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Abstract The Fast Plasma Investigation (FPI) was developed for flight on the Magneto-

spheric Multiscale (MMS) mission to measure the differential directional flux of magne-

tospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale

plasma dynamics. This increased resolution has been accomplished by placing four dual

180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrome-

ters for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-

of-view deflection, the eight spectrometers for each species together provide 4pi-sr field-of-

view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by

swept electrostatic energy/charge selection over the range from 10 eV/q to 30000 eV/q. The

eight dual spectrometers on each spacecraft are controlled and interrogated by a single block

redundant Instrument Data Processing Unit, which in turn interfaces to the observatory’s In-

strument Suite Central Instrument Data Processor. This paper describes the design of FPI,

its ground and in-flight calibration, its operational concept, and its data products.

Keywords Magnetospheric Multiscale · Magnetic reconnection · Particle instrumentation ·
Electron spectrometer · Ion spectrometer · Instrument characterization and calibration

1 Introduction

1.1 Reconnection Science

NASA’s Magnetospheric Multiscale (MMS) mission is focused on the phenomenon of mag-

netic reconnection occurring in many astrophysical settings, including Earth’s magneto-
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sphere in both the upstream magnetopause and at sites downstream of Earth in the geo-

magnetic tail. Magnetic reconnection is responsible for many dynamic processes on the

sun and other stars, at the interfaces between stellar environments and the local interstel-

lar medium, and at the interfaces between galaxies and the intergalactic medium. Indeed,

wherever disparate magnetic fields are brought together in the presence of plasma, magnetic

reconnection may be active. Magnetic reconnection is also active in magnetized laboratory

plasmas. In these environments, the process impedes the coherent plasma containment pro-

cesses necessary to the achievement of controlled nuclear fusion. Thus, understanding the

processes responsible for the occurrence of magnetic reconnection is of fundamental im-

portance, both to the understanding of our natural universe and to the applied objective of

developing energy generating capacity based on controlled nuclear fusion.

Reconnection is common in many disparate locations, both in space and in terrestrial

laboratories, but it is within Earth’s magnetosphere where it is most feasible to perform

the spatially resolved in situ measurements necessary to understand the process fully. In

situ measurements are not feasible on the solar surface or within astrophysical plasmas.

Nor can definitive, spatially resolved in situ measurements of the properties and dynamics

of reconnecting laboratory plasmas be performed at the present time (scale sizes are too

small).

For these reasons, the MMS mission was conceived to visit reconnection sites in Earth’s

magnetosphere with a contingent of four identically instrumented spacecraft flying in a

close tetrahedral formation. The tetrahedral geometry allows simultaneous determination of

plasma and field properties at four spatial locations, in turn enabling specification of spatial

gradients in the plasma properties.

1.2 Breaking the Spin Rate Limit

The Fast Plasma Investigation (FPI), developed for flight on MMS, is dedicated to the rapid

measurement of the phase space densities of electrons and positive ions within and near sites

in Earth’s magnetosphere where reconnection occurs. The mission requirement is to measure

the 3D ion and electron phase space distributions at 150 ms and 30 ms, respectively. This

high temporal resolution in 3D phase space measurements is unprecedented in the history of

scientific space flight and by far the single biggest driver on the design and implementation

of the experiment.

Our approach has been to distribute many high-speed sensors (eight for each species,

packaged in pairs as ‘dual spectrometers’) around the spacecraft perimeter so that full az-

imuthal sampling need not depend on the spin of the spacecraft as has been common for

magnetospheric missions. This deployment strategy allows measurement of the 3D ion and

electron phase space densities at speeds limited primarily by the stepper speeds of our high

voltage power supplies and the counting statistics possible within the very short accumula-

tion intervals imposed.

An unavoidable consequence of this approach is that the 3D phase space density for either

species at the spacecraft location must be stitched together from the measurements of eight

different spectrometers. Each group of four dual spectrometers includes twelve independent

high voltage power supplies: eight for detector bias and four (each with three outputs) for

energy and angle selection, presenting an inter-calibration challenge that was managed as

part of the instrument development process and will continue to be managed in flight.

Provision of the FPI has been a highly complex endeavor, with a large volume of flight

hardware developed, assembled and tested. Despite the size of the undertaking, we were

able to successfully execute with high quality owing to the innovativeness, resilience and

dedication of the FPI team at all levels.
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1.3 Science Objectives

The overarching objective of the MMS mission is to understand the microphysics of mag-

netic reconnection by determining the kinetic processes occurring in the electron diffusion

region that are responsible for collisionless magnetic reconnection, especially how recon-

nection is initiated.

MMS will address three specific objectives:

• Determine the role played by electron inertial effects and turbulent dissipation in driving

magnetic reconnection in the electron diffusion region.

• Determine the rate of magnetic reconnection and the parameters that control it.

• Determine the role played by ion inertial effects in the physics of magnetic reconnection.

The associated mission-level science and measurement requirements specific to FPI are:

(1) Resolve plasma conditions in the reconnection diffusion region on electron and ion

time scales, including plasma flows, currents, temperatures and heat flow. The neces-

sary time scales are those on which features with electron length scales (∼ few km)

and ion length scales (∼ 200 km) pass over the observatories, not necessarily those

associated with local electron and ion gyro periods or plasma periods. For a typical

magnetopause speed of 50 km/s, these time scales are of the order of 100 ms and 4 s

for electrons and ions, respectively.

(2) Measure the decoupling of ions from the magnetic field across the reconnection region.

This means tracking both the local ion convection velocity (performed by FPI) and the

local ExB plasma convection velocity (performed by the MMS Fields Investigation) to

document their departure from equality with one another.

(3) Measure the contribution of ions to plasma turbulence generation and determine the

resulting ion heating rates.

(4) Resolve thin electron layers and associated currents. The thin current sheets centered

in the electron diffusion region that are responsible for large-scale magnetic reversal

have not been adequately resolved by previous missions. Several such layers are likely

to exist in various forms relevant to reconnection. For example, very thin high speed

current carrying electron flows near the boundary of the reconnection exhaust region

are predicted by simulations (Daughton et al. 2006) and myriad instances of thin elec-

tron current sheets may be found in association with the reconnection region and in

fields of turbulence, perhaps themselves rich with turbulent reconnection sites.

(5) At the smallest scales, measure the decoupling of electrons from the magnetic field

within the electron diffusion regions. Tracking the electron convection velocity and its

comparison with the Fields suite’s measurement of ExB is the crucial observation.

(6) Resolve the causes of phase-space density modifications and energization of energetic

electrons and ions.

(7) Determine ion inflow and outflow velocities and plasma pressure and anisotropy gra-

dients. Accurate determination of boundary orientations and speeds as well as of ion

and electron flows are required to perform these measurements.

(8) Determine mass flow rates across the magnetopause during reconnection. Ion flows

into the magnetosphere can often be assumed to have solar wind-like composition of

96 % protons and > 3.9 % alpha particles. In these cases, accurate determination of

mass flux across the magnetopause into the magnetosphere requires only determination

of corresponding ion number flux. For escaping ion flows or other cases where the

measurement of the composition is essential, the Hot Plasma Composition Analyzer

(HPCA) will contribute this information at a 10 s cadence (Young et al. 2014).
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(9) Determine divergence of energy flux across the reconnection boundary. FPI will pro-

vide measurements of the charged particle differential directional energy flux within

the energy range of 10 eV–30 keV. Integrating this over energy and angle yields the

energy flux vector at a point. The MMS constellation as a whole then provides the

means to derive the local divergence.

(10) Map magnetic topology and resolve structures of the electron and ion diffusion regions.

(11) Resolve reconnection acceleration sites through triangulation using remote measure-

ments of accelerated electrons and ions.

