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Abstract The ability to quickly locate one or more
instances of a model in a grey scale image is of importance to
industry. The recognition/localization must be fast and accu-
rate. In this paper we present an algorithm which incorporates
normalized correlation into a pyramid image representation
structure to perform fast recognition and localization. The
algorithm employs an estimate of the gradient of the cor-
relation surface to perform a steepest descent search. Test
results are given detailing search time by target size, effect
of rotation and scale changes on performance, and accuracy
of the subpixel localization algorithm used in the algorithm.
Finally, results are given for searches on real images with
perspective distortion and the addition of Gaussian noise.

1 Introduction

Fast pattern recognition is an invaluable component of many
machine-vision algorithms used in industry today. The abil-
ity to quickly identify an object, or a marking on an object
can aid in finding a desired part among a group of parts,
or to register a part so that work may be performed on it.
This paper outlines an algorithm for fast detection and local-
ization of a pattern using simple and inexpensive hardware.
For example, typical search times are less than 0.25 S, and
as low as 10-30 mS when the expected number of targets is
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known in advance.! Specifically, the algorithm is suitable for
implementation on a personal computer equipped with an
image acquisition board and a camera.

The algorithm relies on a pyramid representation of both
the model image and the search image, as well as an esti-
mate of the gradient of the correlation surface. The algorithm
begins by creating a pyramid representation of the model
image. A worst-case analysis is then used to determine the
effect on the correlation score of (i) the number of pyramid
levels combined with (ii) the possible different registrations
of the pyramid sampling grid with respect to the model, in
order to determine the optimum number of pyramid levels to
use. This analysis is done once off-line.

During the search phase, a pyramid representation is built
from the image being searched for instances of the model. It
is built to the same depth as the model pyramid. The top-level
of the model pyramid is convolved with the top-level of the
search-image pyramid to produce a correlation surface from
which likely candidates for model instances can be chosen.
For each candidate, the search process descends through the
pyramid performing a steepest descent search based on the
correlation-gradient at each level. When the bottom level is
reached, either a model instance has been found or the can-
didate is rejected for failing to meet a minimum threshold
for its correlation score. Once a model instance is found, a
bi-quadratic sub-pixel localization algorithm can be applied
if desired. Figure 1 shows an overview of the search algorithm.

Correlation does not generally allow for size or rotational
orientation variations, nor does it allow for model instances
which are partially occluded. Non-uniform lighting varia-
tions will also detract from the algorithm’s performance, but
it is assumed that these may be controlled in industrial set-
tings. Despite these drawbacks inherent in correlation-based

! These times are reported for a 750 MHz Athlon processor.
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Fig. 1 Overview of pyramid-based NGC search

matching, our algorithm is suitable for incorporation into
larger algorithms that address the issues of size and rotation
variance, possibly through the use of multiple search tem-
plates giving information about a target in different sizes and
orientations. It is also suitable for extending matching meth-
ods based on principal components analysis (PCA), such as
those found in [37,26].

An outline of this paper is as follows: results of previ-
ous approaches are considered in Sect. 2. Section 3 deals
with the idea of performing normalized grey-scale correla-
tion in a pyramid structure. Section 3.1 develops an estimate
of the correlation gradient for gradient-descent search. An
important feature of this estimate is that it can be computed
quickly. In Sect. 3.3 a method for choosing the depth of the
pyramid is presented. Section 4 describes details of the algo-
rithm’s implementation and gives performance results. A dis-
cussion of the results of applying the algorithm are presented
in Sect. 5.

2 Review of previous work

The problem of finding targets in images involves two
important steps: localization of candidate matches within the
image, and verification of each candidate through a matching
process. Most of the relevant literature in the field involves
the task of matching, and as such assumes that the images
being compared are of the same size. Matching algorithms
can be broken down into two major categories, those based
on correlation and those based on features. The latter category
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includes features based on colour, gradient orientation,
moments and shape descriptors. Matching algorithms often
ignore issues related to scale and orientation, leaving those to
be determined during the localization stage. The task of local-
ization involves finding the right region within the search
image (including determining the region’s size) and passing
this region to the verification process.

Some of the earliest attempts at matching have been done
using correlation methods, which are reviewed in detail in
[10,29,5]. The concept of normalized correlation was devel-
oped to combat the effect of different illumination levels
on these techniques. A major downfall of correlation tech-
niques is that, when combined with naive localization meth-
ods such as brute-force search, they are computationally very
intensive, and as such tend to be slow. Despite this, they
have remained popular with the advent of appearance-based
matching methods such as eigenfaces and related techniques
[37,26]. Another class of techniques involves matching
moments [29], but is limited to the case where localization
has already been performed, and the pattern to be matched
has been segmented from the background prior to applying
the moment operators. When this can be done these tech-
niques are often powerful, as they can provide rotation and
size invariant recognition [11,6], although the issue of locali-
zation is seldom addressed. Other moment-based approaches
include [13,41,15], with the latter using Zernicke moments
computed using polar coordinates.

Combining an approach similar to correlation with fea-
ture-type matching, both [27,13] use deformable templates
to match models to target instances. In [13], the matching is
performed on candidates retrieved using feature vector index-
ing. The amount of warp and discrepancy in the resulting
edge maps is used as a measure of similarity to rank the top
matches. Matches are performed on binary images. Nastar
et al. [27] performs image matching using pixel intensities
in a method described as a generalization of optic flow and
eigenfaces. Also based on deformable templates, a descrip-
tion is given in [31] of a search technique which is somewhat
robust to scale changes and moderate rotation about the ver-
tical axis. The technique involves dividing the target into
columns, and allowing pixels from each column to match
one or more columns in the search image using a dynamic
programming method. Robustness to moderate scale change
is provided by searching over three pre-defined scales in the
search image. While it is claimed that this technique is supe-
rior to NGC (normalized grey-scale correlation), no timing
comparison is done.

There exist a number of techniques for matching entire
images [28,33,13,41]. These techniques typically generate
indices to allow fast retrieval of similar images from a data-
base, and they often assume that images have been normal-
ized in size. In [28] appearance-based matching is used to
index into a database of images. This work is largely based on
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eigen-image matching with a Karhunen—Loeve transforma-
tion to limit the size of the basis space required. In a method
similar to work reported later in [27], shape matching based
on eigenmodes is also used to index into the database.

