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A new framework for phase recovering from a single fringe pattern

with closed fringes is proposed. Our algorithm constructs an un-

wrapped phase from previously computed phases with a simple open

fringes analysis algorithm; twice applied for analyzing horizontal and

vertical oriented fringes, respectively. That reduces the closed fringe

analysis problem to chose the better phase between the two oriented

computed phase and then to estimate the local sign. By propagating

the phase sign (and a DC term) by regions (named here tiles), instead

of a pixelwise phase propagation, we become more robust and faster

the analysis of closed fringe patterns. Additionally, we proposed a

multigrid refinement for improving the final computed phase. c©

2008 Optical Society of America

OCIS codes: 120.2650, 100.3190, 120.3180, 120.5050, Closed Fringe Analysis

1. Introduction

Recent complex experimental setups have made possible to acquire simultane-

ous interferograms with known phase steps that can be analyzed with simple

algorithms. However, hostile industrial environments and the complexity of the

needed experimental setups make necessary to continue the development and the

improvement of algorithms for computing the phase from a single closed fringe
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pattern (FP). In this work we present a robust to noise and computationally effi-

cient algorithm for phase recovery from a single closed FP. Computing the phase

in this situation is still a challenging problem that has attracted the attention of re-

searchers for analyzing transient events as, for instance, mechanical vibrations and

deformations. Thus the development of close FP analysis algorithms has become

a prolific research subject. One can observe two approaches to the problem, one

based on a regularized propagation of the phase (or the sign) which seminar work

is Ref. [1] and other based on operators and analytical transforms theory [2–4].

A popular closed FP analysis method is the named Regularized Phase Tracker

(RPT), it was initially proposed by Servin et al. in Ref. [5] and then improved in

Ref. [6]. Posteriorly, Legarda and Rivera [7] accelerated the Regularized Phase

Tracker convergence by using the linearization strategy reported in Ref. [8] and

introduced the fringe modulation (contrast) factor. Also in [8], Rivera proposed a

phase propagation algorithm that has shown to be robust to noise, see experiments

in Ref. [9]. Recently Estrada et al. [10] proposed a pixelwise local phase compu-

tation by using locally adaptable quadrature filters [11]. In this case, the nonlinear

optimization is achieved by taking as initial condition the previously computed

pixel phase and the neighborhood (window) that surrounds the pixel of interest.

A similar approach was presented by Kemao and Soon [12]. However, differently

to our work, in [12] the vertical and horizontal local frequencies are computed

by using an exhaustive search in a RPT–based cost function and the sign is then

determined by imposing local smoothness. The disadvantage of last procedures is

the computational time required in the pixelwise processing.

Differently to above listed propagation based works, we select a phase between

two vertically and horizontally oriented quadrature filter responses, in particular

we used the simple ones proposed by [13] and [14], although our framework ad-

mits to use more sophisticated (and robust to noise) quadrature filters. In this work

we propose a tile–based approach for computing the phase sign at each tile and a

procedure for assembling a smooth global phase. Such a tile–based approach has

been previously used for phase unwrapping [15], but not, in the best of our knowl-
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edge, for recovering the local sign in closed fringe analysis. Another problem that

has not been addressed is the automatic sign estimation. Then, the main problem

with closed fringes is how to assemble all the tiles for computing a globally con-

sistent result. Our proposal can be seen as a novel framework for analyzing closed

fringe patterns, and consists of the following steps:

1. Define a rectangular tessellation (each component is here named tile) in the

domain of interest. (Subsection 2.A)

2. Compute a fringe orientation measure. (Subsection 2.A)

3. For each tile, compute the response of the best oriented quadrature filter and

unwrap the tile-phase. (Subsection 2.B)

4. Construct a coarse phase by starting at a seed tile and propagating the phase

by computing the adjacent tile-phase sign and DC. (Section 3)