(12) Determine the motion and orientation of boundaries such as the magnetopause and the

magnetotail current sheets.

These scientific measurement requirements drove the specific instrument requirement for the

investigation, including energy range (10 eV–30 keV), energy resolution (20 % or better),

angular resolution (15◦ or better), sensitivity (G > 5 × 10−4 cm2 sr eV/eV for ions and G >

1 × 10−4 cm2 sr eV/eV for electrons), and time resolution (150 ms for ions and 30 ms for

electrons).

In Sect. 2, we describe the approach to the fast plasma measurements required for MMS.

In Sect. 3, we describe the detailed implementation. Elements shared in common for the

ion and electron measurements are described in common, while subsections are provided

for both the electron measurements and the ion measurements, as well as for the associated

command and data processing hardware. Section 4 describes central elements of the instru-

ment calibration, both in the laboratory and in flight, and provides examples and summary

results from the ground calibration. In Sect. 5, we describe the FPI operations, which in-

clude both routine operations and regularly scheduled in-flight calibration operations. The

FPI ground system and various data handling systems and protocols are presented in Sect. 6.

Section 7 provides a summary and set of conclusions.

2 FPI Measurement Approach

2.1 Notes About Geometry Conventions

Following are the conventions used to refer to angles in the context of the spacecraft geom-

etry:

(1) Polar angle θ such that 0◦ ≤ θ ≤ 180◦, opens from the spacecraft +Z axis (nominally

the spin axis)

(2) Azimuth angle, φ, such that 0◦ < φ < 360◦, corresponds to an angle in the spacecraft

X–Y plane, opening from the spacecraft +X axis with a positive right hand rotation

about the spacecraft +Z axis.

Regarding the FPI sensor, we adopt the conventions:

(1) The FPI sensor convention and the spacecraft convention are identical to within a phase

offset �φ, which can be context dependent.

(2) The FPI sensor polar angle is the sensor’s ‘pixel-to-pixel’ imaging dimension, and a FPI

sensor azimuth angle is the sensor’s deflected angle dimension. The sensors are mounted

on the spacecraft so that instrument polar and azimuth angles correspond to spacecraft

polar and azimuth angles.
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Fig. 1 Illustration of basic top

hat plasma spectrometer

geometry—top view and cross

section view. First introduced by

Carlson et al. (1982), who

referred to it as a symmetric

quadrisphere, this top hat ESA

design has been used extensively.

This illustration adapted from his

paper

2.2 The Top Hat Plasma Spectrometer

FPI utilizes top hat electrostatic analyzers (ESAs) to filter for phase space locations and Mi-

cro Channel Plates (MCPs) followed by pulse height discriminators and counters to measure

the differential directional flux of electrons and ions at those phase space locations. The spe-

cific configuration employed was first widely introduced to the heliophysics community by

Carlson et al. (1982), who referred to it as a symmetric quadrisphere, as illustrated in Fig. 1.

The top hat ESA geometry has been used extensively since its introduction.

In its simplest configuration the top hat ESA consists, quoting Carlson et al. (1982),

“of three concentric spherical section elements: an inner hemisphere with radius R1 that is

driven with the voltage VESA, an outer hemisphere with radius R1 + �1 which contains a

circular hole subtending a half-angle Θ , (in upper case here in contrast with Carlson et al.’s

(1982) notation, in order to differentiate it from FPI’s observation polar angle, θ ) and a small

“top cap” section of radius R1 +�1 +�2, which, in conjunction with the outer hemisphere,

defines the cylindrical entrance aperture”.

Application of VESA produces an electric field between the nested hemispheres that guides

an appropriately energetic and directional charged particle between the plates to the annular

exit aperture, below which a position-sensitive detector resides. A stepped VESA sequence is

used to acquire count rates within a band pass centered at a sequence of energy/charge (ǫ)

that is proportional to the applied voltage. The constant of proportionality, kǫ, between the

selected energy/charge and VESA is referred to as the analyzer constant and is determined

by the ratio �1/R1. The relation between the applied ESA voltage and the selected particle

energy is given as

ǫ = ǫ0 + kǫ ∗ VESA (1)
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where ǫ is the selected energy per charge, kǫ is the analyzer constant and ǫ0 is a small

constant offset arising from the electronics.

The hemispherical top hat ESA described is the original and simplest configuration (Carl-

son et al. 1982). A small but important variation involves introduction of a nearly hemi-

spherical toroidal geometry, first introduced by Young et al. (1988). In this case, the selected

energy per charge remains a linear function of applied ESA voltage. The toroidal geometry

places the electrostatic optical focus slightly further downstream along the charged particle

path in the vicinity of the ESA exit aperture and provides a larger sensitivity per unit vol-

ume (Young et al. 1988). In the case of FPI, the Dual Electron Spectrometer (DES) utilizes

the hemispheric geometry and the Dual Ion Spectrometer (DIS) incorporates the toroidal

geometry.

Note that a top hat ESA allows simultaneous observation over an angular range of up to

360◦ in the plane perpendicular to the symmetry axis. Particles arriving from different angles

around the top hat field of view (FOV) are directed to corresponding locations around the

annular exit aperture and can be differentiated using an annular position-sensitive detector

just downstream of the ESA exit aperture. FPI only uses 180◦ of the top hat’s potential 360◦

FOV, and we refer to this angular dimension as the polar angle because it corresponds to the

angle opening from the spacecraft Z-axis consistent with the usage of Carlson et al. (1982)

and Fig. 1.

Further, the nominal FOV of a top hat ESA lies within a band pass centered near the

plane perpendicular to the instrument symmetry axis. FPI employs additional curved elec-

trodes located above and below that plane and upstream of the top hat entrance aperture to

achieve FOVs away from that nominal view plane. This deflected angle is referred to here

as the azimuth angle, consistent with the notion of the spacecraft azimuthal coordinate cor-

responding to spin phase. Previous examples of space plasma instruments which have used

such FOV deflection can be found in Carlson et al. (2001), Young et al. (2007), Burch et al.

(2007) and McComas et al. (2013).

The angular deflection achieved in this manner is typically a linear function of the ratio

of the voltage difference between the two deflecting electrodes (VDEF) and the currently

selected energy per charge as determined by the current value of VESA. That is,

φ = φ0 + kφ ∗ VDEF/ε (2)

where φ is the deflected angle, kφ is the deflection constant and φ0 is a small offset arising

from the electronics. The linear relation expressed in Eq. (2) applies over a limited range of

azimuth, which is easily accommodated in the FPI application.

Ideally, the pixel count rate at any VESA is proportional to 〈j ′〉, the average differential di-

rectional energy flux (units: eV/(cm2 sr s eV)) carried by particles at the aperture and within

the pixel FOV and energy pass bands at the current VDEF and VESA. The constant of propor-

tionality here is referred to as the pixel geometric factor G, which may be approximated and

conceptualized as:

G ≈ Aeff × δΩ × δε/ε (3)

where Aeff is the effective aperture area for the pixel, δΩ is the 2D solid angle band pass

and δε/ε is the band pass in energy/charge. The effective aperture area includes factors such

as the non-unity transmission of screens in the flight path and the non-unity efficiency of

the detection system. Rigorous descriptions of the FPI pixel geometric factor, appropriate

techniques for its estimation using numeric particle ray tracing, its experimental determina-

tion through laboratory calibration, and its use in interpreting space plasma measurements

have been provided by Collinson et al. (2012). For FPI, the Analyzer Constants (kǫ and kφ),
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Fig. 2 Each FPI 180◦ polar

angle top hat is mounted so that

the 180◦ fan spans from

spacecraft spin axis to anti-spin

axis. Each sensor is oriented so

that the 16 pixels (each

nominally 11.25◦ wide) of its

180◦ FOV are viewing radially in

velocity space, spanning the 180◦
pole-to-pole range in the spinning

spacecraft reference frame

Geometric Factors, angular FOV band passes, and energy band passes were predicted with

numeric ray tracing and subsequently measured for every flight instrument using laboratory

calibrations.