One class of approaches to matching is based on extracting
features from the images under consideration. Two popular
features are colour [4,33,41] and edge orientation [33,18,
13]. Colour features usually involve matching colour histo-
grams over the region of interest, but they are only appli-
cable to colour images. In [33], a technique for indexing
images based on both colour and edge-orientation histograms
is given, with the intent of matching via nearest neighbour
techniques. Similarly [13] uses colour histograms with
moment invariants as an indexing feature to find top candi-
dates for subsequent matching with deformable templates. In
[4], the authors present a colour histogram matching metric,
and demonstrate its usefulness by finding Waldo in
images from the popular “Where’s Waldo?” series. Since the
histograms are computed over local regions of fixed size,
the technique is not only able to detect Waldo but also find
his location. In [41], colour histograms are combined with
Fourier, moment-invariants and intensity projection onto x
and y axes to provide a means for indexing into a trademark
database. Both [33,13] use edge orientation histograms to
provide indexing for matching. In a different vein, Lowe
[18,19] computes local features based on magnitude and
orientation information at image regions determined to have
stable responses to a difference-of-Gaussians filter, across
multiple scales. The novel aspect of this work is that it matches
features in the target to features in a search image based on
a Hough transform for accumulating pose parameters. This
estimation of pose parameters seeks to solve localization as
well as matching. This method is better described as a parts-
based object recognition scheme, even though no seman-
tics are attached to individual features. The performance is
fast (estimated to be on the order of 100 mS or better on
modern hardware), and is tolerant to scaling and rotation in,
and to some extent out of, the image plane. The features
used are, however, sensitive to global changes in illumina-
tion [3], unlike normalized correlation. Lowe’s technique is
not expected to be easily applied to small targets, for exam-
ple an 8 x 8 target, as it will be difficult to assess stability
across scales since details will disappear quickly as coarser
scales are attempted. Further, this method does not appear to
be suitable for sub-pixel localization of the target. A num-
ber of affine-invariant feature detection techniques have been
developedinrecent years [1,21-25]. Maximally-stable extre-
mal regions (MSER) [1] is a technique that identifies regions
based on their stability when thresholded using a range of
thresholds. These stable regions are considered features, and
suitable descriptors can be used to describe their content.
A number of affine-invariant descriptors [21-23] are based
on applying the standard Harris—Stephens corner detector

[9] across multiple scales to find a maximal response, and
computing an elliptical region around the feature location
whose scale and orientation can be used to created an affine-
invariant descriptor for the feature. These descriptors, like
SIFT descriptors, are useful for comparing features across
different images and across different scales and orientations.
These techniques have proven useful in content-based image
retrieval and indexing in video sequences [35], using the “bag
of features” concept. Any of the techniques involving image
gradients may run into problems for artificial images with
high contrast and considerable regularity in edge orienta-
tions, for example corporate logos.

Another feature approach involves the use of probabilis-
tic features [32,36]. In [32], object appearance is encoded
using estimates of joint density functions for the recovered
features. While this system is fast (on the order of 100 mS
on an SGI O2 workstation), it is only intended for detection
and not localization (localization accuracy is 30 to 80 pix-
els). Stauffer and Grimson [36] use a set of training images
of the target to learn a joint distribution of pixel intensities in
an image patch. Comparison of the joint density to that of a
candidate image patch takes about 1 s on a 500 MHz pentium,
making the method too slow for fast object localization.

A new class of technique is centred around neural net-
works, but to date they are more suited to pattern classifica-
tion than localization. Kulkarni [16] describes a size/rotation
invariant object recognition method using back propagation
to recognize feature vectors, but the vectors are based on
moments and thus are good for matching but not localiza-
tion. Work done by Wechsler and Zimmerman [39,40] looks
more promising, but seems too complex to be fast on modest
hardware. In [12], neural networks are used to learn optimal
templates for nearest neighbour matching. In [41], a neu-
ral network is used to classify based on recovered feature
vectors.

Finally, the concept of using pyramid representations for
image analysis is certainly not new, and is closely linked
to the theory of scale-space [14,17]. In this paper pyramid
representations are used to overcome some of the compu-
tational problems associated with correlation methods. Burt
[2] has constructed a pyramid-based attention model which
uses Gaussian and Laplacian pyramids, and which is used
for foveation, tracking and determining where to look next
based on image saliency. Their system can be used for pat-
tern recognition by using a pattern tree to represent salient
features of objects at different resolutions. If enough features
are matched, then the pattern has been found. Special hard-
ware has been developed [38] to aid in the construction of
image pyramids. Lowe [18] uses multiple image scales to
determine the stability of features. Ramapriyan et al. [30]
uses a multi-level decision tree approach to finding tem-
plates in images. A set of target templates is partitioned in
amanner that allows subsets of templates to be removed from
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consideration should initial computations at a particular
image location contraindicate. If evidence supports further
search, the candidates under consideration is narrowed until
a best match occurs. Since only a small number of matches
are expected over the large number of possible image loca-
tions, search speed is greatly improved. In [7], Greenspan
proposes a decision tree method for determining 3-D object
pose in images, again making use of hierarchical search in
pattern matching.

3 NGC in a pyramid representation

This section describes the use of a pyramid image representa-
tion to reduce the computational complexity associated with
correlation search. Let I (x, y) represent an image [,, X Ij
pixels in size. The top-left corner of the image is defined to
be the origin. Each pixel is assumed to encode a grey value
in the range 0, . .., 255, one byte per pixel, although colour
correlation is easily achieved by replacing pixel multiplica-
tions with inner-product operations performed on RGB val-
ues represented as vectors. If we wish to use correlation to
search foramodel M (x, y) of size M, x M}, in the image, the
complexity for performing the correlation is O (1, I, My, Mp,).
However, the cost of the computation increases considerably
if normalized correlation is used (see Eq. 1).

G(M(0,0), I(x,y))
VGM(0,0), M(©O,0)G T (x, y), T(x, y)
ey

Cx,y) =

where

G(fi(x1, y1), fa(x2, ¥2))
My—1 Mj—1
= D> > AGa+iyi+ )+ v+ )
i=0 j=0
andx < Iy — My +landy < I, — M), + 1.

An overview of the method is as follows: build pyramid
representations of both the model (see Fig. 3) and the image
(search space, see Fig. 2), and perform correlation search at
the top levels of the two pyramids (see Fig. 4). This can be
done very quickly due to the reduced image sizes. The best
match at the top level can be refined using a coarse-to-fine
strategy in which the best estimate of location at level k in
the pyramid is used as the starting point for the search at level
k — 1. When the base of the pyramid is reached, the model has
been found. Multiple instances can be found through repeat-
ing this procedure by choosing more than one match at the
top level of the pyramid.

We now describe briefly the method of building both the
image pyramid and the model pyramid. The structure of
the pyramid is quite simple (Figs. 2, 3). We have used an
averaging-with-no-overlap scheme, and use a sub-sampling
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Fig. 2 The pyramid representation for a typical image is shown. The
pyramid has three levels, with level O being the largest image at 320 x
240 (top), and level 2 being the smallest at 80 x 60 (bottom right). In
the level 0 image, a search model is defined

Fig. 3 The pyramid representation of the model in Fig. 2 is shown. It
has the same number of levels as the image pyramid

rate of 2. This means that each level in the pyramid has
dimensions equal to one-half of those for the level below,
meaning that each level is one-quarter the size of the one
immediately below. Each pixel in a given layer is the aver-
age of four pixels from the layer below. These four pixels
are termed the receptive field of the pixel on the higher level,
and the fact that the pyramid is non-overlapped means that on
each level the receptive fields do not overlap each other. This
type of pyramid can be built quickly, as each pixel in a new
level only requires 3 adds and one shift to compute. The algo-
rithm for building the pyramid is O(ly,I). The number of
levels is limited by Kmax < log, min(M,,, My). The advan-
tages of building a pyramid become quickly obvious: the
Kth-level of a pyramid has 22K~ times fewer pixels than
does the original image. Remember that the model pyramid
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atlevel K also has 22(K—1) times fewer pixels than at its level
0, so that the total cost of NGC at the top level of the pyramid
is 24(K=1 times smaller than NGC on the original image. For
a four-level pyramid, this factor is 4096.