5. Refine (filter) the coarse phase to obtain a final smooth phase. (Section 4)

In this work, we use simple rectangular tessellations for decomposing the do-

main of interest. Quadrature filters (step 3) are implemented with wide-band

quadrature filters and fringe orientation is computed based on the structure ten-

sor [16]. This paper is organized following the above presented framework. In

section 2 we present our notation and propose a fringe orientation measure, based

on the Knutsson structure tensor [16]. Also we review the phase estimation with

two wide-band quadrature filters orthogonally oriented for analyzing horizontal

and vertical fringes, respectively. An advantage of such filters is that they can be

efficiently computed in the frequency domain using one direct and two inverse fast

Fourier transforms. Such wide-band quadrature filters were used by Kreis [14]. Af-

terwards, Judge et al. used the horizontal and vertical wideband quadrature filter

for unwrapping noisy and inconsistent wrapped phase maps [15]. The implemen-

tation of the step 4 of our framework is presented in section 3. Such procedure

is the main contribution of this work. we propose a phase growing mechanism
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that uses the oriented quadrature filter responses and the local fringe properties.

The phase propagation is efficiently performed by a successive growing of a seed

phase. Such a phase growing process is achieved in relatively large spatial regions,

named here tiles. In the low-noise case, the grown tile–based phase can be consid-

ered the final estimation. On the other hand, for the high-noise case, the phase in

the tile region may be corrupted and need to be filtered. The phase refinement step

(step 5) is presented in section 4. Our multigrid refinement procedure is a variant

of the algorithm proposed in Ref. [8] (and extended to phase stepping in Ref [17]).

Such a multigrid strategy accelerates considerably the convergence ratio of the

refinement process. The method performance is demonstrated by experiments in

section 5. Finally our conclusions are given in section 6.

2. Tesellation, Fringe Orientation and Local Phase

In this section we explain the steps 1, 2 and 3. These steps are based on stan-

dard and well known algorithms for computing local orientation in image analysis

and local phase in fringe analysis. We remark that, in this point, we use a sim-

ple approach for demonstrating the framework performance, but our framework

accepts more complex and robust procedures for computing the local orientation

and phase. However, such an investigation is out of the scope of this work.

2.A. Fringe Orientation Measure

The image model for an FP is given by:

I(r) = a(r) + b(r) cos[f(r)] + η(r), r ∈ L; (1)

where r = [x, y]T denotes a pixel position in the regular lattice L, a and b are the

illumination components (background and contrast, respectively), f is the phase

to estimate and η is independent additive noise.

We define a tile as an ordered triad: a window, an orientation vector and an

orientation quality measure. We denote the tile by P = (WP ,OP ,BP) where

W ⊂ L is a rectangular region (window), OP is a vector that indicates the fringe
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local orientation and BP is an orientation confidence measure. We assume a non–

overlapped and complete tessellation:

WP ∩WQ = ∅, ∀P �= Q

and
⋃

P

WP = L.

Although others techniques can be used for computing local orientation [4, 18],

in this work we based our measure on the Knutsson’s structure tensor, T, of each

tile [16, 19–22] :

T
P =

1

♯P

(

∑

r∈P I2
x

∑

r∈P IxIy
∑

r∈P IxIy

∑

r∈P I2
y

)

; (2)

where r ∈ P ⇐⇒ r ∈ WP , ♯P denotes the number of pixels in the region WP

and It
def
= ∂I/∂t for t ∈ {x, y} denote the partial derivatives. The tile orientation

is determined by the eigenvector associated with the largest tensor eigenvalue, i.e.

of T
P :

OP =

[

T
P
11 − T

P
22

2TP
12

]

. (3)

Such an orientation corresponds to the mean orientation of the level sets in the

fringe pattern at the region defined by the tile. In the case of noisy phases, al-

though the orientation is computable, this is not well defined at local minima,

local maxima or saddle points. Therefore we need a measure of how well oriented

the local fringe patterns are. Thus, let λP
1 ≥ λP

2 be the eigenvalues of T
P , then a

large rate between λP
1 and λP

2 indicates a preferred orientation of the fringes along

the first eigenvector OP and λP
1 indicates the significance of such an orientation.