2.3 Top Hat Approach for MMS

2.3.1 Half Polar Angle FOV Configuration

The required time resolution, 30 ms (150 ms) for electrons (ions), is by far the most chal-

lenging requirement for FPI. This is 333 (67) times faster than could be achieved simply by

waiting for the spinning spacecraft to rotate through a half spin. Spacecraft spin has typi-

cally set the effective time resolution achievable for 3D plasma measurements in the past.

Notable exceptions include The Electron and Ion Plasma Spectrometer on FAST (Carlson

et al. 2001), the HYDRA instrument on Polar (Scudder et al. 1995) and more recently, the

JADE electron spectrometer on Juno (McComas et al. 2013).

A 180◦ polar angle top hat mounted so that the 180◦ fan spans from spacecraft spin axis

to anti-spin axis, as illustrated in Fig. 2, is the basis for the FPI sensors. The FPI approach

to meeting its high time resolution requirements is to deploy eight 180◦ top hat sensors for

electrons and eight 180◦ top hat sensors for ions around each spacecraft perimeter. Each

sensor is oriented so that the 16 pixels (each nominally 11.25◦ wide) of its 180◦ FOV are

viewing radially in velocity space, spanning the 180◦ pole-to-pole range in the spinning

spacecraft reference frame. The pole-to-pole pixel array and the distribution of eight spec-

trometers around the spacecraft azimuth provide simultaneous sampling in these (polar and

azimuthal) orthogonal angular dimensions.

2.3.2 Dual Spectrometers at 90◦ Spacing

Each of the four spacecraft carries eight FPI electron spectrometers and eight FPI ion spec-

trometers. These are packaged in pairs in back-to-back configuration, as dual spectrometers

for each species: DES and DIS. Four dual spectrometers for each species are placed around

the MMS instrument deck perimeter at 90◦ intervals. For each dual spectrometer, the two

(undeflected) 180◦ FOV fans are separated by 45◦ in azimuth.
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Fig. 3 To meet temporal

requirements, thirty-two

azimuthal fields of view using

eight spectrometers (four dual

spectrometers) are deployed

around each MMS observatory

perimeter. Nominally identical

fields of view are provided for

electrons and for ions. Eight

spectrometers for each species,

each exercising four deflected

fields of view, yields thirty-two

azimuth samples for each species

2.3.3 Deflection for Full View of Sky

Together, the eight spectrometers for each species provide eight undeflected FOVs around

the spacecraft azimuth, or spin plane. This provides 45◦ sampling of the plasma velocity

phase space in spacecraft azimuth, which on its own is insufficient. Therefore, the FPI spec-

trometers also incorporate electrostatic FOV deflection, such that center of the azimuth an-

gle FOV of each spectrometer may be deflected in spacecraft azimuth by up to ±16.875◦.

This is accomplished by applying positive voltage to curved electrodes located just inside

of the sensor entrance apertures (the positive polarity prevents production and emission of

energetic photoelectrons). The deflection electrodes steer incoming particles from selected

azimuth directions toward the top hat aperture. In FPI’s Fast Survey mode, each of the eight

ion and electron spectrometers samples four azimuths, providing a total 32 azimuthal sam-

ples separated by 11.25◦ for each species. This azimuth coverage is illustrated in Fig. 3,

where the azimuth FOV of a set of either DIS or DES are illustrated in the spacecraft refer-

ence frame. The designations 0, 1, 2, 3 refer to deflector zone definitions that will be more

fully described below. The colors in Fig. 3 denote common deflection states in the sensor

reference frame (i.e., down toward MCP plane or up away from MCP plane).

A characteristic of the pole-to-pole FOV is that only the equatorial pixels view an extent

in spacecraft azimuth equal to their intrinsic pixel resolution. Off-equatorial pixels view a

larger range of azimuth due to the cosine effect in the spherical polar coordinate system.

The most poleward viewing pixels view a large swath of azimuth, approaching π radians

for the rectangular pixels with boundaries at polar angles of 0◦ and 180◦. These effects are

accounted for in the results derived from the measurements.

2.4 FPI 3D Plasma Observation Sequence in Fast Survey Mode

The FPI azimuth deflection scheme provides for 32 azimuth × 16 polar phase space angular

samples. The energy sweep provides the radial component of spherical velocity space sam-

pling. Importantly, the 16 spacecraft polar angles are all sampled simultaneously at every
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step using the discrete anode arrays, while the 32 spacecraft azimuth angles are sampled in

four sequential sets of eight.

All spectrometers target the same energy and deflected angle sets in the spacecraft frame

of reference, providing energy coverage from 10 eV to 30 keV and full 2D angle coverage.

The individual spectrometers in each pair are mounted top-to-top and are therefore sampling

opposite angle sets in their own reference frames.

This FPI measurement approach means that the 3D velocity distribution functions for

electrons and ions will each be assembled using eight different spectrometers, four differ-

ent ESA HV stepping supplies, and eight different deflection HV stepping supplies. While

common sets of energies and angles are targeted, the spectrometers and their HV stepping

supplies all have slightly different properties that, in the case of the supplies, will evolve

differently through mission life. To compensate, the effects of the voltage commands used

in targeting these energy and angle sets will be monitored closely and individual HV offsets

will be applied over time for each of the spectrometers. The samples in velocity space have

not only absolute but also relative uncertainties within a single 3D distribution. For this rea-

son, separate sweep table constants are maintained for each dual spectrometer tailored to the

individual HV supplies; these will be maintained and updated as necessary. The appropriate

voltages are initially based on careful laboratory calibrations and will be updated throughout

the life of the mission as determined necessary by inflight calibration activities.

3 FPI Implementation

The FPI consists of four DES, four DIS and a single Instrument Data Processing Unit

(IDPU) on each of the four MMS spacecraft. A simplified block diagram is shown in Fig. 4.

The dual spectrometers receive low voltage power and are controlled by, and pass data to,

the IDPU. The IDPU, in turn, is controlled by the Central Instrument Data Processor (CIDP)

and passes all science and housekeeping data to it for storage and preparation for downlink.

The layout of the instrument deck has one each DES and DIS located next to each other

every 90◦ around the perimeter with their apertures facing radially outward and imaging the

180◦ angular space between the spacecraft ±Z axes into 16 pixels. Figure 5 shows this layout

in the case of all four MMS observatories, with identification of the right-hand spacecraft

coordinate system and the positions of each DES, DIS, and IDPU by flight unit number. The

DES and DIS are fastened to the underside of the deck and the view in Fig. 5 is from the

Fig. 4 Simplified FPI block

diagram for a single MMS

observatory, showing the

relationship between the DES,

DIS, IDPU, and CIDP
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Fig. 5 Layout of FPI elements on each of the four MMS Observatories, with identification of the flight unit

numbers in the right-hand spacecraft coordinate system

underside of the deck looking parallel to the spacecraft +Z axis, which will point nearly

northward in flight, perpendicular to the heliospheric ecliptic plane. From the point-of-view

of Fig. 5, the spacecraft will spin clockwise.

The single IDPU on each spacecraft is also fastened to the underside of the instrument

deck, interior from the perimeter. There is no computer within the FPI either in the dual spec-

trometers or in the IDPU. All functions are executed by external commands under the control

of Field Programmable Gate Arrays (FPGAs) in order to facilitate rapid execution and avoid

the considerable resources/complexities required with inflight computers. This limited some

flexibilities of functionality and shifted some requirements into flight operations planning

and execution. In this implementation, control resides as macros in the payload-level CIDP.

