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Abstract— A very fast but nevertheless accurate approach
for surface extraction from noisy 3D point clouds is presented.
It consists of two parts, namely a plane fitting and a polygo-
nalization step. Both exploit the sequential nature of 3D data
acquisition on mobile robots in form of range images. For the
plane fitting, this is used to revise the standard mathematical
formulation to an incremental version, which allows a linear
computation. For the polygonalization, the neighborhood rela-
tion in range images is exploited. Experiments are presented
using a time-of-flight range camera in form of a Swissranger
SR-3000. Results include lab scenes as well as data from two
runs of the rescue robot league at the RoboCup German
Open 2007 with 1,414, respectively 2,343 sensor snapshots. The
36·106, respectively 59·106 points from the two point clouds are
reduced to about 14·103, respectively 23·103 planes with only
about 0.2 sec of total computation time per snapshot while the
robot moves along.

I. INTRODUCTION

Mobile robots are increasingly employed in challenging

domains where the environment can not anymore be cap-

tured with standard 2D maps. There is hence an increasing

amount of work on 3D mapping, e.g., [1], [2], [3], [4],

[5], [6], [7]. In addition to the data acquisition problem,

also dubbed 6D-SLAM [1], one particular challenge for

3D mapping is to keep the amount of data reasonable and

to allow efficient processing with well-known techniques,

especially from computational geometry. The pure generation

of precise 3D point clouds is hence not sufficient, but it

is also necessary to extract 3D surface models. This is a

well known and extensively studied problem in computer

graphics [8], [9], [10], [11], [12], [13]. But these techniques

rely on high quality datasets. As pointed out by Hähnel,

Burgard and Thrun in [14], the related approaches of using

local analysis of the normals of trimeshed data are doomed

to fail when using sensors suited for mobile robots. They

suggest to use plane fitting and present an approach based

on a sweeping plane technique where the assumptions about

the environment are exploited.

Here a very fast approach to surface extraction for 3D

maps is presented, which is completely independent from

any environment constraints. It consists of two stages. In

the first, a new plane fitting algorithm is used where the

standard mathematical formulation of the problem is revised

to an incremental version, which is particular fit for range

images. This allows hence efficient region growing, i.e.,

the computation of the next best fit when an additional

data point is considered. Second, the segmented regions are
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polygonalized exploiting the fact that mobile robots capture

the 3D data as a sequence of 3D range images. Results with

real world data are presented. Note that Hähnel, Burgard and

Thrun in [14] already convincingly showed that 3D laser

scanner data is too error-prone for local normal analysis as

used in standard approaches from computer graphics. Here,

we demonstrate our approach with a sensor type with even

significantly higher noise rates than 3D laser scanners.

This is motivated by the fact that 3D laser scanners are

slow in the data acquisition. They are typically based on

2D scanners that are driven with some servo-mechanism to

cover an additional dimension [15][3][16]. This takes in the

order of seconds. Better alternatives with respect to update

frequencies are stereo cameras or time-of-flight cameras like

the Swissranger SR-3000 [17], which is used for the work

presented here. They provide update rates of 25 Hertz and

higher, but at the cost of data, which is significantly more

error prone than a 3D laser scanner. The SR-3000 is mounted

on our rugged robot or rugbot (figure 1), a system for rescue

robotics applications [18], [19].
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Fig. 1. The autonomous version of a Jacobs rugbot - from rugged robot
- with some important onboard sensors, especially the swissranger and the
stereo cam, pointed out.

II. PLANE FITTING AS REGION GROWING

In this section we describe the principle of our algorithm

for identifying regions of points that lie on one plane. We ex-

tend the work presented in [14] by modifying algorithm and

re-formulating the underlying mathematics to an incremental

version, which allows a highly efficient implementation. The

algorithm proceeds as follows. We take a random point p1

and its nearest neighbor p2 from point cloud data PC. This

is our initial set of points - region Π (Algorithm 1, Line 4 -

5). Then we try to extend this region by considering points

in increasing distance from set Π. Now suppose point p′ is

such that the distance between it and the region is less than



the distance δ. Then if the mean square error (MSE) to the

optimal plane Ω of the region Π ∪ p′ is less than ǫ and if

the distance between the new point and the optimal plane Ω
is less than γ, then p′ is added to the current region Π. We

grow this region until no points can be added (Algorithm 1,

Line 6 - 11). Afterwards if the region size is more than θ we

add it to the set of regions R, else we treat those points as

unexplained and add them to the set R′ (Algorithm 1, Line

12 - 16). This is repeated until each point from PC is either

in R or in R′. Note that each data point can be assigned to

several regions as it could lie in the intersection line of two

or more planes.