To perform correlation search for the model at the top-level
of the pyramid, the complexity is O((I,, Iy My, Mj) /24K D).
Of course, the localization of the pattern at the top level of
the pyramid is not perfect, but this can be used as an initial
estimate for the next level of the pyramid. At each level of
the pyramid a small number of correlations is used to refine
the location estimate.

Instead of performing an exhaustive local search for the
new maximum at each level of the pyramid, it is possible
to estimate the gradient of the correlation surface and use a
steepest descent method to perform the search. The following
section describes the derivation of the gradient estimate.

3.1 Derivation of correlation gradient

When the estimate of model location is refined at each level
of the pyramid, it is possible to use an estimate of the gra-
dient of the correlation surface to perform a steepest descent
search. While it is possible to estimate the correlation surface
in a 3 x 3 neighbourhood centred on the current location esti-
mate, this is computationally expensive (it requires nine full
correlations). It is possible to estimate the correlation gradi-
entin a less expensive manner. However, in applying steepest
descent to a surface that we expect will have multiple max-
ima, it is important to identify regions expected to contain
local maxima to allow the search to converge quickly. The use
of the image pyramid does this: not only does it limit com-
plexity of the top-level correlation, but it facilitates finding
candidate regions and provides a means of quickly refining
the search. In the derivation which follows the continuous
case is developed: the transition to the discrete case is stra-
ighforward.

Given an image [ (x, y) and a model M (x, y), with M
being differentiable over all x and y, the correlation coeffi-
cient surface can be defined as

[ (e, y)(MW)(x — u, y — v)dx dy
[ ) 12, W (x —u, y — v)dx dY]l/2 ‘

C(u,v) =
@

(Note: the integration limits in subsequent equations are the
same, but are omitted for compactness of notation.) The func-
tion W (x, y) is a windowing function which is used to force
the contribution from M to zero at its boundaries:

Wx,y)=0 Yx <0, x>My,, y<0 andy > M, .
3

The notation (M W)(x, y) is shorthand for M (x, y)W(x, y).
For simple correlation computation, W is normally chosen
to be a box function. However, since we will want to dif-
ferentiate Eq. 2, the windowing function should be chosen
such that its derivative goes to zero at the borders of the win-
dow. It is assumed that [[ M>(x, y)W(x, y)dxdy = 1, i.e.
that M (x, y) is normalized with respect to the windowing
function. Since this need only be done once, it can be done
off-line before the search is performed. Assuming that our
functions M and W are well-behaved we can differentiate
Eq. 2 to derive the gradient:

oC
ou

VC(u,v) = . 4)
aC

En
The gradient of the windowed correlation is

[ [1G, ) (MW)(x —u, y — v)dx dy
[ [, y)W(x —u,y —v)dxdy

x//l(x,y)V(MW)(x—u,y—v)dxdy

J [T, ) (MW)(x —u, y —v)dxdy 2
|: [ [Px, y)W(x —u, y —v)dxdy ]

X //Iz(x, YVWVW(x —u,y—v)dxdy.

VC(u,v) = -2

This leaves us with just four terms to calculate:

//I(x,y)(MW)(x—u,y—v)dxdy (®)]
//1()6, WVMW)(x —u,y —v)dxdy (6)
//Iz(x, MW —u,y —v)dxdy @)
// I*(x, y)VVW(x —u, y — v)dxdy ®)

Samples of the windowed-version of the model, along with
its gradient components, are seen in Fig. 5. Since C2(u, v) €
[0, 1] we don’t expect VC2%(u, v) to be huge so long as
the correlation surface is reasonably smooth, i.e. no dis-
continuities in / or M. As the amount of high-frequency
content in M and/or I increases, we expect the correlation
surface to become less smooth. When we move to the dis-
crete case, the derivative becomes a difference and hence will
always exist, but it is still desirable to avoid large discon-
tinuities in the model and image. Fortunately, the pyramid-
building operation also acts as a low-pass filter, making
gradient magnitudes manageable.
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Fig. 4 The correlation surface from the top level of the pyramid is
shown. Two strong peaks, representing the location of the two instances
of the model, are evident. These peaks provide coarse location estimates,
which are refined as the algorithm descends through the pyramid

3.2 Choice of image vector space origin

Modern imaging technology typically represents images as
one (or more) 2-D arrays of 1-byte pixels, with individual
pixels having values in the range of 0, ..., 255. While cor-
relation values are in the range of —1 to 1, images represented
solely by non-negative integers will lead to purely non-neg-
ative correlation values.

An important example of this occurs when comparing the
model to a section of the image which has uniform intensity.
Let Iconst = [a---a]T be a column vector representing the
uniform background. The correlation of a model with this
uniform background vector yields the following result:

_ MTICOnst
M| [ Tconst|

Substituting the value of I.ong We get

MyMy,
Zizl m

Cc=-—=i=l_—L
||M||VMth

where m; is the ith element of M. We see that we get a corre-
lation value that depends only on the model. We also see that
the choice of origin affects the value of the correlation score.
This is easily illustrated by remembering that the normalized
correlation score is just the cosine of the angle between the
two vectors, i.e. C = cos 6 where 6 is the angle between M
and L.

In Fig. 6 we see a graphic depiction of the effect of choice
of the origin on the correlation score. On the left we see a pair
of vectors, M and I, which could be a typical pair of image
vectors. The angle between the two vectors is 6, which is
directly related to the correlation score (smaller angles corre-
spond to higher correlation scores, and vice versa). When all
the vector components are positive, then the resulting image
vectors are limited to a subset of the image space. In the 2-D

©))
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Fig. 5 This figure shows the various representations required at each
level of the pyramid for gradient correlation search. The model is given
in (a). The windowed version of the model is shown in (b), with the win-
dowing function shown in (c). The horizontal and vertical components
of the gradient are shown in (d) and (e)

case shown here (think of the image vectors as having two
pixels), the vectors are limited to one quadrant of the vector
space. In the 3-D case (think of the image vectors as having
three pixels), the vectors are limited to one octant of the vec-
tor space. In general, the image vector will be confined to
%N of the space, where N is the total number of pixels in the
image. Since the models we are searching for will routinely
have hundreds and even thousands of pixels, we see that the
net result of having only positive components in the vectors
is that correlation scores will tend to be high in most cases.
On the right of Fig. 5, the same two vectors are depicted,
but a new origin is being used. In this case the vectors are
represented by M’ and I', and the angle between them is 6.
In this case the origin has been chosen to make 6’ = 90°.
In general, we can choose the origin to make the correlation
score anything we want (we can only make C = 1 in the
limiting case where the origin tends to infinity).