Considering all trades regarding the IDPU in hindsight, the FPI team would have preferred

a CPU in the design if mass/power resources had permitted.

3.1 Performance Requirements

The functional performance requirements to achieve the scientific goals of the MMS mis-

sion are listed in Table 1 together with the measured performance across the thirty-two flight

units. The spectrometers measure 3D (energy + 2D angle) electron or ion differential direc-

tional flux distributions with very high temporal resolution. The fast time sampling yields

high spatial resolution in the presence of fast-moving plasma structures. To robustly cover

the energy and angle ranges at burst cadence, electron and ion fluxes are sampled at 16384

different positions in velocity space, representing 512 (16 polar × 32 azimuth) angular lo-
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Table 1 DES and DIS performance requirements and measured performance

Parameter Requirement Measured performance

Dual Electron Spectrometers (DES)

Instantaneous polar FOV 180◦ 180◦

Polar angle resolution ≤ 15◦ 9–15◦

Azimuth separation 45◦ ± 0.5◦ 45◦ ± 0.5◦

Azimuth FOV deflection Up to ±17◦ > ±17◦

Azimuth FOV width ≤ 11.25 4–11◦

Energy/charge range 0.01–30 keV 0.01–30 keV

Energy/charge width ≤ 20 % 14–20 %

Pixel geometric factor ≥ 1 × 10−4 cm2 sr eV/eV (1–7) × 10−4 cm2 sr eV/eV

3D time resolution 30 ms 30 ms (coarser at 7.5 ms)

Sample integration time 195 µs 195 µs

Avg. HV settling time1 ≤ 39 µs (EOL) 24–27 µs (BOL)

Total HV settling time1 ≤ 5 ms (EOL) 3.1–3.4 ms (BOL)

Dual Ion Spectrometers (DIS)

Instantaneous polar FOV 180◦ 180◦

Polar angle resolution ≤ 15◦ ≤ 15◦

Azimuth separation 45◦ ± 0.5◦ 45◦ ± 0.5◦

Azimuth FOV deflection Up to ±17◦ > ±17◦

Azimuth FOV width ≤ 11.25 4–6.5◦

Energy/charge range 0.01–30 keV 0.01–30 keV

Energy/charge width ≤ 20 % 11–15 %

Pixel geometric factor ≥ 5 × 10−4 cm2 sr eV/eV 1–2 × 10−4 cm2 sr eV/eV

3D time resolution 150 ms 150 ms (coarser at 37.5 ms)

Sample integration time 1 ms 1 ms

1BOL = Beginning of Life; EOL = End of Life.

cations on each of 32 radial E/q shells. Another 32 radial E/q shells are likewise sampled

on alternating parity sweeps, providing 64-step energy coverage at half the burst cadence.

3.2 The FPI Team and Implementation Approach

The FPI was collaboratively developed by institutions in the U.S., Japan and France, with

Goddard Space Flight Center (GSFC) as the Lead Co-Investigator institution providing over-

all leadership for development. GSFC provided development and delivery of the Dual Elec-

tron Spectrometers (DES) and the Instrument Data Processing Units (IDPU), as well as

operation and calibration procedures and associated flight software in the form of CIDP

macros. The Dual Ion Spectrometers (DIS) were developed by the Japanese Meisei Electric

Co., Ltd. under contract to Southwest Research Institute and with the guidance and direction

both from co-Investigators at the Japanese Institute for Aeronautics and Astronautic (ISAS)

and from GSFC. The Low Voltage Power Converters (LVPC) in the DES, DIS and IDPU

were developed by the U.S. Space Power Electronics, Inc. The Southwest Research Institute

developed the DES and DIS High Voltage Power Supplies (HVPS). GSFC procured the DES

MCPs from Photonis USA and performed the preconditioning and testing for flight. The
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Fig. 6 Block diagram of a DxS shows two sensor heads and electronics box. Each sensor head consists of a

set of optics and a detection system comprised of an MCP stack assembly and anode board. The electronics

box consists of a HVPS, a C&DH board and a LVPC

DIS MCPs were procured from Photonis France S.A.S. by the French Institut de Recherche

en Astrophysique et Planetologie (IRAP). IRAP also conditioned, tested and mounted the

DIS MCPs on anode boards provided by Meisei. These MCP/anodes were then re-tested by

IRAP before re-delivery to Meisei for integration into the DIS sensors. The thirty-two DES

and four IDPUs were functionally and environmentally tested and calibrated at GSFC. The

thirty-two DISs were environmentally tested at Mesei and ISAS (including pre- and post-

environmental beam testing) and were calibrated at NASA’s Marshall Space Flight Center

(MSFC). Additional testing was performed by the GSFC FPI team after the initial deliveries,

including live high voltage testing with particle sources late in the MMS observatory-level

thermal vacuum sequence and an extended (1500 hours) thermal vacuum testing of all DIS

and DES units designed to purge potentially thermally compromised HV801 opto-couplers.

GSFC has lead responsibility for FPI Phase E mission activities in close collaboration with

the development partner institutions. The magnitude of the FPI development and deployment

required a distributed effort and the full expertise and support of each of these institutions.

3.3 FPI Dual Spectrometers

The two spectrometer types—DES and DIS—are similar in design. In this section we de-

scribe both, referring to them generically as DxS and then further detailing where their

characteristics differ as appropriate. A DxS block diagram is shown in Fig. 6. Each DxS

consists of two sensors that share a single electronics box; the three elements are fixed to

a common baseplate. Each sensor consists of a set of electrostatic optics and a detection

system.

3.3.1 Optical Design

Deflectors and ESA The optics in each sensor are based on the standard designs described

in Sect. 2 and consist of an E/q analyzer—a truncated hemispherical 180◦ top hat in the

case of DES and a toroidal 180◦ top hat in the case of DIS—and a pair of curved deflection
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Fig. 7 Diagram of DES optics together with a listing of design parameters

Fig. 8 Diagram of DIS optics

plates upstream of each entrance aperture. To construct a 180◦ (spacecraft polar angle) ×
11.25◦ (spacecraft azimuth angle) FOV, the azimuthal angle is deflected from −16.875◦

to +16.875◦ in an “umbrella” fashion with respect to the symmetry axis of each top hat.

That is, the deflected 180◦ FOV is not strictly in the azimuthal plane but lies on a half-

cone, with conical angle equal to the deflection angle. In the case of DES, the deflector

electrodes are short (22.5◦) circular arcs in cross section, with radius of 47.17 mm and

centers located on 25.5 mm radius circles centered on the top hat axis and located 12.2 mm

below (lower deflector) and 85.3 mm above (upper deflector) the center of curvature of the

ESA electrodes. The design ESA gap in the case of DIS is 4.5 mm. Precision machined and

pin-aligned mechanical design achieved the required uniform spectrometer response at all

polar and azimuth view directions across the spectrometer sets. The DES optical design is

illustrated in Fig. 7 and the DIS optical design is illustrated in Fig. 8.
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Fig. 9 Diagram showing simulation of electrical field leakage and resulting surface potential with single and

double aperture grids

Electrostatic Leakage Control The deflector plates of the DES optics are located very

close to the sensor apertures. Without mitigation, the high voltage applied to them would

result in leakage of the generated electric field, negatively impacting performance. To con-

fine the electric field within the sensor head, double metal grids were placed across the

spectrometer apertures to form a Faraday cage. Figure 9 shows static field simulations per-

formed for a single grid with 90 % transmission and for a double grid with 5 mm spacing

and 90 % transmission (each grid). These simulations demonstrated that the field leakage

through the single grid remained higher than the 1 V maximum surface potential require-

ment. To achieve the required reduction, a single grid would need to be so dense it would

have a particle transmission of only 36 %. The figure shows that adding the second grid

5 mm away from the first meets the requirement with a net particle transmission of 81 %.