Our approach for regions identification is not sensitive to

local noise and therefore it is suitable for the data produced

by fast but error-prone 3D range sensors. Actually, the

complexity of the model and sensitivity to noise can be

controlled by using aforementioned parameters (δ, ǫ, γ, θ).

The meaning and impact of parameters is quite intuitive,

however selecting the right parameters can play a crucial

role in the production of a good model. Fortunately, a single

calibration step is sufficient, i.e., the parameters can be tuned

for one sensor on a single point cloud and then they can be

used from then on without adaptation.

Although the algorithm is easy to understand, a naive

implementation of it would lead to a high computational

complexity and unreasonable work time even for small point

clouds of a size around 104. Here, a special incremental

approach is presented, which is discussed later in the im-

plementation section II-A.

Algorithm 1 Regions identification

1: R← ∅
2: R′ ← ∅
3: while ( PC \ (R ∪R′) 6= ∅ ) do
4: select points p1 and p2 in PC \ (R ∪R′)
5: Π← {p1, p2}
6: while ( new point can be found ) do
7: select nearest neighbor p′ with

distance d(Π, p′) < δ
8: if (MSE(Π ∪ {p′}) < ǫ && d(Ω, p′) < γ ) then
9: Π← Π ∪ p′

10: end if
11: end while
12: if ( size(Π) > θ ) then
13: R← R ∪Π
14: else
15: R′ ← R′ ∪Π
16: end if
17: end while

First, some background for finding the optimal plane for a

point set is introduced. Suppose we have a set of 3D points

pi = (xi, yi, zi), i = 1, n and we want to find the best fitting

plane for this data. The optimal plane can not be simply the

regression plane as we have a measurement error in all three

coordinates, therefore the orthogonal distances have to be

considered. So the goal is to minimize the sum of squared

distances to the plane. It can be shown that this is the Eigen

vector problem.

The mass center of the given data is defined as:

m =
1

n
·
n
∑

i=1

pi (1)

Using this, the following matrix C is defined:

C =





Γn(x, x) Γn(x, y) Γn(x, z)
Γn(y, x) Γn(y, y) Γn(y, z)
Γn(z, x) Γn(z, y) Γn(z, z)





here Γn(φ, ψ) =
∑n

i (φi −mφ)(ψi −mψ).
Then the normal vector of the optimal plane is equal to the

Eigen vector n which corresponds to the smallest Eigen value

of the matrix C. Suppose the resulting vector is normalized

then the bias element - the plane is described by nx ·x+ny ·
y+nz ·z+bias = 0 - of the optimal plane can be calculated:

bias = −(nx ·mx + ny ·my + nz ·mz)

Note that the point m - the mass center (equation 1), is on

the optimal plane. The normal vector and the bias element

fully define this plane. To find the best fitting plane we need

to calculate the Eigen values and the Eigen vectors for the

matrix C. This operation is crucial as it has to be performed

whenever a new point is investigated, therefore it should be

efficient. Therefore, the numerically optimized methods of

the GNU Scientific Library (GSL) are used for this purpose

[20].

A. Efficient Implementation

As mentioned before, it would be very time consuming

to use a naive implementation for region growing algorithm

1. Here, we introduce a minimization of the computational

complexity for this.

The important part of the region growing algorithm is the

nearest neighbor selection for a current region (algorithm 1,

line 7), which is performed every time the inner loop starts.

For that we use a priority queue Q with the minimum distance

on the top. Whenever we add a new point to the region we

investigate k unvisited nearest neighbors nbt, t = 1, k of

this point and if distance d(p, nbt) < δ we add nbt to the

priority queue. This allows to extract nearest neighbor for

the region just by calling Q.TOP(). The question is how to

find the k nearest neighbors for a given point. It can be done

quite easy with the assumption that the point cloud data is

produced from one scan. Then all points are aligned in the

grid and can be interpreted as a range image. Then it makes

sense to define the 8 neighbors in a range image as k nearest

neighbors a the given point.

The last optimization is the most significant one. It deals

with the optimal plane calculation. Suppose the matrix C

would be calculated from the start every time a new point

is added to the region. This would mean that one would

need to traverse every point in the current region leading to

a huge overhead. Here a way to an incremental update of the

matrix C is presented, which takes previous calculations into

account. Lets define S(n) to be the sum of n points and m(n)



the mass center of those points. Suppose we want to add a

new point pn+1. Then the update formula for Γn+1(φ, ψ) is:

Γn+1(φ, ψ) = Γn(φ, ψ) + φn+1ψn+1

−mφ(n+ 1)Sψ(n+ 1) +mφ(n)Sψ(n)

here φ, ψ ∈ {x, y, z}. The formula can be derived by simply

calculating the difference Γn+1 − Γn. The mass center can

be easily updated and combined with the updated matrix C,

thus providing all information for fast calculation of the best

fitting plane. The only thing we need to track is the sum of

the points.
The plane mean square error for the given point set can

also be calculated incrementally. Here we need to evaluate
following expression:

MSE(k) =
1

k

k
∑

i=1

(n · pi + d)2

where n is the normal vector of the plane and d is a bias

element. Expanding this equation gives us a form which is

suitable for incremental calculation:

MSE(k) =
1

k

∑

a,b∈{x,y,z}

(

nanb

k
∑

i=1

p
(i)
a p

(i)
b

)

+
2 · d

k

∑

a∈{x,y,z}

naSa(k) + d
2

Here we need to track one more element. This is the
product matrix:

Pa,b =

k
∑

i=1

p
(i)
a p

(i)
b

where a ∈ {x, y, z} and x corresponds to 1, y - 2, z - 3
(Px,y is the same element as P1,2). This matrix can easily

be updated and therefore we have a fast MSE evaluation.

All optimizations described in the previous section lead

to a really fast algorithm. Suppose we have a point cloud

data of size n. All operations inside the loops are performed

in constant time except the nearest neighbor search for the

current region which has logarithmic complexity, as we use a

priority queue. Now assume that there are few points lying in

the intersection of the planes, which means that most of the

points belongs to exactly one region. Then the complexity

of the algorithm can be considered to be O(n · log(n)). The

memory complexity is clearly to be linear - O(n).

III. POLYGONALIZATION

The used time-of-flight camera delivers regular point

clouds in Cartesian coordinates, which are generated from

range images. The latter’s structure, i.e. especially the neigh-

borhood information is however still available. Note that the

same holds for other common 3D range sensors like stereo

cameras. This property is exploited here. The following

polygonization algorithm is hence not applicable to general

point clouds, but it allows faster processing. The input for

the algorithm are the regions found by the plane fitting algo-

rithm. The algorithm works on the 2D coordinates, i.e., the

Fig. 2. Some examples for convex polygons on a grid.

points’ positions in the range image. Once a polygonization

is found, it is transferred to a global 3D coordinate model.

The purpose of the algorithm is to find a set of convex

polygons covering the same area as the set of triangles that

is produced by connecting all triplets of points neighboring in

the distance image. This set is supposed to have a triangular

decomposition with as few triangles as possible.

1) Decomposition into convex polygon: All convex poly-

gons on a grid are a (possibly degenerated) octagon (see

figure 2 for some examples). It can furthermore be observed

that it can be decided whether a polygon is convex when

scanning it row by row. So an algorithm can be deceived,

which reads the input regions row by row and gradually

builds convex polygons, starting a new polygon whenever

the current one would become non-convex. This obviously

has the advantage of linear runtime.

The algorithm: (keep an array of convex polygons P) In

each line i:

• mark all polygons in P unused

• find sections of continuous pixels

• for all sections s:

– is P’s leftmost unused element pl close to s?

– no:

∗ if pl occurs earlier in the line than s, close pl,

remove it from P, try s again with the next

polygon

∗ if s starts before pl, start a new polygon with s,

insert it into P before pl, mark it used

Either way: insert linking polygon if necessary

– else: if s can be added to pl without making it

nonconvex:

add s to pl, mark pl used.

– else: close pl, replace it in P by a new polygon,

marked used, started with the last line in pl if

possible. If not, start with s and insert linking

polygon

– no more unused elements in P: start new polygons

with the remaining sections

• close all left over open polygons

An example iteration of the algorithm is shown in figure 3.

As can be seen, there are a number of things to consider as

compared to the naive implementation:

• When a polygon cannot be continued with a segment

because it would become non-convex, the new polygon

must not be started on the current line, but on the line

before that to keep the region whole.

• In this case, if the old polygon and the segment differ

to much, beginning a polygon with the segments on the



(a) Before processing the last line: three open regions

(b) After processing the last line: two closed regions,
four open ones and one link polygon (dashed)

Fig. 3. An example iteration of the algorithm: The polygons in P are
depicted on top of the pixels which are part of the region of the range
image currently being processed

Fig. 4. Triangulation of convex grid polygons. The numbers on the leftmost
polygon indicate all possible occurring triangles. On the other polygons,
some of these have been left out based on a simple decision tree using at
most two tests for equality per triangle. Note that all vertices are points on
the grid.

previous and on the current line may not be possible. In

this case, a link polygon has to be inserted to keep the

region whole. This does not use the beginning and end

points of the segments (see dashed polygon in figure 3).

• This may also occur when the segment on the current

line was too far away from the nearest polygon to begin

with.

Triangulation of convex polygons on a grid is mostly

trivial. The basic mode of polygonization can be seen in the

leftmost polygon in figure 4. Depending on how degenerated

the octagon is, some of the triangles can be left out (ibid.).