Given an infinite number of choices for a new origin,
which one should we choose? One reasonable choice would
be to choose an origin such that correlation of the model
with a uniform background leads to a score of 0. Examining
Eq. 9, we see that subtracting the mean of the model vector
components from the model will cause

My My,

Z m; = 0.

i=1
Since a correlation score of 41 indicates a perfect match, and
a score of —1 indicates a perfect mismatch, then a score of 0
for comparison with a featureless background seems reason-
able. This method of subtracting the mean from the model
has been very successful in practice. It should also be noted
that subtracting the mean from the model is the equivalent
of removing any D.C. component from the model image’s
energy—thus only the energy related to model features is left.

A final issue to consider involves the effect of subtracting

the model’s mean from the image region being correlated
with the model. While it seems reasonable in practice to treat
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M/

I/

Fig. 6 In this figure we see the effect of the choice of origin on the
correlation score computed for the two vectors. On the left we see two
vectors which could easily result from a positive-only imaging system,
and the angle between them. On the right we see a much larger angle
achieved by choosing a different origin for the vector coordinates. In
general, for any two distinct vectors it is possible to choose an origin
which makes the angle between them any value, including 90 and 180°

the image region in an identical fashion to the model, there are
some practical problems. If the mean is subtracted before the
normalization is applied, then raw intensity of the model can
affect the matching process. Since one of the reasons we use
NGC is for its robustness against changes in image intensity,
this is undesirable. In an image captured with pixel values in
the range O, .. ., 255, pure multiplicative changes about the
origin (0) are equivalent to a translation and a multiplication
when any other origin is chosen. It was observed in practice
that subtracting the same mean from both the model and the
image region being compared made the entire process very
sensitive to changes in lighting. As aresult, itis proposed that
the mean of the image region be subtracted instead. In this
case we are no longer doing pure NGC (since each vector has
a different value subtracted from it), but it works far better
in practice. Again, one can think of this as having removed
the D.C. component from the image region.

3.3 Tuning the pyramid

Up until now the only mention made of K is that it is limited
by the size of the model. In many cases the details in the
model may degrade too quickly for this limit to be realistic.
Take, for example, a model which consists of a checkerboard
pattern, with alternating pixels black and white. In this case
even a two-level pyramid is too much, because the second
level of the model pyramid will be a uniform (featureless)
grey region which will be useless for correlation.

Instead, the depth of the pyramid must be chosen accord-
ing to the characteristics of the model itself. One method
of doing this is to build the model pyramid one level at a

time, and as each new level is added estimate the worst-case
correlation score of the model with itself at that level.

By tuning the pyramid we refer to the problem of deciding
how many levels to choose for a pyramid representation of
a given model. Note that this concept is similar to the idea
of finding an optimal template for matching, as described
in [12], although in our case we are searching for an opti-
mal representation based on a single exemplar, as opposed
to combining multiple exemplar images into a template. The
more levels the pyramid has, the greater the savings in com-
putation, but building the pyramid with too many levels may
render the model unrecognizable to the NGC algorithm run-
ning at the top of the pyramid. The following discussion on
the effects of pyramid sampling gives a possible solution to
the problem of tuning the pyramid.

3.3.1 Issues surrounding sampling of the pyramid

Usually a model is chosen as a sub-image in a larger image.
It is possible that we will then look for other instances of that
model in the same image, or we may wish to remember the
model and try and find it again later.

Consider, for example, that we have a model of size 50 x 50
located at (96, 96) in the image. The model pyramid will have
four-levels of size 50 x 50,25 x 25,12 x 12 and 6 x 6. If we
look at the top-level of the model we will find an exact rep-
lica of it in the top-level of the image pyramid (save integer
division truncation errors), since the location of the model is
on an integral 8-pixel boundary, and our four-level pyramid
has a top-level where each pixel is represented by 8 x 8 = 64
pixels from the bottom-level. This guarantees that the same
information is averaged and combined in the exact same way
while building both the image and model pyramids. But what
would happen if the model had been at (97, 97)? Then the
top-level representation of the target is not the same in the
image pyramid as in the model pyramid. Since at (96, 96)
the top-level instance will have a score of 1, the score when
the model is at (97, 97) will generally be worse. For a two-
level pyramid we require the model to be on an even pixel
boundary in order for the image and model pyramid to match
at the top. Therefore, for a randomly placed model there is
one chance in four that it will land perfectly. For a three-
level pyramid, the model must land on an even boundary of
4 pixels, giving one chance in sixteen of perfect alignment.
There is one chance in 64 for perfect alignment in a four-level
pyramid.

It should be noted that perfect alignment is not required
in order to be able to find the target at the top level of the
pyramid. How well an imperfectly aligned model will match
at the top of the pyramid is dependent on the features of the
model.
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3.3.2 Tuning the pyramid using worst-case analysis

As discussed earlier, the representation of a target at the top
of the pyramid may be better or worse depending on its loca-
tion in the image. This suggests a possible method for tuning
the pyramid.

The first step is to set an upper limit on the number of
levels in the pyramid. Obviously correlation is meaningless
with only one pixel at the top level of the pyramid, so we
can choose a minimum size for the model at the top-level.
For the current implementation of the search tool this mini-
mum size has been chosen to be 4 x 4. This means that the
maximum number of levels in the pyramid will be chosen so
that the model has a minimum dimension between 4 and 7
(a minimum dimension of 8 could be reduced to 4 by adding
another level to the pyramid). Depending on the features of
the model it may be possible to successfully search at this
maximum pyramid depth.

The second step is to consider the worst-case score of
the model at different pyramid depths. The worst-case will
be due to the effects of pyramid sampling as discussed in
Sect. 3.3.1. In order to determine the worst-case score of
a model in a K-level pyramid, we build the model pyra-
mid to K levels, and then build a test pyramid based on
the model but with offsets (x, y) where both x and y are
in the range O, ..., 2k=1 _ 1. Therefore we end up con-
sidering 22*—1 different offsets at each pyramid level k.
Of course, the offset (0,0) is expected to have a score
of 1.

It is important to note that this worst-case analysis is only
an estimate of the worst score of the model at the top of
the pyramid, since in a real search situation that score will
depend on image content outside the target for which we
have no a priori knowledge. As we consider different off-
sets, the size of the test pyramid (really just a shifted version
of the model) can be as much as one-pixel smaller than the
model in each level. If we consider the most extreme case,
we compare a 4 x 4 model to a 3 x 3 test-image. In this case
our estimate involves comparing 56.25% of the model with
a shifted version of itself.

The third step is to perform this worst-case analysis for
pyramids from level 2 up to and including the maximum pos-
sible number of levels, and choosing the maximum pyramid
depth that still yields an acceptable worst-case score.