Therefore a local orientation measure of the FP is the tensor’s coherence [21]:

CP =
[

(λP
1 − λP

2 )/(λP
1 + λP

2 )
]2

; that is equivalent to

CP =
(TP

11 − T
P
22)

2 + 4(TP
12)

2

(TP
11

+ TP
22

)2
. (4)
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Now we propose a local quality measure (an orientation confidence measure) by

taking into account the orientation and the significance of the fringes:

BP = λP
1 C

P . (5)

ThereforeB ∈ R
1 states an order relationship of the form≥ between the tiles in the

set of all tiles P. Then we say that P1 is better oriented than P2 iff its orientation

quality measure BP1 is greater than BP2; i.e. P1 ≥ P2 ⇐⇒ BP1 ≥ BP2; similarly

P1 < P2 ⇐⇒ BP1 < BP2. To illustrate the above concepts, we show in Fig. 1(a)

a graphic representation of the tensors associated to each tile; i.e. the level set of

the quadratic form: rT [(λ1 + λ2)I − T]r = c (inertia tensor); for a fixed constant

c, where I denotes the identity matrix. In Figs. 1(b) and 1(c) we show the tensor

coherence map, C, and the quality map, B, respectively.

2.B. Oriented Quadrature Filters

Let Ĩ(u, v) = F{I(x, y)} be the Fourier transformation of the fringe pattern I ,

where (u, v) are the coordinates in the frequency domain. Then, we denote by

φu the wrapped phase computed by applying a quadrature filter to Ĩ that allows

to pass only positive u–frequencies. Similarly, the wrapped phase φv results from

applying a quadrature filter that allows to pass positive v–frequencies. In this work,

for illustration purposes, we use the simple but computational efficient quadrature

filters reported by Macy [13] and Kreis [14]. We remark that the computed local

phase can be improved if more robust to noise quadrature filter banks were used,

for instance Gabor’s Filters [23], Monogenic Filters [9, 24] or Riesz’s transform

[2–4]. Fig. 2 shows the φu and φv phases for two fringe patterns: with open and

closed fringes. One can see the well-known sign ambiguity in the corresponding

phase of the closed fringe pattern. In this work, we present a computationally

efficient method for estimating the true phase, f , from the wrapped phases [φu, φv]

by using the local fringe orientation.

The unwrapped phase φ̃P is computed at each tile P . Given that it is very prob-

able to have open fringe patterns in the relatively small regions defined by the

tiles, then the tile-phase may be computed with standard fringe analysis meth-
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ods [13, 14, 25, 26]. Depending on the local orientation of the fringes, the un-

wrapped phase at each tile are obtained from φu or φv. Therefore, φu is preferred

over φv if the fringes are vertically oriented, as in first column of Fig. 2. Con-

versely, φv is preferred over φu if the fringes are horizontally oriented. Fig. 3(a)

shows in black the preferably vertical-oriented tiles, and in white the horizontal-

oriented tiles. The tile-based phase computation process is defined by:

φ̃P =

{

W−1(φP
u ) if |TP

11| ≥ |TP
22|,

W−1(φP
v ) otherwise;

(6)

where W−1 denotes the unwrapping phase operator. In this work we implement

W−1 by using the half-quadratic convex unwrapping algorithm presented in Ref.

[27]. The unwrapping algorithm converges in few iterations because the tile area

is relatively small and the wrapping order (number of fringes in the tile) is, in

general, small too. Fig. 3(b) shows the unwrapped phase mosaic φ̃ corresponding

to the shown FP in the first column in Fig. 2. Except for the tile-sign and the

constant tile-DC, the phase is correctly estimated in a large region of the PF. The

problematic tiles are those with an undefined fringe orientation, i.e. those with

a small B value. For instance, the tiles allocated at the fringe centers. Then we

propose to choose a seed tile (the one with the largest B value) that could easily

be unwrapped. Afterwards we grow the solution by including the phase tile with

better local orientation. This process is iterated up to all the tiles are included. In

these way we leave for the last poorly oriented tiles (those with small B values).

