vk+1 − 2f

1 + µk
− µk

1 + µk
(vk − vk+1)

∥
∥
∥
∥
2

≤ 2C√
1 + µk

.

Likewise, we subtract the terms within the norm symbols in (A.1) from that in (A.2) and use
the triangle inequality in the form ‖a− b‖2 ≤ ‖a‖2 + ‖b‖2 to obtain

∥
∥
∥
∥
uk+1 − vk+1 − µk

1 + µk
vk +

µk

1 + µk
uk+1 +

2λk

1 + µk

∥
∥
∥
∥
2

≤ 2C√
1 + µk

.

We substitute λk + µk(u
k+1 − vk+1) = λk+1, which is the third line of (2.6), to get

(A.4)

∥
∥
∥
∥

2λk+1

1 + µk
+

uk+1 − vk+1

1 + µk
− µk

1 + µk
(vk − vk+1)

∥
∥
∥
∥
2

≤ 2C√
1 + µk

.

The inequalities (A.3) and (A.4) are of the form ‖x − y‖ ≤ a and ‖z − y‖ ≤ a, respectively.
Hence, ‖x− z‖ ≤ 2a, which in our case means

∥
∥
∥
∥

2λk+1

1 + µk
+

uk+1 − vk+1

1 + µk
− uk+1 + vk+1 − 2f

1 + µk

∥
∥
∥
∥
2

≤ 4C√
1 + µk

.

Simplifying the left-hand side of this inequality yields

(A.5)

∥
∥
∥
∥

λk+1

1 + µk
− vk+1 − f

1 + µk

∥
∥
∥
∥
2

≤ 2C√
1 + µk

.

Equipped with these estimates, we are now going to bound the distance between uk+2 and
a convex combination of vk+1 and f . We first use (A.1) with k replaced by k + 1 and get

∥
∥
∥
∥
uk+2 − (µk+1 − 1)vk+1 + 2f

1 + µk+1

∥
∥
∥
∥
2

=

∥
∥
∥
∥
uk+2 − f + µk+1v

k+1

1 + µk+1
+

λk+1

1 + µk+1
− λk+1

1 + µk+1
+

vk+1 − f

1 + µk+1

∥
∥
∥
∥
2

≤ C√
1 + µk+1

+

∥
∥
∥
∥

vk+1 − f

1 + µk+1
− λk+1

1 + µk+1

∥
∥
∥
∥
2

.

Now we apply (A.5) to get that
∥
∥
∥
∥
uk+2 − (µk+1 − 1)vk+1 + 2f

1 + µk+1

∥
∥
∥
∥
2

≤ C√
1 + µk+1

+
1 + µk

1 + µk+1

∥
∥
∥
∥

vk+1 − f

1 + µk
− λk+1

1 + µk

∥
∥
∥
∥
2

≤
(

1 + 2

√
1 + µk√
1 + µk+1

)
C√

1 + µk+1
≤ 3C√

1 + µk+1
.

(A.6)

D
o
w

n
lo

ad
ed

 0
9
/2

4
/1

4
 t

o
 1

2
8
.1

7
8
.4

8
.1

2
7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1848 MARTIN STORATH AND ANDREAS WEINMANN

The last inequality is a consequence of the monotonicity of the sequence µk. Likewise, we
estimate using (A.2) with k replaced by k + 1 and (A.5)

∥
∥
∥
∥
vk+2 − µk+1u

k+2 + vk+1

1 + µk+1

∥
∥
∥
∥
2

≤
∥
∥
∥
∥
vk+2 − f + µk+1u

k+2 + λk+1

1 + µk+1

∥
∥
∥
∥
2

+

∥
∥
∥
∥

vk+1 − f − λk+1

1 + µk+1

∥
∥
∥
∥
2

≤ C√
1 + µk+1

+
1 + µk

1 + µk+1

∥
∥
∥
∥

vk+1 − f − λk+1

1 + µk

∥
∥
∥
∥
2

≤ 3C√
1 + µk+1

.

(A.7)

Next, we combine (A.6) and (A.7) to get
∥
∥
∥
∥
∥
vk+2 − µ2

k+1 + 1

(µk+1 + 1)2
vk+1 − 2µk+1

(1 + µk+1)2
f

∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
vk+2 − µk+1(µk+1 − 1) + µk+1 + 1

(µk+1 + 1)2
vk+1 − 2µk+1

(1 + µk+1)2
f

∥
∥
∥
∥
2

=

∥
∥
∥
∥
vk+2 − µk+1

1 + µk+1

(µk+1 − 1)vk+1 + 2f

1 + µk+1
− vk+1

1 + µk+1
+

µk+1u
k+2

1 + µk+1
− µk+1u

k+2

1 + µk+1

∥
∥
∥
∥
2

≤ µk+1

1 + µk+1

∥
∥
∥
∥
uk+2 − (µk+1 − 1)vk+1 + 2f

1 + µk+1

∥
∥
∥
∥
2

+

∥
∥
∥
∥
vk+2 − µk+1u

k+2

1 + µk+1
− vk+1

1 + µk+1

∥
∥
∥
∥
2

≤ 6C√
1 + µk+1

.

(A.8)

Using the last estimate, we obtain that

‖vk+2‖2 ≤ ‖vk+2 − dkv
k+1 − (1− dk)f‖2 + ‖dkvk+1 + (1− dk)f‖2

≤ 6C√
1 + µk+1

+ ‖vk+1‖2 +
2µk+1

(1 + µk+1)2
‖f‖2,

where dk =
µ2
k+1+1

(µk+1+1)2
. Resolving the recursion in vk, we have

‖vk+2‖2 ≤ 6C

k∑

i=0

1√
1 + µi+1

+ 2

k∑

i=0

1

1 + µi+1
‖f‖2 + ‖v1‖2.

By assumption
∑∞

i=0 µ
−1/2
i < ∞, which implies that both sums above are bounded. Hence,

{vk}k is bounded.
Using (A.6), we get that the sequence {uk}k is bounded as well. It follows from (A.3) that

‖vk+1 − vk‖2 → 0.

Using the monotonicity of the sequence µk (A.4) implies

λk+1

1 + µk+1
→ 0.
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From (A.1) and (A.2) we conclude that

‖uk+1 − vk‖2 → 0 and ‖uk+1 − vk+1‖2 → 0.

Therefore, it is sufficient to show that {vk}k is convergent. To this end, we estimate using
(A.8)

‖vk+ℓ − vk‖2 ≤
ℓ−1∑

s=k

‖vs+1 − vs‖2

=

ℓ−1∑

s=k

‖vs+1 − ds−1v
s − (1− ds−1)f + (1− ds−1)(f − vs)‖2

≤
ℓ−1∑

s=k

‖vs+1 − ds−1v
s − (1− ds−1)f‖2 +

ℓ−1∑

s=k

(1− ds−1)‖f − vs‖2

≤ C ′ ·
ℓ−1∑

s=k

1√
1 + µs

+ C ′′
ℓ−1∑

s=k

2µs

(µs + 1)2

for some constants C ′, C ′′ > 0 which are independent of k and l. Thus, {vk}k is a Cauchy
sequence and therefore convergent. This completes the proof.
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