A number of pathological targets can be imagined in order
to test this scheme. Consider black and white checkerboard
patterns where each cell of 2 white and 2 black squares takes
on the following dimensions: 2 x 2,4 x 4, 8 x 8 and 16 x 16.
The first pattern can only be searched with a one-level pyra-
mid, since the 2 x 2 receptive field used to go to the next level
will blur the checks into a featureless pattern of grey. The sec-
ond pattern could be searched with a two-level pyramid if we
were confident that the target would always align perfectly
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on a 2-pixel boundary. However, since this is not guaranteed,
we will likely end up with a featureless grey again (corre-
sponding to an offset of (1, 1)), so we must restrict ourselves
to a one-level pyramid. The next two patterns (for similar
reasons) may be searched reliably with a two-level pyramid,
but no more.

To recap the worst-case analysis algorithm, we perform
the following steps:

1. Based on the size of the model in the original image,
determine the maximum depth (number of levels) of the
pyramid that will make the top-level representation of
the model at least a pre-set minimum size (in our case
4 x 4 pixels). Call this depth Kpax.-

2. Build the model pyramid to this depth.

3. For each pyramid of depth k in the range of 2, . . ., Kiax
perform a worst-case analysis of the test-image represen-
tation of the model at level k. This is done by building
a test-image pyramid based on the original model, but
offset by (x, y) where each of x and y takes on values in
the range O, . . ., 2K=1 _ 1 Foreach image, compute the
correlation score between the kth level representation of
the image and the model.

4. Choose the number of levels in the pyramid to be the
largest value of k for which the worst-case correlation
score between model and test-image is above some pre-
set threshold (currently we are using 0.1 for this thresh-
old).

Intuitively this method is quite appealing, in that it mimics
the actual search process when deciding how to tune the pyra-
mid. Unfortunately, it may well be that always catering to the
worst-case is unduly pessimistic. Variations on the method,
in which the average or median of returned scores is used
instead of just the worst-case itself, may prove useful.

The worst-case score found at the top-level of the model
pyramid can be used to determine what threshold to use in
accepting candidates at the top-level correlation. If, for exam-
ple, the worst-case score is 0.7, and the correlation accept
threshold entered by the user is 0.8, then the threshold for
accepting candidates at the top-level could be set to 0.56 =
0.7 x 0.8. In this way candidates that are imperfect matches
in the original image, and whose scores degrade in coarser
pyramid levels, can still be found by the algorithm.

4 Implementation, experiments and results

The algorithm has been implemented in C++, and compiled
on a Windows-based PC using Visual C++ V6.0. The core
algorithms are not Windows specific and can be (and have
been) re-compiled on other platforms, including Linux.
No special effort has been made to optimize the run-time
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efficiency of the code. The results that follow are from an
AMD Athlon Thunderbird 750 MHz system with 256 MB of
RAM. In all cases the accept threshold is set to 0.75, repre-
senting a correlation score of 0.866 = +/0.75. Except where
otherwise noted, the algorithm has been given the expected
number of targets in advance. Results are given for search
time vs. number and size of targets and false positive/neg-
ative results are also given. Finally, the algorithm is tested
for sensitivity to slight variations in scale and rotation of the
targets. Results are also shown for real-world images where
the target undergoes mild perspective distortion. Finally, the
performance of the algorithm with respect to sub-pixel local-
ization is presented.

4.1 Comparison with full correlation

To demonstrate the speedup of our method over full correla-
tion (no pyramid structure or gradient search), the two were
compared for a typical image search. The search shown in
Fig. 16a was conducted on the full-sized image, 2272 x 1704
pixels, using a target 260 x 96 pixels in size. Our method
required 0.547 s.” The same search performed using full cor-
relation yielded identical results, but took 450.922 s to com-
plete. Both the search and target images were resized by
50%, and the experiment repeated. This time our method
took 0.312 s, while full correlation required 29.375 s. By
way of confirmation, note that 450.922/16 & 28, suggesting
that the full correlation result scales roughly according to the
inverse of the product of the search and target pixel counts, as
expected. This simple experiment demonstrates the potential
speedup using our technique.

4.2 Top-level correlation scores

As an example of how candidate scores can degrade in higher
(coarser) levels of the pyramid, Table 1 shows the squared-
correlation scores at the lowest and highest pyramid levels
for the target instances shown in Fig. 2. Instance 1, which
also serves as the model, has perfect scores at both levels as
we might suspect. However, instance 2 has a score of 0.950
at the lowest level (the original search image), but a poorer
score of 0.796 two levels higher in the pyramid.

4.3 Search time versus number of target instances

Results are shown in Fig. 7 for the effect of number of tar-
get instances on the search time. In the lower trace we see
that as the number of instances increases, the search time
increases in a roughly linear fashion. This is to be expected.

2 This test was performed using a VMware virtual machine running
Windows XP, on a host machine running Ubuntu Linux on a 2.16 GHz
Centrino Duo processor.

Table 1 Squared correlation scores for model in Fig. 2

Instance Location Score (level 0) Score (level 2)
1 (322,304) 1.000 1.000
(model)
2 (318, 95) 0.950 0.796
Figure: Search Time vs number of targets
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Fig. 7 This figure shows the increase in search time as more target
instances are found. In the upper trace the algorithm does not know the
number of targets to expect in advance, and has to consider distractor
blobs in the image. In the lower trace it knows the expected number
of targets, illustrating the advantage of giving the algorithm an upper
bound on the expected number of targets

The search time can be thought of as the overhead of build-
ing the pyramid representation of the search image, plus the
time to evaluate individual candidates. If the algorithm has
already found the requested number of target instances, it
can terminate early. If it does not have an upper bound, then
it will continue to evaluate candidates until no more suit-
able candidates are found in the top-level correlation. This
may prolong the search if the image contains distractor pat-
terns that are sufficiently similar to the target. This extra time
may be reduced by setting a higher accept threshold, which
in turn causes less candidates to be considered at the top-
level correlation. The upper trace in the figure is an example
of roughly constant search time in the case of not knowing
how many instances to expect. In this case, random distrac-
tor blobs were used to test the algorithm’s ability to find the
correct target. When distractors are not present, the search
time in both cases is very similar.

It should be noted that in the case where multiple targets
are to be searched for in the same image, the overhead of
constructing the image pyramid will only be required once,
leading to more efficient searches.
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Figure1: Search Time vs size of targets in a 160x160 synthetic image
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Fig. 8 This plot shows search time as the model size is increased.
The peaks occur when the model size is smaller than the size which
would incease the number of levels in the model pyramid. There is also
an increase in subsequent peaks due to extra overhead required to build
the search pyramid. The model used for this figure was a black-on-white
Cross

4.4 Search time versus size of model

Using NGC in a non-pyramid framework we would expect
search times to increase as the size of the model increased. As
the model size increases, we reach a point where another level
may be added to the model pyramid (depending on the results
of the worst-case analysis), resulting in a smaller model at the
top of the pyramid, as well as a smaller search image at the
top of the pyramid. There is extra overhead to build one more
level in the search pyramid, but this gets smaller for each level
of the pyramid by a factor of 4, and the savings in correlation
computations more than offsets this. It should also be noted
that rectangular models use the minimum dimension to limit
pyramid size, so this further complicates the relation between
size and search time.