The details of the propagation procedure are presented in next section.

3. Tile-based phase propagation

3.A. Mathematical description

We define the phase propagation sequence, U , by using the quality map. The prop-

agation sequence is a tiles ordered list U = [P1,P2, . . . ,PN ] such that the ith tile

is the one with the largest quality measure in the neighborhood NUi
of the sublist

Ui = [P1,P2, . . . ,Pi−1]; where the neighborhood is defined as

NU = {Q ∈ P\U : ∃(r, s), s ∈ Q, r ∈ P,P ∈ U, |r − s| = 1}, (7)
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The details of the construction of U are shown in Algorithm 1.

Algorithm 1 Computation of the Propagation List, U .

1: Let P be the set of all the tiles and BP(∀P ∈ P) the quality measure, then

2: Set initially V ← P, U ← [∅] and NU ← V

3: repeat

4: P∗ ← maxP∈NU
BP

5: Concatenate P∗ at least of the sequence: U ← U + [P∗]

6: Update V ← V \{P∗}

7: Update NU according to (7).

8: until V = ∅

We propose a phase propagation–based procedure for computing the tile’s sign

and DC, and thus the PF phase Φ. Such a procedure starts at a seed tile. Our

strategy consists of growing a partial solution by including the neighbor tile–phase

with the best quality measure. The phase growing is determined by the propagation

map, U , (computed with Algorithm 1) and requires of computing the sign, σPb, and

the corresponding DC, δPb, of the tile to be attached, Pb. The tile Pb is attached to

a neighbor tile , denoted here by, Pa, in the partial solution with the largest quality

measure. Then the phase ΦPb is estimated with

ΦPb = σPbφ̃Pb + δPb; (8)

the coupling variables (σPb, δPb) are computed with δPb = δ∗i∗, and σPb = (−1)i∗+1;

where i∗ and δ∗i are the solutions to the optimization problems:

δ∗i = arg min
δ∈R

F̃i(δ) (9)

and

i∗ = arg min
i∈{1,2}

F̃i(δ
∗
i ). (10)

The cost functions F̃i, for i ∈ {1, 2}, penalize the third derivatives of the phase

(second derivatives of the frequency) in the coupling region for the respective

cases in which the sign of the phase is correct or needs to be corrected. Thus, by

minimizing F̃1 with respect to (w.r.t.) δ we prefer couplings with smooth changes
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in the frequency, assuming a correct sign. On the other hand, F̃2 takes into account

a possible sign change. F̃i(δ) can be understood as the discrete version of:

Fi(δ) =

∫

r∈Pa∪Pb

∣

∣

∣

∣

∂3

∂t3
[σi(r)S(r) + δ(r)]

∣

∣

∣

∣

2

dr; (11)

with t ∈ {x, y} defining the partial derivative direction: x for a horizontal coupling

case and y for vertical case; S is the subimage defined by Pa ∪Pb and δ is defined

as

δ(r)
def
=

{

δ, if r ∈ Pb,

0, if r ∈ Pa.
(12)

and

σi(r)
def
=

{

(−1)i+1, if r ∈ Pb,

1, if r ∈ Pa.
(13)

We obtain the discrete version of F1(δ) and F2(δ) by approximating the partial

derivatives with finite differences, see subsection 3.B. In such a case, the support

of the integral (summation) is confined to a coupling region Ω of 6 columns and

m rows (for tiles of m × m pixel size), this is illustrated in Fig. 4. In the case of a

vertical coupling Ω has m columns and 6 rows. It is important to remark that the

solutions δ∗1 and δ∗2 of the optimization problems [i.e. the discrete versions of (11)]

can be efficiently computed with simple closed formulas, see next subsection.