The effect is a small attenuation of the flow of particles through the spectrometer apertures,

thereby slightly reducing the sensitivity. Double grids are implemented on both DES and the

DIS.

UV Rejection A further design driver was the need to achieve at least 8 (10) orders of

magnitude reduction in the detection of UV flux entering the DES (DIS) sensor, which

corresponds to the detection of less than one count due to UV photons per sample period.

The addition of light trap structures near the entrance apertures was deemed desirable but

discarded as an acceptable performance trade in light of the additional complexity and mass

required for the 64 spectrometers.

A photon ray-tracing study was performed for the DES optics design by GSFC and iter-

ated as the design evolved. The same analysis was repeated on the DIS design with assistance

from ISAS and tests were performed in the ISAS beam chamber to determine the effective-

ness of mitigation strategies. The studies were performed using the commercial “FRED

Optical Engineering Software” that models photon transmission through the detailed me-

chanical design, including surface properties. The top five paths by which photons could

reach the detectors were determined, all involved reflections from the ESA top cap.

Serrations were designed into the DxS top caps and hemispheres (Fig. 9). The design

purposely included serrations over the entire hemisphere to maintain the same average field

throughout the energy analyzer even though optical simulations indicated they were strictly

necessary only for UV rejection towards the upper part of the hemisphere nearest to the

aperture. Figure 10 shows the results of laboratory tests comparing UV sensitivity using
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Fig. 10 DIS UV rejection is enhanced by the addition of serrations on the ESA surfaces

blackened DIS ESA surfaces in the cases of serrated and un-serrated ESA electrodes. The

angle of incidence of an UV Lyman-α source was varied as detector counts in 32 ms accu-

mulation intervals were recorded. In Fig. 10a, the test article had smooth un-serrated sur-

faces, while in Fig. 10b the ESA surfaces (including inner electrode, outer electrode, and

topcap electrode) are serrated. Figure 10a shows that as many as 60 counts in 32 ms were

recorded in the case without serrations, which would yield up to two counts per sample in

flight. Figure 10b demonstrates the UV transmission was reduced by an additional factor

of 20 with the addition of serrations on the electrode surfaces. Adding serrations to the in-

ner hemisphere did not substantially contribute to the improved UV rejection performance

and since their application would increase the complexity of manufacture the DES inner

hemispheres were left smooth. In addition to the serrations, a dark black dendritic finish

with very low reflectivity was applied to the optical components. Laboratory measurements

demonstrated that this combination of serrations and blackening successfully reduced the

UV contamination by more than the required factors.

3.3.2 Detector Assembly

Each of the two sensors in a DxS has its own detector system, comprised of entrance shield

grids, the MCP stack assembly, and 16 discrete anodes, each serviced by an Amtek A121 hy-

brid charge sensitive pre-amplifier/discriminator. Detector system components are mounted

on the anode board—a multi-layer printed circuit board—on which the anode array itself

is formed. Plasma particles passed by the ESA enter the detector assembly through the

grid above the MCP stack. The electrical arrangements for DES and DIS are illustrated in

Figs. 11 and 12, respectively.

MCP Entrance Shield Grids A shield grid is installed above the first stage MCP input

face of all FPI MCP detectors. The intent is to shield the ESA from the electric field of the

biased first stage MCP input face, which would otherwise partially penetrate into the lower

reaches of the ESA resulting in the transmission or suppression of some particles. This is

generally a small effect but can become significant at the lowest energies sampled. The sec-

ond function of the MCP shield grid is to suppress the backscatter of secondary electrons

generated on the input face by the particles transmitted from the ESA. This enhances the

detection efficiency of the MCP stack and likely reduces cross talk, as these secondary elec-

trons can migrate to other locations on the MCP or generate x-rays upon impact onto the

ESA inner electrode.
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Fig. 11 DES detection system along with its interfaces to the C&DH and HVPS as housed in the electronics

box. Only 3 of the 16 discrete channels are shown

Fig. 12 DIS detection system

along with its interfaces to the

C&DH and the HVPS, both of

which are housed in the DIS

electronic box. Only 4 of the

16 discrete channels are shown

In the case of the DIS, the grid is biased in common with the input surface of the MCP

because of concerns about high voltage interactions between the MCP and grid. Ray trac-

ing indicates a somewhat enhanced DIS geometric factor (broadened energy/azimuth angle

response) at lower energies due to this field leakage.

MCP Stack Assemblies The MCP stack amplifies each incoming electron or ion into

a pulse of outgoing electrons, the magnitude of which (number of electrons per pulse) is

variable and characterized with a histogram known as a pulse height distribution. The pulse

height distribution depends strongly on the voltage applied across the MCP stack, the MCPs

that comprise it, the rate per unit area at which it is emitting pulses and both the immediate

(counting rate) and long term history (total counts, contamination) of the MCP stack.

Plasma particles admitted by the ESA and entering the tubes of the top MCP strike the

tube walls, causing emissions of secondary electrons. An electric field in the tube, due to
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Table 2 Characteristics of the

DES and MIS MCP detectors and

assembly

MCP parameter DES value DIS value

Outside radius 44 mm 56 mm

Inside radius n/a 37 mm

Thickness 1.5 mm 1.0 mm

Pore diameter 25 µm 25 µm

Pore center-to-center spacing 32 µm 32 µm

Bias angle 8◦ 8◦

Plate resistance 18.2–36.4 M� 16–30 M�

Plate-to-plate resistance matching 10 % 10 %

Grid transmission 90 % 90 %

MCP-to-grid spacing 2.7 mm 2.7 mm

Inter-MCP spacing 51 µm 51 µm

MCP-to-anode spacing 2.0 mm 2.0 mm

the high voltage applied, accelerates the secondary electrons down the tube. Subsequent im-

pacts of these secondary electrons upon the tube walls create additional secondary electrons,

yielding an avalanche of electrons exiting the bottom of the MCP stack. At appropriate oper-

ating voltages, the electron charge avalanche delivers several million electrons over roughly

a nano-second. The chevron configuration—consisting of two MCPs and so-named for the

V-shape the pores in the two plates form when viewed in cross section—supplies the suffi-

cient gain while also suppressing ion feedback.

The DES and DIS MCPs and assembly have characteristics as listed in Table 2. They

are composed of Photonis’ Long Lifetime Material with Nichrome (80/20) electrodes. The

relatively low resistance of these MCPs maximizes the strip current at a given voltage, in

turn maximizing the count rate possible before the second stage MCP begins to saturate.

The DES MCPs are semi-circular in shape, with only the outer semi-annular region located

directly under the 180◦ ESA exit aperture. The DIS MCPs are annular in shape and extend to

an arc of 220◦ providing uniformity of the electrostatic environment over the 180◦ of active

detector range (Fig. 13). The annular shape conforms to the annular ESA aperture, yielding

a relatively high ratio between the area illuminated by signal ions to the total area of the

MCP, which enhances its ability to respond linearly at high event rates. The DIS chevron

stack resistances range from 32.7 M� to 47.3 MΩ and average 41.4 M�.

In the case of DES, high positive voltage is applied to the bottom of the MCP stack

and the anode. For DIS, high negative voltage is applied to the top of the MCP stack and

the grid, while the anode is held at signal ground. In both cases, the anode is operated at a

voltage more positive than the bottom of the MCP stack in order to enhance collection of

the MCP-generated electrons.