In Fig. 8 we see the results of varying model size on search
times with the number of target instances held fixed, and
the size of the image being searched held fixed. The results
shown are from a set of real images captured using a cam-
era at varying distances from the target and distractors. In
the graph we see that search times gradually increase as the
target is increased in size to 50 pixels, then they suddenly
decrease, only to incease to a new maximum at 70 pixels, and
finally another increase to a new maximum at greater than
100 pixels. The point at which new pyramid levels are built
is further controlled by the worst-case analysis, so changes
may not occur exactly at sizes that are an even power of 2.
The line joining the data is a smooth interpolation. For small
model sizes we may not see the same pattern of increases
and decreases as the algorithm places a hard-limit on the
smallest allowed model at the top of the model pyramid, thus
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Idealized Search Time vs. Model Size
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Fig. 9 Idealized search times generated by search complexity model.
Notice the similarity to Fig. 8. As the relative cost of building the pyr-
amid increases, early peaks in the plot are smoothed out

preventing the pyramid from attaining its full depth in some
cases.

It is instructive to develop a simple model explaining the
search-time as a function of model size. Assume we have a
model of size n X n in an image of size I, x Ij. The total
search time (up to the end of the top level correlation) can be
written as T = Ty + T, where

1 1 1
TPZC[th(l-I—?‘F?‘F""‘Fm)
is the time required to build the pyramid. Here, C is a constant
relating the search cost T to that of building the pyramid, and
m = |log, n] is the height of the model pyramid. We also
write

- L37]5]14)
2}11 2m Zm

Figure 9 shows the predicted ideal search time with n =

10, ..., 150, I, = I, = 300. Note how the early peaks in

T, are hidden by the cost of pyramid construction. This same
effect is also evident in Fig. 8.

4.5 Accuracy

Determining the accuracy of the search algorithm is subjec-
tive as it can be used to find instances of patterns that are
very similar but not identical. Tests with an accept threshold
of 0.95 have yielded a false positive rate of less than 0.1%. As
the threshold is lowered, the algorithm will match instances
with increasing variability. In the extreme, one could imag-
ine matching anything with an accept threshold of 0. Even an
accept threshold of 0.75 may miss target instances which we
would consider good, as is shown in Fig. 10a. In this case, a
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Fig. 10 Two images in which searches have taken place. In (a) we
have an example of a false negative (white box), but the missed target
instance is noticeably different due to background shading. In (b) we
have no false results despite relative similarity of all objects in terms of
size and intensity levels

change in the background surrounding the instance, plus dif-
ferent shading in the middle of the target, is enough to cause
its rejection at this threshold level. The important thing to
recognize here is that correlation scores do not always coin-
cide with perceptual judgements. Occlusion and shading are
also known to adversely affect correlation matching, and are
not explicitly examined in this section.

False negative rates are affected not only by accept thresh-
old, but also by the maximum target instance parameter if
it is specified. Target instances may also be rejected if they
cross the borders of the image, as the current implementation
only looks for instances wholly contained within the search
image. In summary, almost all false results occur when the
target instance is not identical, or close to identical, to the
model.

4.6 Sensitivity to small scale and orientation changes
Even though normalized correlation is not designed to acco-

modate changes in scale and orientation, tests show that in
some cases it may do quite well. In Fig. 11 correlation scores

are shown for small changes in scale and orientation of the
target instance.

These results suggest mechanisms by which scale and ori-
entation invariance might be built into the algorithm. In the
case of scale, the pyramid would easily allow for search-
ing over different scales separated by a factor of 2. If we
create a number of re-scaled versions of the model to be
searched at each pyramid level (in this case each about 1.2
times larger/smaller than the previous one), then the algo-
rithm could be used to search over the range of 1/+/2 to +/2.
Anything larger or smaller could be searched in the next scale.
A schedule for searching at the different pyramid levels can
be devised, and the number of additional models required
at each level can be determined via worst-case analysis. In
the case of rotation, a method similar to that of [26] can be
used to determine the number of additional target templates
required to search for rotated versions of a target.

4.7 Subpixel localization

In identifying an object in an image using NGC, it may be the
case that the object as found will not align with the pixel grid
in the same way as the model (or template) did. In this event,
our estimate for the location of the object is expected to lie
between pixels. Since NGC only allows us to compute the
correlation at integral pixel locations, some method of deter-
mining the sub-pixel location is needed. One such method
is interpolation using a bi-quadratic surface as described
in [20]. In this section we give performance results for this
method.

Two sets of tests were done. The first set involves a series
of 10 images produced by synthetic means. Software was
devised to simulate a target moving in the horizontal direction
at 0.1 pixels/frame. The main advantage to using synthetic
images is that ground truth is known for the target location.
However, the synthetic data ignore the possibility of effects
introduced by imperfections in the imaging system.

The synthetic images were created by creating a target at a
higher resolution than the original image, and then averaging
over the required subset of pixels in order to determine the
target’s representation in the low-resolution image.

The second set of images involve a printed circuit board,
with the board being shifted left by roughly 1/20 of a pixel in
each subsequent image using a camera mounted on a mechan-
ical X-Y translation stage. No absolute orientation between
the camera and the stage is sought—the important thing is
that the base of the stage is stationary with respect to the
scene, so the changes between images is solely related to the
controlled movement of the camera. The method of fixing
the camera to the stage rougly aligns the camera’s horizontal
and vertical directions to those used by the stage itself. There
are 20 images in the sequence. This image sequence permits
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Figure1: the correlation score of circles vs Scale
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Fig. 11 This figure shows the effect of slight changes in both (a) scale
and (b) orientation on the correlation scores. Scale was varied by 10%
resulting in correlation scores from 0.8 to 1.0. The target used was a
black ellipse on a white background. Orientation was varied by £14°
resulting in squared-correlation scores from 0.418 to 1.0. The target
used was a black cross on a white background. The use of simple, high-
contrast targets is intended to isolate the method’s ability to recognize
shapes

meaningful testing of the subpixel localization algorithm on
real images.

In both sets of images, the model is defined in the first
image, where its location (by definition) lies exactly on an
integer pixel boundary. In each image sequence the target is
assumed to shift by roughly equal amounts from one image to
the next.3 As a model is tracked, therefore, the subpixel esti-
mate for its location should form a straight line with respect
to the frame number.

3 For the synthetic images this is known to be true, for the real images
this was the intention, and will be true within limits on physical precision
of the translation stage.
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Horixzontal Subpixel Localization for Synthetic Target
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Fig. 12 This image shows the localization in the horizontal direction
of the moving target (black-and-white cross). The solid line indicates
the ground truth position for the target, and the dotted values the sub-
pixel localization estimates. The error is roughly symmetric about the
half-way point between integral pixel values

For analysis of the images, four image regions were
selected as models, and each region was searched in each
image in order to obtain an estimate of its location using
subpixel localization.