The major advantage of the scan line algorithm is its high

speed. In fact, 64 % of the processing time is used for

projecting the points of the ideal plane of their region and

related pre-processing. Further 30 % are needed for the scan

line algorithm and a mere 6 % for the actual polygonization.

IV. EXPERIMENTS AND RESULTS

Several typical results of the approach on single range

snapshots are shown in figure in figures 5 and 6. The input

point clouds (shown as range images on the left of figure 5)

consist of 25,344 points each. As illustrated in figure 5 on

the right, proper planes are fitted into the data. The planes

are then turned into proper 3D polygons, which are each

shown from two different perspectives in figure 6. As shown

in table I, the complete runtimes for processing are in the

order of 200 msec, i.e., an update rate of 5 Hz is possible.

The approach was also tested with large scale data sets for

3D mapping. The data sets were collected at the RoboCup

(a) Heaped boxes

(b) An arc

(c) A tunnel

(d) Several boxes

Fig. 5. Input point clouds as distance images (left) and their partition into
regions based on 3D plane fitting (right).

German Open 20071 (see figure 7. It encompasses recordings

of all of Rugbot’s sensors, including odometry, gyroscope

and SwissRanger time-of-flight 3D camera. The robot is

capable of state-of-the-art localization [21], which is used to

put the locally extracted polygons into a global 3D model in

a straight forward manner. The resulting global model, which

is of secondary interest for this paper where we concentrate

on the local extraction of surfaces, can be viewed as X3D-

model and as flight through movie on the same website as the

dataset. The test data consists of two parts, each representing

an exploration of the arena lasting roughly between 15 and

20 minutes of robot driving time. The first set contains 1414

point clouds, the second one of 2343. The related global

point clouds consist of 35 million, respectively 59 million

points.

As shown in table II, the approach can generate the surface

1The data is available for download:

http://robotics.jacobs-university.de/datasets/



TABLE II

RESULTS ON REAL WORLD DATA (ALL TIMES IN SECONDS, ALL RESULTS ARE AVERAGES)

Data Region grw. Polygonization Results
Set #PC #points reg./PC time #points ratio time total time

run1 1414 35,836,416 10.58 0.195 1944.29 0.077 0.011 0.217
run2 2343 59,380,992 9.80 0.194 1815.35 0.072 0.011 0.215

(a) 1773 points, 9 regions, compression ratio 0.0700

(b) 1095 points, 6 regions, compression ratio 0.0432

(c) 1152 points, 8 regions, compression ratio 0.0455

(d) 2271 points, 14 regions, compression ratio 0.0896

Fig. 6. The generated 3D polygons viewed from two different angles

TABLE I

PERFORMANCE FOR EXAMPLES SHOWN IN FIGURES 5 AND 6

Sample Compression
ratio

Region
growing
time [s]

Polygonization
time [s]

Total
time [s]

5(a) 0.0700 0.19 0.01 0.21
5(b) 0.0432 0.21 0.02 0.23
5(c) 0.0455 0.19 0.01 0.21
5(d) 0.0896 0.20 0.01 0.23

Fig. 7. The NIST rescue arena at the RoboCup German Open (left) and
two Jacobs robots exploring it (right).
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models with about 5 Hz. The region growing by incremental

plane fitting takes on average only about 200 msec for

each of the clouds with about 25,000 points. The following

polygonalization turns the regions within only about 11

msec into proper surface models. The two datasets include

1414, respectively 2343 range images leading to global point

clouds with 35 million, respectively 59 million points. The

exact performance of the approach depends on the number

of planes in each range image as illustrated in figures 8. The

higher the number of planes in the point cloud, the longer

the runtime; note the linear relation. As shown in figure 9,

the majority of range images consists of about 10 planes.

V. CONCLUSIONS

A fast approach to surface extraction from 3D point clouds

was presented. Instead of processing a global model, the

sequential nature of the 3D data acquisition on mobile robots

is exploited. Concretely, the neighborhood relation of pixels

in range images is used. The data used in the presented work

is delivered by a Swissranger SR-3000 time-of-flight camera,

but the same principle can be applied to range data from

other sensors like stereo cameras. A novel incremental plane

fitting algorithm is used to segment the points of a range

cloud into regions that lie on a common plane. This step

is very fast - only about 200 msec for clouds with about

25,000 points - and it is very robust against the high noise

rates of the SR-3000. The region growing is followed by

a polygonalization, which also exploits the neighborhood

relation and turns the regions within only about 11 msec

into proper surface models. The speed and robustness of

the approach is illustrated with lab scenes and two runs

with a Jacobs robot in the rescue league at the RoboCup

German Open 2007. The datasets include 1414, respectively

2343 range images leading to global point clouds with 35

million, respectively 59 million points, which were reduced

in realtime to surface models with three orders of magnitude

less data.
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