3.B. Implementation Details

The cost functions F1(δ) and F2(δ) [eq. (11)] are approximated by means of finite

differences. Then the integral (summation) support is confined to a coupling region

Ω. If the tiles A and B are east (horizontally) coupled, then Ω is the pixels set in

the subimage s of 6 columns and m rows (for tiles of m × m pixel size). In this

subsection we present the formulas for the east coupling illustrated in Fig. 4. They

are straightforward generalized to the other 3 coupling cases: north, south and

west. In the case of a north and south (vertical) coupling, the region Ω has m

columns and 6 rows.
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In the east coupling case, the tile-wise constant term (DC) and the sign are com-

puted by minimizing the following discrete cost functions:

F̃1(δ) =
m−1
∑

i=0

{

{s[i][0]− 3s[i][1] + 3s[i][2]− (s[i][3] + δ)}2 +

{s[i][1]− 3s[i][2] + 3(s[i][3] + δ) − (s[i][4] + δ)}2 +

{s[i][2]− 3(s[i][3] + δ) + 3(s[i][4] + δ) − (s[i][5] + δ)}2

}

,

(14)

and

F̃2(δ) =

m−1
∑

i=0

{

{s[i][0] − 3s[i][1] + 3s[i][2] + (s[i][3]− δ)}2 +

{s[i][1]− 3s[i][2]− 3(s[i][3]− δ) + (s[i][4]− δ)}2 +

{s[i][2] + 3(s[i][3]− δ) − 3(s[i][4]− δ) + (s[i][5]− δ)}2

}

.

(15)

The cost function F̃1 and F̃2 are the discrete versions of F1 and F2 [Eq. (11)],

respectively. The optimum δ–values, for F̃1 and F̃2 (respectively), can be computed

with the closed formulas:

δ∗1 =

∑m−1

i=0

∑

5

j=0
(−1)j

(

5

j

)

s[i][j]

6m
, (16)

δ∗2 =

∑m−1

i=0

∑

5

j=0
(−1)j+δb

(

5

j

)

s[i][j]

6m
; (17)

where

δb
def
=

{

1, if j > 2,

0, otherwise.
(18)

4. Multigrid phase refinement

The propagated phase, computed with the procedure presented in last section, is

good enough for many practical uses. However, by noise effect some artifacts
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could be introduced. For improving the phase quality, we propose a refinement

postprocess that removes noise and eliminates possible artifacts produced by the

coupling process. Such a refinement process is based on the one proposed by

Rivera in Ref. [8]. That refinement has demonstrated a better behavior than a

simple homogeneous filtering of the phase [17]. In this work, we implement a

multigrid version of the refinement algorithm. Multigrid methods are a particular

case of domain decomposition methods used for accelerating convergence of it-

erative algorithm for solving systems of partial differential equation (PDEs) [28].

Such PDEs are generally obtained as the Euler-Lagrange equations in a variational

framework or, as in our case, from their discrete version. Multigrid methods has

successfully been used for implementing phase unwrapping, robust quadrature fil-

ters and phase filtering procedures [29–31].

Following Ref. [8], we assume that the coupled phase, Φ, is a close approxima-

tion of the real phase, f , the magnitude of the quadrature filter, b̂, approximates

well the FP magnitude and an estimation of the background â is available. Then

the task is to compute a residual phase (correction field), ψ, such that fr = Φr+ψr.

If |ψr| ≪ |Φr| then the Taylor’s first order approximation can be used and, from

model (1), one can define the residual:

E (ψ, r) = I(r) − â(r) − b̂(r)[cosΦ(r) − ψ(r) sinΦ(r)] ≈ 0. (19)

The approximation of a non-linear residual by first order Taylor’s series has

shown to be effective in the solution of many problems of image processing and

computer vision, for instance optical flow computation, see [32] and references

therein. This approximation has also been used in closed fringe analysis [7, 8]

and phase stepping algorithms [17]. Then, according to Ref. [8] the potential to

minimize is given by

U(ψ, ω) =
∑

r∈R

[ω2

rE
2(ψ, r) + µ(1 − ωr)