4.7.1 Subpixel localization: synthetic images

Figure 12 shows the results of subpixel estimation in the
horizontal direction. The data has been shifted to show the
movement in the range of 0 to 1.* The error in the estimates
ranges from 0.0018 pixels (when the target position is inte-
gral) to a maximum of 0.0886 pixels. The mean error for the
synthetic data is O (when taken over a complete cycle of the
error curve). The RMS (root mean squared) error is found
to be 0.06 pixels. Errors in the localization may be related
to the fact that the interpolation scheme does not constrain
the correlation to have a maximum of 1.0 for the estimated
bi-quadratic surface. They may also be related to the inter-
polation used to generate the synthetic images.

Figure 13 shows the vertical error. Since the target was
not moving vertically, we expect this error to be roughly
constant, and ideally 0. The mean error was —0.0025 pixels,
and the RMS error was 0.0026 pixels. We see a sharp change
in the error around frame 5. To understand this, recall that
the subpixel localization algorithm starts from nine correla-
tion values centred on the best integral estimate of the target
position. At frame 5 we are half-way between pixels, and we

4 In the original image, the horizontal location of the target starts at 318
pixels.
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x 10  Vertical Subpixel Localization for Synthetic Target
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Fig. 13 This image shows the localization in the vertical direction of
the moving target. There was no target movement in this direction,
so ideally the error should be zero. The sudden change in the error at
frame 5 is likely due to the search algorithm switching its (pre-subpixel)
best estimate for the target from one pixel to the next

should expect the best integral estimate to switch from one
pixel to the next at this point.

4.7.2 Subpixel localization: structured images

The data derived from the four image regions tracked through
a real image sequence, of a printed circuit board, was ana-
lyzed in an attempt to gauge the performance of the subpixel
localization algorithm. First, since it was assumed that all
movement in the image sequence was purely in the hori-
zontal direction, any changes in the vertical ordinate of the
estimates should represent noise. In Fig. 14 we see a plot of
the y-ordinates from the four data sets. Each data set has been
adjusted to start at 0 so that they could be plotted together.
The mean error, y is calculated as

|
y= NZ%‘,
i=1

where y; are the adjusted y data. The value obtained is 0.003
pixels. Since each target is defined in the first image in the
sequence, we expect the error to have zero average over the
image sequence, assuming the translation stage is properly
aligned with the camera. The root-mean-square error, defined
as

1 N
5 2 i =92

i=1

was measured to be 0.009 pixels. As expected from looking
at Fig. 14, this error is quite small.

Subpixel Measurement: IMG01-20 (Vertical)
0.025 T T T T T T T

Subpixel Location [pixels]

Frame

Fig. 14 This figure shows the vertical ordinates of the subpixel local-
ization estimates over the entire image sequence. The estimate shown
for frame 0 is that obtained with subpixel localization turned off. Each
data set has been adjusted so that the first element is zero. Data sets 14
are represented by *, +, X and o, respectively

Subpixel Measurement: IMG01-20 (Horizontal)
0.1 T T T T T T T T

Subpixel Location [pixels]
)
N
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Fig. 15 This figure is the same as Fig. 14, except that here the
horizontal ordinate of the subpixel localization estimate has been plot-
ted. Over the 20 frames in the sequence, we see that the image shifts
to the left by about 0.9 pixels. It shows the best-fit line (least-squares
regression) fitting the subpixel location estimates

Unlike the vertical ordinates, the horizontal (x) ordinate
estimates are expected to change. Since the image moves
approximately one pixel to the left over 20 frames, we would
expect a change of about —0.05 pixels/frame. As seen from
the plot in Fig. 15, the slope of these lines is indeed negative,
and a quick estimate shows it to be approximately the right
size. In order to get a more accurate measure of the error, a
linear least-squares regression was performed on the data.

Figure 15 shows the best-fit line from the regression done
assuming the line had zero intercept. The line has a slope
of —0.0356 pixels/frame. The mean error in the data with
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respect to the regression line is —0.0034 pixels, and the RMS
error is 0.09 pixels.

Another meaningful test is to pick out multiple regions in
an image as targets, and then search for them in the same
image. In this case the exact target location is known, and
it is known to be an exact integral value. The subpixel loca-
tion estimates will not return exactly integral values and are
expected to be in error—the question is “how much?”. In
a set of data collected using this approach (15 regions), the
horizontal location error was found to have a mean error of
0.0676 pixels and an RMS error of 0.1264 pixels in the hor-
izontal direction. The corresponding values for the vertical
direction are 0.0094 and 0.0305 pixels, respectively. It must
be mentioned that several of the targets were structure defi-
cient, i.e. they were composed of lines almost exclusively in
one direction, in this case horizontal, leading to some large
error values in the horizontal estimate. The mean and RMS
error values would doubtlessly be lower if these samples were
omitted.

4.8 Results from unstructured scenes

In this section, real-life examples of searching for targets
are presented. In Fig. 16 two examples are shown of images
acquired at a car dealership. In Fig. 16a the technique is
applied to find matches for the front end of the middle car.
Due to perspective distortion, the front-end details of the cars
to both the right and left of centre are noticeably different
from those of the centre car. While the squared correlation
scores drop to 7.0 and 7.5 for the immediate neighbours, and
5.6 and 5.1 (C = 0.714) for the outside cars, this is still well
above the threshold where false negatives appear, namely
C?=0.32.

Fig. 16 Two examples from unstructured images are shown. In (a) the
target was chosen from the centre car, and squared correlation scores
range from 0.51 for the car on the extreme left to 1.0 for the centre car as
expected. This example shows performance in the presence of a moder-
ate amount of perspective distortion. In (b) the target was chosen from
the left wheel, and the right wheel is recovered, despite the presence of
some rotation, as well as differences in the brake and pavement details
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Fig. 17 In (a) we see an example of “Where’s Waldo?”. Our algorithm
easily finds Waldo in the lower-left corner. The target, shown enlarged
in (b), was taken from the instructions at the front of “Where’s Waldo?
The Wonder Book™ [8], while the search region (a subset of which is
shown in (a)), was scanned from later in the book (“The Corridors of
Time” page). The match score was C2 = 0.37, but given the slight
differences in Waldo’s appearance and the dot-screening process used
to print the book, this is quite good for a correlation-based search tech-
nique. [Permission to reproduce these images courtesy Mike Gornall,
Egerton, Kent, England]

A further test was carried out using the car lot image. A
sequence of images was created by taking the original target,
and searching for it in the car image corrupted by adding
independent Gaussian noise with values of o ranging from
1 to 10. The original target instance was correctly identified
in each case, although the correlation score dropped from
1.0 for the noise-free image, to C = 0.988 for 0 = 1 and
C = 0.9822 for o = 10. Since noise in modern CCD cam-
eras is typically less than o = 10, additive Gaussian noise is
not a large problem for the algorithm.