MCP Processing, Selection, and Life Tests The DES MCPs were pre-conditioned by

extracting signal charge to a level of 0.1 C/cm2 in a bake-and-scrub facility at GSFC. A UV

source and a Ni63 source were used for the burn-in process with the bulk of the charge being

extracted by UV illumination. Periodically the UV source was interrupted, leaving only the

Ni63 source to excite the MCPs at lower rates and allowing a measurement of the electron

pulse height distributions. The MCP stack gain was tracked throughout, measured as the

ratio of the first and zeroth integral moments of the pulse height distribution, and width,

estimated as the ratio of the FWHM of the pulse height distributions divided by the gain.

There was no separate bake-out during the conditioning process.
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Fig. 13 DIS MCP mechanical

characteristics

Fig. 14 MCP gain (left axis, black) and count rate (right axis, blue) measured during life test are plotted

versus the estimated extracted charge. The vertical red lines indicate the nominal charge/area removed by the

normal DES MCP scrub process (near 0.1 C/cm2) and the charge/area removed when stable gain is achieved

(near 1.0 C/cm2)

A MCP life test, extracting nearly 20 C/cm2, was performed on two spare stacks DES

flight MCPs. Figure 14 shows a steep degradation in gain over the first C/cm2 of charge

emission but no significant degradation in gain (black, left axis) and count rate (blue, right

axis) over the duration of the test (results were similar for the two stacks). The count rate,

which is a good proxy for the stack efficiency, was derived as the zeroth integral moment

of the pulse height distribution performed between limits and geometry that did not change
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Fig. 15 Test board used to

characterize DIS chevron MCP

stacks. The assembly is shown

with the MCPs mounted and

without the 3-holed test mask

over the life of the test. Thus the pre-conditioning procedure of 0.1 C/cm2 extracted charge

was only partially helpful in bringing the DES MCPs toward their stable gain values in

flight. Based on this, the VMCP will be adjusted at a rate up to 50 V/month during the first

year of the mission after which the gain is expected to stabilize. By the end of the MMS

prime mission, the DES MCP stacks should emit fewer than 5 C/cm2.

The DIS MCP pairs were preconditioned by IRAP. Prior to performing electrical testing,

a proprietary liquid cleaning process was applied to the MCPs. This is the same process

used for previous missions, including Interball Electron Experiment (Sauvaud et al. 1997),

the Solar Wind Electron Analyzer on STEREO (Sauvaud et al. 2007), and the Cluster Ion

Spectrometry experiment on Cluster (Rème et al. 1997). For testing, the DIS MCPs were

mounted on a board equipped with an Amptek A203 amplifier and supporting circuitry.

A mask was set 2 cm above the chevron input face. Three 4 mm diameter holes were made

in this cover, one over the center of the 220◦ annular MCP and two others at 90◦ to either

side, near the ends of the annular segment. A photograph of this test object with the mask

removed is shown in Fig. 15. The stack’s I/V characteristics, at the locations of all three of

the mask holes, were recorded during high voltage ramping and pulse height distributions

and plateau curves were acquired at several stack voltages between 2350 and −2700 V under

exposure to a beam of 700 eV ions. A representative set of these pulse height distributions

is shown in Fig. 16 and a typical plateau curve is presented in Fig. 17. A lifetime test for the

DIS MCPs was deferred to early in Phase E.

DIS MCP efficiency is not expected to degrade with increasing energy/charge as strongly

as for DES. Also, the input faces of the DIS MCP detector assemblies are biased negative

of −2 kV to ensure all ions incident upon the DIS MCP detectors have energies/charge

greater than or equal to 2 kV. Regardless, for both DES and DIS, some differential gain

variation is expected within individual MCP stacks. That is, over time some FOV pixels

will exhibit larger gain degradation than others in proportion to their exposure to impinging

plasma populations. As this differential gain degrades, both signal loss and capacitive cross

talk grows. Operational procedures are in place for monitoring MCP gain, pixel-by-pixel,

adjusting VMCP to minimize temporal gain variation through the mission, and tracking pixel-

level signal loss and crosstalk for incorporation into ground data processing tables.

Discrete Anodes For both DES and DIS, the electron charge cloud from the MCP is col-

lected on 16 discrete anodes located just below the MCP stack, each covering 11.25◦ on
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Fig. 16 Typical pulse height

distributions acquired during DIS

MCP testing at IRAP

Fig. 17 A typical MCP plateau

curve acquired during DIS MCP

testing at IRAP

the anode board. Experimentation with the high fidelity DES ETU determined that optimal

charge cloud transmission could be achieved with a 2.0 mm spacing between the output face

of the second stage MCP and the anode along with installation of a capacitor between that

output face of that MCP and ground. Figure 18a, which corresponds to gaps smaller than 0.5

mm exhibit voltage transients upon emission of signal charge pulses due to capacitive cou-

pling between the anode and the MCP face, Fig. 18b shows results after increasing the gap

from 0.5 mm to 2.0 mm and Fig. 18c shows the results after the additional of the capacitor.

The addition of the capacitor substantially suppresses cross talk.

In addition, capacitive AC coupling is necessary to decouple the high voltage on the

anodes from the input of the A121s. In the case of the DES anodes, the charge pulse is

AC-coupled through a high voltage capacitor into the input of the A121. In DIS, as its input

is at 1.2 V DC, the anodes are DC coupled to ground through high resistance and then

AC coupled to the A121. In both cases, the charge pulses are converted by the A121s into

voltage signals and injected into voltage pulse height discriminators.

Pre-Amplifier/Discriminator Input voltage pulses that exceed the discriminator thresh-

old will result in the generation of countable digital output pulses from the A121, whereas

input voltage pulses that do not exceed threshold will not. For FPI, this threshold is set near
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Fig. 18 Sequential improvement in DES detector performance with changes made to the detector design and

discrimination threshold. (a) MCP to anode gap of 0.5 mm and discriminator threshold of 6.5 × 105 elec-

trons/pulse. The high background shared across pixels is caused by capacitive coupling of voltage transients

on the MCP output surface to the anode array. The higher discrimination threshold reduces the impact of the

effect. (b) MCP to anode gap of 2 mm and discriminator threshold of 6.5×105 electrons/pulse. The increased

gap reduces the uniform high background but still requires a large discrimination threshold. (c) MCP to anode

gap of 2 mm, MCP exit decoupled with capacitor and discriminator threshold of 2.5 × 105 electrons/pulse.

The addition of the capacitor virtually eliminates the cross talk even at the lower discrimination threshold.

This reduction in discrimination threshold levels the pixels’ peak rates, owing to decreased signal loss in

panel (c), as compared with those in panels (a) and (b). The artifacts seen for pixels away from the center of

the polar scan are due to an anode board layout issue that was later corrected
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Fig. 19 Prototypical discriminator threshold is plotted versus applied voltage at A121 Pin 3

4 × 105 electrons/pulse, varies slightly among detector assemblies, and is well below our

typical operating gain, near 2 × 106 electrons per pulse (the pulse generation efficiency of

these systems is typically less than unity). Significantly, the temperature dependence of the

A121 threshold setting minimizes near this threshold value. It is worthwhile to note that

while individual A121 discriminator thresholds are controllable by telecommand, limited

Digital-to-Analog Converter (DAC) resources forced a single threshold being used for the

sixteen channels in each DxS detector system.

The A121 threshold control is a nonlinear function of the voltage applied to its Pin 3

(Vpin-3). Figure 19 shows the typical behavior of this dependence, which varies from 7 ×
104 electrons at 0 V to 4 × 106 electrons near 3 V. Above 2.75 V, the threshold increase

flattens, rendering threshold control less effective above 3 × 106 electrons/pulse. The actual

dependence varies from device to device. This feature would impact the use of threshold

control to measure MCP stack gain, for gains above ∼ 3 × 106 electrons per pulse.