2 + γψ2(r)] +

λ
∑

<q,r,s>∈R

[Φ(q) + ψ(q) − 2(Φ(r) + ψ(r)) + Φ(s) + ψ(s)]2;

(20)
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where the weights ωr ∈ [0, 1] can be understood as outlier detectors, µ and λ are

parameters that control the outlier detection and the smoothing processes, respec-

tively. The outlier detection mechanism will drop out the data (by weighting them

with ω ≈ 0) and the regularization term will interpolate a smooth solution, that

allows to remove large residuals (product of artifacts). Next, if the interpolated

phase produces a small residual, then in following iterations the data term will

be considered in the computation, see experiments in Section 5. The term ψ2(r),

weighted by γ, was proposed in Ref [17] for stabilizing the refinement process,

and promotes small correction fields. In this work (as in Ref [17]) we set γ = 1.

We understand the refinement process as the application of an operator to the

coarse phase Φ, such an operator R is defined as:

Rµ,λ,IΦ
def
= Φ + ψ∗; (21)

where {ψ∗, ω∗} = arg minψ,ω U(ψ, ω). According to Ref. [8], the refinement op-

erator is applied iteratively, Φn+1 = Rµ,λ,IΦn, until |ψ∗
n| ≈ 0.

Multigrid methods require of defining two more operators: a contraction oper-

ator, D2, and an expansion operator, E2 [28]. The D2 operator combines a down-

sampling process (by a factor of 2) and a smoothing process (implemented as a

simple homogeneous diffusion [33,34]). The expansion operator, E2, combines an

upsampling (by a factor of 2) and an interpolation of the upsampled pixels. In this

work a bilinear interpolation is used.

The multigrid refinement process is following explained. We assume that the

propagated phase, Φ0, (computed with the algorithm proposed in section 3) needs

to be refined, then the first step consists of computing a contracted coarse phase,

Φ1 = D2Φ0. (22)

Then, such a contracted phase is refined and expanded to the original size,

Φ̃0 = E2Rµ,λ/4,D2IΦ1. (23)

Afterwards, such an up-refined phase Φ̃0 is used as initial condition for computing
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the final refined phase, Φ∗
0, at the original dimension:

Φ∗
0 = Rµ,λ,IΦ̃0. (24)

Last two level refinement process [Eqs. (22), (23) and (24)] can be generalized

to multiple levels in a multigrid pyramidal fashion, i.e. for refining the contracted

phase in (23), one can use as initial condition the phase Φ∗
1 that results of a similar

refinement process at an upper level. That leads us to define the refinement process

as a recursive procedure which top level is determined by the highest frequency

in the FP. This refinement procedure is represented in Fig. 5. The first column

shows the unwrapped final refined phase at each label. The top level refined phase

is expanded (upsampled and interpolated) and used as initial (coarse) phase for

the refined in the lower level. For illustration purposes, second and third columns

show the rewrapped phase and the reconstructed FP, respectively. The procedure

details are shown in algorithm 2.

Algorithm 2 Multigrid Phase Refinement (MPR)

Let I the interferogram, Φ a coarse phase, k > 0 the number of levels and (µ, λ) the algorithm

parameters, then MPR procedure is given by

1: procedure REFINE(Φ, I, λ, µ, k)

2: if k > 1 then

3: Φ̂ ← REFINE (D2Φ,D2I, λ/4, µ, k − 1) ⊲ Refinement at an upper level

4: Φ ← E2Φ̂

5: end if

6: Φ ← Rµ,λ,IΦ

7: return Φ

8: end procedure

5. Experiments

In this section we demonstrate the method performance by numerical experiments.

The refinement algorithm parameters were fixed for the whole set of experiments.