In Fig. 17 we show results for images similar to those
used in [4]. The target (Fig. 17b) was obtained by scan-
ning Waldo’s face from the instruction page at the front of
“Where’s Waldo? The Wonder Book™ [8]. This image was
rescaled by eye to approximately match the size it appears
elsewhere in the book using the GIMP (GNU image manip-
ulation program). The target image was 21 x 40 pixels in
size. The search was performed on a grey-scale version of
the images, and was successful, as shown in the subset of the
search region reproduced in Fig. 17a. The squared correla-
tion score was 0.37 (C = 0.608), which is good consider-
ing the slight changes in the details of Waldo’s face and the
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Table 2 This chart shows a

comparison of the running time Algorithm Time Image size Hardware Reference
of several popular feature SIFT 0.3-04 S 340 x 240 Pentium ITI 700 MHz [34]
detection algorithms
SIFT 03S 640 x 314 Pentium IV 2 GHz [19]
Harris—Affine 1.43S 800 x 640 Pentium IV 2 GHz [25]
Hessian—Affine 2.73 S
MSER 0.66 S
IBR 10.82' S

dot-screening process used to print the book (we do not
expect the dots on the target to align exactly with those in the
recovered instance). Finding Waldo without colour is help-
ful, since in at least one Waldo image all other characters are
dressed just like Waldo, meaning a method such as [4] that
only uses colour information will be confounded. However,
if colour information is helpful, our method can use colour
correlation instead of grey-scale to take advantage of colour
as well as image structure.

4.9 Timing comparison with feature detectors

In order to better describe the performance of our method,
this section provides some timing comparisons with a num-
ber of current feature detectors, including SIFT and some
affine-invariant techniques.

In Table 2 we see a timing comparison of a number of
feature detectors. The first two entries in the table give dif-
ferent reports of SIFT detectors, and both show times of 0.3 s
for small images [34] and medium size images [19], even
though the latter is using a much faster processor than the
first (or than the processors used in this paper). The next
four entries are found in [25], which contains a comparison
of a number of affine-invariant feature detectors. Both the
Harris—Affine and the Hessian—Affine attempt to localize the
feature, and compute an ellipsoidal region describing its scale
and orientation (as opposed to Mikolajczyk and Schmid’s
affine-invariant detector, which iteratively warps the image
around the feature point to create a circular region). IBR
(intensity extrema-based region detector) explores regions
around intensity extrema, using an affine-invariant function
of intensity evaluated along radial lines, and the loci of the
extremums of this function are approximated by an ellipse,
whose scale and orientation define the feature region. MSER
(maximally-stable extremal regions) identifies regions based
on their intensity with respect to a threshold, and finds regions
that are stable over a number of threshold levels [1]. Note that
feature computation times for the non-SIFT features does not
include grouping or matching against known objects. We see
that even SIFT, although it is closest in terms of computation

time to our method, is still somewhat slower that our tech-
nique.

The MSER detector is the only other detector whose speed
comes close to SIFT, albeit for larger images and running
on a faster processor than used in this paper. While these
detectors have similarity/affine invariance that our method
does not provide, our method typically runs faster, and may
prove useful in situations where only translation invariance
is required. One such example is automated visual inspection
tasks where the part under inspection has a known orientation
and distance with respect to the camera.

5 Discussion

In Sect. 4, we see that our method has good performance
in finding targets even in the presence of small amounts of
rotation and scale change.

The algorithm is also very fast even on modest hardware,
making it attractive for machine vision applications in indus-
try. Only two other methods, those of Lowe [18] and Schiele
and Pentland [32] cite similar speeds. Since the latter sys-
tem is designed for detection, and not localization, we will
not consider it further. In comparing our algorithm to that
of [18], we note that it is more complex to implement than
our algorithm, and that its method of finding features through
analysis of feature stability across scale makes it less suitable
for searching for small targets such as that shown in Fig. 17b.
Further, we expect our method to better detect subtle differ-
ences in target instances as it does a pixel-by-pixel compari-
son. As mentioned in Sect. 2, Lowe’s algorithm uses features
that may fail to match under global illumination changes,
causing the search to fail. While it may be possible to cor-
rect this using features such as those in [3], this would incur
considerable computational expense and hinder the speed
of the algorithm. Our algorithm, being based on NGC, is
robust over a wide range of global illumination changes. In
defense of SIFT, it has rotation and scale invariance while our
method does not. This is a great advantage. Finally, our algo-
rithm is applicable to techniques such as those cited by [37,
26], since these techniques perform matching by correlating
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candidate images against a set of templates determined by
PCA. It is possible that a combination of our method with
that of [26] would allow efficient search for rotated targets.
Further, searching for slightly re-scaled versions of the target
across pyramid levels (as described in Sect. 4.6) would allow
our method to find targets across a range of scales.

The speed of the search is largely dependant on the num-
ber of levels in the target pyramid. In the case of the check-
erboard pattern where each square is one pixel, we expect
performance to be very slow since only one level exists in
the pyramid, and the algorithm is reduced to that of ordinary
NGC. Nonetheless, it will still work. In practice such degen-
erate target patterns are the exception and not the rule, and the
system typically works with a 3- or 4-level target pyramid,
resulting in substantially faster operation.

The choice of the accept threshold will have a strong effect
on the results. As this threshold is reduced we would expect
to find a larger number of false positives. Of course, it is
somewhat subjective as to what constitutes a match in the
first place, and this will vary depending on the task for which
the search is used. It must be remembered that lowering the
accept threshold also leads to a larger number of candidate
matches at the top level of the pyramid, and this in turn will
generally lengthen the search time.

6 Conclusion

This paper describes a novel approach to pattern match-
ing based on normalized correlation matching in a pyramid
image representation. Three main contributions are made: (1)
incorporation of NGC search into a multi-scale image repre-
sentation, (2) use of an estimate of the correlation gradient
to perform steepest descent search at each level of the pyra-
mid, and (3) a method for choosing the appropriate pyramid
depth of the model using a worst-case analysis. The result is
afast and robust method for localising target instances within
images. Further, since it is based on correlation search, the
technique is simple and easily combined with PCA tech-
niques for target matching.

The algorithm is limited in that it does not attempt to deal
with variable size or orientation of target instances, although
it is shown to be robust to small variations in either parame-
ter. The level of robustness is dependent on the actual pattern
to be searched for, but this can be included in the worst-case
analysis. The technique is also sensitive to image warping due
to out-of-plane rotations, although again a small amount can
be tolerated. A procedure for allowing size-invariant searches
is outlined. Future work includes further investigation of size,
and even orientation, invariance in the search framework.

Possible applications for this algorithm include machine
inspection of printed circuit boards, finding parts in an indus-
trial setting, and identifying trademarks and copyright mate-

@ Springer

rial on the Internet. In this latter vein the authors have built
a search engine that follows HTML links, download images
and searches them, and records the URLs of any matches
found. Through judicious choice of the accept threshold,
unauthorized modifications to trademarks were also found.
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