Extensive threshold characterization data for each device guided separation of the flight

devices into groups of 16 with similar threshold-versus-Vpin-3 characteristics. This de-

vice matching significantly reduces pixel-to-pixel threshold variability and a uniformity of

∼ 10 % was achieved within each DxS.

Photographs of the front and backside of typical DES and DIS anode boards are shown in

Figs. 20 and 21. On the front side of the DES anode board are seen the 16 discrete anodes,

10 of 16 Amptek A121 devices and eight of sixteen high voltage capacitors that provide

isolation between the anode and the low voltage components on the board, most importantly

for the A121s. On the DES anode board backside are the other eight high voltage capacitors,

six A121s and an array of resistors that enable drainage of the deposited electrons back into

the high voltage circuit. Also visible on both the front side and backside of the anode board

are protective diodes and other low voltage circuitry required for A121 functionality.

In the case of DIS, the individual anodes are separated by grounded shield traces re-

ducing capacitive crosstalk among the anodes. On the back side, the array of 16 A121

pre-amplifiers are visible, along with a grounded shield frame that makes contact with the
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Fig. 20 Photographs of the DES anode board, front (left) and rear (right)

Fig. 21 Photographs of the DIS anode board and flex cable assembly: (a) front and (b) rear

amplifiers through spring clips located on either side of each A121 device. This grounded

shield frame prevents voltage transients on the device case, which is otherwise connected to

ground through two welded pins. This enhanced grounding ensures that voltage transients

on the case do not cause spurious signals at the device inputs. The same type of grounding

is used in DES.

The A121 hybrid charge sensitive amplifier/discriminator circuit used provides a dead

time independent of recent pulse rate history that is adjustable. For DES, an onboard resis-
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tor provides this adjustment yielding a dead time of 100 ns at a periodic repetition rate of

10 MHz, which is the fastest the A121 stably supports.

3.3.3 Electronics Box

A single electronic box services both sensors in a DxS unit. The electronics box was imple-

mented with its three components—the High Voltage Power Supply (HVPS), the Command

and Data Handling (C&DH) card and the Low Voltage Power Converter (LVPC)—in sepa-

rate boxes, for isolation and ease of test and assembly.

High Voltage Power Supply (HVPS) The DES and DIS HVPS are similar and yet have

important differences. In both cases, the HVPS contains three separate high voltage supplies

co-located in the same enclosure. Two of these supplies provide separate and independent

static high voltage outputs for the two DxS MCP/anode assemblies, positive (up to +3.6 kV)

for DES and negative (down to −3.0 kV) for DIS. The third is a high-speed high voltage

stepping supply with three independently controllable positive polarity fast stepping out-

puts to provide the ESA and deflector voltages. All are controlled by signals from the DxS

C&DH.

For the DES MCP high voltage supplies, individual taps are taken off the HVPS to pro-

vide voltage biases for the MCP/anode assemblies at five distinct points: (1) the shield grid

located above the MCP input tying this to high voltage ground, (2) the MCP input face bi-

ased at 1/12th the commanded anode voltage, (3) the electrically common 1st stage MCP

output face and 2nd stage MCP input face biased at 6/12th the commanded anode voltage,

(4) the 2nd stage output face biased at 11/12th the commanded anode voltage, and (5) the

anode itself biased at the full commanded anode voltage. This is illustrated in the schematic

diagram provided in Fig. 11. As always, the most electrically positive element of the detec-

tion system is the anode itself, operated at positive high voltage in the DES case. The DES

MCP high voltage supply is capable of sourcing 150 µA of current.

For DIS, the MCP bias supplies have two output voltage lines, including a grounded

anode bias line and a negative high voltage detector bias line connected both to the first

stage MCP input face and the grid that sits directly above it. Most of this negative high volt-

age is dropped resistively across the chevron stack. This configuration is illustrated in the

schematic diagram provided in Fig. 12 and utilizes resistive division to provide the voltages

across the MCPs. Care was taken to match the MCP resistances for each chevron stack, the

mean value of the resistance difference is 3 % with the largest difference being 10.2 %. The

rear face of the second stage MCP is biased with a Zener diode at −110 volts. The anode,

again the most electrically positive element of the detection system, is operated at ground

potential through high resistance. This minimizes charge cloud spreading between the MCP

and the anodes and enhances electron collection by the anodes. The DIS MCP/anode sup-

plies are capable of sourcing up to 100 µA of current as required by the relatively low

resistance of the DIS MCPs.

The third high voltage supply in each HVPS is a high-speed stepping supply with three

independently controllable fast stepping outputs with 12-bit value control exercised by the

C&DH. All three stepping outputs are supplied by a common +5.5 kV bulk supply that can

be turned on and off by the C&DH board. One of the outputs is used to control the voltage of

the ESAs in both dual sensor heads. The ESA output is positive in DES and negative in DIS

to provide the energy selection of electrons and ions, respectively. The other two outputs are

positive and each control one of the two deflector plates, DEF0 and DEF1, in each sensor

head. This supply is shared between both sensors of a DxS.
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Fig. 22 Simplified block diagram of the ESA/Deflection high voltage stepping supplies of the DES HVP

Fig. 23 Simplified block diagram of the ESA/Deflection high voltage stepping supplies of the DIS HVPS

The stepping supplies are both dual range, with a low range extending from a fraction of

a Volt to 50 V (60 V) for DES (DIS) and an overlapping high range that extends from ∼ 1 V

to 5 kV (5.8 kV) for DES (DIS).

Simplified block diagrams of the DES and DIS high voltage stepping supplies are shown

in Figs. 22 and 23. The stepping outputs (deflectors and ESA) are supplied by bulk supply

outputs as appropriate. The bulk outputs are based on one converter that can be turned on and

off by the C&DH board. The voltage reaching the stepper outputs is regulated by push-pull
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Fig. 24 DxS low voltage power

converter—power interfaces

Amptek HV801 opto-coupler networks with feedback control loops in the HVPS driving to

the voltage commanded by the C&DH board.

For each DIS (DES) output stepping circuit, the opto-coupler network consists of one

(two in parallel) upper opto-couplers and one (two in parallel) lower opto-couplers. In this

configuration, the voltage across the lower opto-coupler(s) is always equal to the output

voltage and the voltage across the upper opto-coupler(s) is always equal to the relevant bulk

output value minus the output voltage for each deflector. This push-pull configuration is

used for power efficiency and to achieve the required fast stepping capabilities. For DES,

the two opto-couplers in parallel at each location are used because the fast stepping requires

a higher current C&DH Board.

Command and Data Handling (C&DH) Card The C&DH board collects and counts

the digital pulses from the preamplifier/discriminators on the anode boards of both sensor

heads and integrates those counts during a configurable integration time. It further controls

the HVPS and thereby the ESA and deflectors as well as the MCP and the single detection

threshold of the preamplifier/discriminators. Finally, the C&DH measures a variety of low

voltage, high voltage and temperature housekeeping states from the entire dual spectrome-

ter. The C&DH boards in the eight DxS on a single spacecraft communicate with and are

controlled by the FPI IDPU, one per spacecraft.