The multigrid pyramid level number was k = 3, including the original level and

the parameters were set as the recommended in Ref. [8]: µ = 0.01 and λ = 0.2

(with γ = 1).
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Fig 6 shows a set of fringe patterns (first column) and the respective results com-

puted with our algorithm. Second column shows the computed phases that result

of the phase propagation stage (proposed in section 3) and the third column shows

the final phase refined with the method in section 4. The results demonstrate that

the proposed method (tile–based propagation and refinement) is robust to: noise,

variations in the FP contrast and high variations in the fringes frequency band-

width. In many cases the propagated phase is of good enough quality for practical

uses. However, wide quadrature filters are prone to wrongly estimate the phase

at noisy pixels with high frequencies. Hence the proposed propagation procedure

could correctly recover the phase at the surrounding area of corrupted tile phases

and the multigrid refinement can restore the phase at such problematic sites. This

performance can be noted in the computed propagated and refined phases in rows

1 and 3 of Fig. 6.

Table 1 presents the resume of the computational times corresponding to phases

in Fig. 6. The code was implemented in C and executed in a Pentium IV 2.8 MHz

with 1GByte in RAM. No extra care was taken for implementing a computation-

ally efficient code. The computational performance of our algorithm is favorably

better than the performance of the regularized phase tracker: non-linear with fringe

pattern contrast information (bRPT) and linearized (LRPT) versions. The evalu-

ated bRPT and LRPT correspond to the cost functions (4) and (13) in Ref. [7],

respectively. In particular the modulation component, b̂, for the bRPT algorithms

was estimated in a preprocessing stage using the method in Ref. [35]. This pre-

processing time is not considered in Table 2. The computational times of the bRPT

and LRPT for the FP in Fig. 6 are shown in Table 2 (compare with the propagation

times of our framework in 4th column in Table 1). Our algorithm is faster than the

LRPT and the results are of the quality as those computed with the bRPT algo-

rithm. Fig. 7 shows the rewrapped computed phase of the FP in the 6th row of Fig.

6 computed with the LRPT and bRPT.

Next experiments have the purpose of demonstrating the capabilities of the

multigrid refinement process. In particular, the sensibility to the tile size and to
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large errors in the initial coarse phase. The results in Fig. 8 correspond to the FP

in the third row in Fig. 6, in this case the experiments were done by changing the

tile size. One can observe that if the tile size is chosen too large (e.g. 32 × 32

pixels) then the resulted phase may be corrupted by artifacts product of closed

fringes in tile regions and therefore the local orientation is wrongly computed, see

panel 8a. Such a problems is corrected by selecting a smaller tile size: panels 8b–d.

However, while the tile size is reduced, the computational time of the propagation

stage is increased. So that in all the experiment shown in this work we have used a

tile size equal to 16 × 16 pixels that represents a compromise between the results

quality and the computational time.

The last experiment shown in Fig 9 demonstrates the robustness of the refine-

ment process with respect to large deformations in the coarse initial phase. In

this experiment the coarse initial phase appear in the first row (central column) of

Fig. 6 shown wrapped for illustration purposes. The Fig 9 shows two sequences

(top down): first column shows the weight–map evolution and the second column

shows the refine phase. In the initial iterations the weights show that the Taylor’s

series linearized model produces large residuals. Therefore, small–valued weights

(shown in dark) reduce the contribution to the total cost (20) of large residuals.

Note that the adaptive algorithm reduces systematically the error phase with the

iterations. Such a behavior is observed in the weight-map that finally detects small

residuals. Such a capability of the algorithm for reduction large residual is agree

with the experimental evidence shown in Refs. [7, 8, 17]. We remark that, for il-

lustration purpose, this particular experiment was done using only the lower level

of the pyramidal data; the computational convergence can be accelerated if the

multigrid approach had been used.

6. Conclusions

We have presented a new framework for fast phase recovering from a single fringe

pattern with closed fringes. Our proposal takes advantage of fast algorithms widely

used in last decades for open fringe patterns. In particular, we implemented simple
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quadrature Gabor’s filters in the frequency domain by means of the Fast Fourier

Transform (FFT). We noted that the computed phases with two, horizontal and

vertical, oriented wide bandwidth filters can be used as prime material for recov-

ering the phase from patterns with closed fringe. Alternatively, the local phase

can be computed by weighting the responses of a quadrature filter bank (Gabor’s

Filters [23], Monogenic Filters [9, 24], Riesz’s transform [2–4], etc. In any case,

the local sign need to be corrected for having a global solution. In this paper we

have proposed a general framework for efficiently computing the local sign and

computing the correct global phase.

We presented a novel criterion (based on a local orientation quality measure) for

choosing between the phases computed using horizontally and vertically oriented

quadrature filters. Our criterion uses the Knutsson’s structure tensor for estimating

the fringe orientation and for defining the propagation sequence. Moreover, for

becoming robust the method to noise, we proposed to perform the propagation of

the phase in a new image element named tile. Once an unwrapped tile–phase is

estimated, the fringe analysis problem consists on estimating the tile–phase sign,

σP , and an additive constant term, δP . The final phase quality is improved by

applying a fast multigrid refinement process presented in this work. Our method

has demonstrated to be computationally efficient in both, real and synthetic data.

Moreover, additional computational advantage could be obtained if the inverse

Fourier transforms (required for computing the the quadrature filters responses)

and the tile–based unwrapping were implemented in parallel.
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a) b)

c) d)

Fig. 1. a) Level set of the tensors’ quadratic form overset on the FP, I , of Fig. 2b,

see text. b) Coherency map, C. c) Quality measure map, B. d) Propagation map, U .

21



a) b)

c) d)

e) f)

Fig. 2. a) Fringe Pattern (FP) with open fringes, b) FP with closed fringes, c) and d)

Phases computed with a horizontally oriented quadrature filter, φv. e) and f) Phases

computed with a vertically oriented quadrature filter, φu.
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a) b)

Fig. 3. a) Selection map: in white if the phase is taken from φv and in black if the

phase is taken from φu. b) Unwrapped phase by tiles, φ̃.
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A B

Fig. 4. Illustration of the tiles coupling band.
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Fig. 5. Illustration of the multigrid refinement process.

25



Fig. 6. Recovered phase from single closed fringe patterns with the proposed

method. Fringe pattern, I (first column). Resultant estimated phase of the propa-

gation stage, Φ (middle column). Refined phase, Φ∗, that results of the complete

proposed procedure (last column).
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a) LRPT b) bRPT

Fig. 7. Computed phases (rewrapped for illustration purposes) with RPT algortihms

from the FP in Fig. 6 (row 6). The phases correspond to the propagation step results.
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a) n = 32 b) n = 16

c) n = 8 d) n = 4

Fig. 8. Phase results computed by partitioning the the fringe pattern in tiles with

size of n × n pixels.
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Fig. 9. Top-down: Refinement evolution of the weights and the phase, the phase is

wrapped for illustration purposes in the refinement iterations (see text).
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Table 1. Algorithm performance on real and synthetic fringe patterns.

Fringe pattern Size Quadrature Propagation Refinement Total

Row in Fig. 6 in pixels Filters (secs.) time (secs.) time (secs.) time (secs.)

1 128 × 128 0.040 0.194 0.234 0.468

2 256 × 256 0.170 0.893 0.906 1.969

3 256 × 256 0.170 0.877 0.922 1.969

4 256 × 256 0.170 0.861 0.890 1.921

5 256 × 256 0.170 0.892 0.906 1.968

6 512 × 512 1.090 4.223 3.797 9.110

7 512 × 512 1.090 4.254 3.797 9.141
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Table 2. Propagation time for RPT algorithms, versions: linealized (LRPT) and non–linear

(bRPT).

Fringe pattern LRPT bRPT

Row in Fig. 6 (secs.) (secs.)

1 2.45 4.11

2 3.85 15.96

3 6.79 28.57

4 5.83 27.02

5 8.97 27.16

6 17.98 108.32

7 24.11 107.63
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