Low Voltage Power Converter (LVPC) The LVPCs are functionally identical and pro-

vide the bias voltages for the C&DH board, the HVPS and the anode board. It supplies

these voltages by conversion of the instrument bus-voltage received through two diode-

ORed +32 V bus power feeds from the MMS CIDP, routed through the Spectrometer Power

Switch Card (SPSC) of the IDPU, as illustrated in Fig. 24. Each LVPC provides six ground

isolated, tightly regulated, low voltage outputs. These consist of ±5.5 V, +3.3 V, +2.5 V

(not used in DIS) as required by the C&DH and the detection system, and the ±12 V re-

quired by the HVPS. The four low power C&DH voltages are derived from a common

multiple secondary, pulse width modulated, voltage mode controlled bias network, which

provides the required ground isolation and pre-regulation functions. The pre-regulated sec-

ondaries are followed by discrete linear regulator networks, which provide ±1 % line/load

regulation and over-current protection. The higher power HVPS ±12 V outputs are derived

from two independent pulse width modulated and current-mode controlled forward power

stages. The HVPS loads consist of the superposition of a DC level current with a series of

variable-frequency step functions with magnitudes that reflect the sensor stepper programs.

The ±12 V control loop gains are tailored for these dynamic load conditions. The LVPC
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provides differential mode and common mode filtering on both primary and secondary sides

of the 200 KHz switching converter stages. In addition, the LVPC includes an active low

frequency filter on the primary power interface to curtail very low frequency sweep rip-

ple currents from being reflected back out to the spacecraft power bus. Additional features

within the LVPC include input bus in-rush current limiting, input bus under/over voltage

protection, and ±12 V output inhibit control.

3.3.4 Implementation and Assembly

The DxS are implemented in modular fashion and while quite similar, each has important

differences. The main parts are the two sensor heads and the electronic box, all bolted to

an interface plate and interconnected with cabling. In the case of DES, shielded wires from

the stepping supply of the HVPS are connected to a terminal block located between the two

sensor heads. The other side of the terminal block connects to the ESAs and deflector plates

inside the sensor heads, also with shielded high voltage wires. In the case of DIS, there

is no terminal block. Rather, the stepper high voltage cables connect the HVPS directly

to their destinations at the ESA and deflector electrodes. Additionally, MCP high voltage

wires run from the HVPS and enter into the front of the sensor head to be connected to

the MCP and the anode board. All high voltage wires are covered with grounded shields

to reduce EMI from the high voltage supply inside the detection system. Finally, two flex

cables are used to connect the two anode boards with the C&DH board. Flex cables with

ground embedded signal lines are used to enable good transmission of the output pulses from

the A121s on the anode board and to shield all data and command lines from one another to

minimize crosstalk to the detection system inputs and between the detection system outputs.

Careful attention to control the amount of high voltage noise and potential for crosstalk in

the detection systems significantly improved detection performance.

For DES, after optics installation, the sensor heads were installed onto the interface plate.

The MCP stacks were tested and pre-conditioned and the anode boards tested and calibrated.

The MCP stacks were then assembled into their holders and installed on the anode boards

that were installed into the sensor heads. In the case of DIS, anode boards were fabricated,

populated and tested in Japan before sending them to IRAP in France. At IRAP, MCP stacks

were installed onto the anode boards yielding completed detector assemblies. After instal-

lation testing and calibration at IRAP these detector assemblies were sent back to Japan,

where they were installed into the sensor heads.

After connecting the high voltage cables to the detector assemblies, the flex cables be-

tween the anode boards and the C&DH boards were installed. Covers were installed over the

sensor heads and over the bridging between the sensor heads and the electronics box. Side

covers were installed to close out the cabling space between the electronics box, the sensor

heads and the anode boards. Finally for each DxS unit, external heaters, thermistors, and

thermostats as well as a purge system for the sensor heads were installed. After assembly,

each DxS was functionally and environmentally tested and fully calibrated using a charged

particle beam under clean high vacuum.

3.3.5 Functionality of the System

Here we describe the basic DxS function, with special emphasis on the Fast Survey mode

of operation when MMS is in the scientific region of interest. Each DxS is a pair of par-

ticle spectrometers designed to measure differential directional flux in a selected energy
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Fig. 25 Definitions of polar angle pixels, anodes, azimuth zones (colored) and look angles for each DxS.

The spacecraft +Z axis is consistently indicated

range and from selected directions. Particles enter the sensor head aperture through a dou-

ble grid and pass through deflector plates to the ESA; together, these components constitute

the optics of the spectrometer. The deflector plate potential selects the azimuth angle look

direction. The top hat ESA analyzer selects plasma particles that fall within its energy res-

olution, dE/E, centered at an energy equal to the product of the applied voltage and the

ESA Analyzer Constant (kǫ ). Particles of higher energy fly wide and hit the outer ESA wall

and those of lower energy are driven into the inner ESA wall. Particles that pass through the

ESA without impacting a wall are detected and counted.

The combination of MCP gain (typical number of electrons delivered by an event

avalanche) and A121 threshold setting constitutes the operating point for this detector as-

sembly. The detector operating point has a significant impact on detector system perfor-

mance, affecting both signal loss from pulses that do not exceed threshold and system cross

talk owing to capacitive coupling among anodes. Selection and maintenance of a detector as-

sembly operating point therefore represents an important element of both ground and flight

calibration (see Gliese et al. 2015).

For every 16-element discrete anode array the same anode numbering convention (0–15)

is used. Since the two sensors in a DxS are assembled back-to-back, the anode arrays

are flipped with respect to one another in the spacecraft frame of reference. For example,

a plasma particle moving toward the spacecraft from +Z (in the spacecraft reference frame

its vector velocity points in the −Z direction) would detected by DxS Sensor 0 in anode 0,

but be detected in Sensor 1 in anode 15. Therefore an FPI convention is adopted such that

‘anodes’ and ‘pixels’ are defined separately. The anode array is defined in the frame of refer-

ence of the detector system, while the pixel array is defined in the frame of reference of the

DxS which, when mounted on the spacecraft, is identical to the spacecraft frame, to within

an azimuth phase shift. In the example above, the particle would be detected in pixel 0 in

either Sensor 0 or Sensor 1.

These conventions are illustrated in Fig. 25, where definitions of DxS pixels (labeled “P”)

in spacecraft polar coordinates and their relationships to the anode (labeled “A”) arrays of

each sensor head are provided. Figure 25 has three elements: left, center and right. On the

left and right, the pixel arrays associated with DxS sensors 0 and 1 are shown. The sensors
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are shown mounted on the MMS instrument deck. In flight, the +Z-axes of all four MMS

spacecraft are directed northward, perpendicular to the 28◦ inclination orbit plane. In the

spacecraft spherical coordinate system, the relation between spherical polar angle and the

pixel viewing that angle is nominally (to within calibrated differences) identical for all DxS

sensors and is given by:

θ = 5.625 + 11.25 × p (4)

where θ is the spherical polar angle viewed (0–180◦), and p is the pixel number (0–15).

It is important to understand that this is the angle viewed by the pixel, not the polar angle

associated with the detected particles’ vector velocity. The velocity direction of a detected

particle is opposite to the direction viewed by the detecting pixel.

The center panel of Fig. 25 illustrates a DxS and its eight azimuthal FOVs (Zones 0–3 for

each of two heads) as seen when viewing along the spacecraft +Z direction. Each DxS sen-

sor deflects its instantaneous spacecraft azimuth FOV center from −16.875◦ to +16.875◦

in four zones centered on −16.875◦, −5.625◦, +5.625◦ and +16.875◦. The azimuth look

angle and the zone numbers are defined to increase in the direction of spacecraft spin. How-

ever, owing to the “umbrella” shape of the deflected fan of pixels, the pixels from adjacent

sensors tend to interleave with each other as polar angle progresses toward the poles.

The deflection outputs are strictly positive in polarity so as not to cause energetic sec-

ondary or photoelectron emission from the DxS deflection electrodes, which have direct

view to the external environment through grounded aperture screens. Each deflection output

controls a single deflector plate in each DxS sensor head. In both sensors of a DxS, one

of the two deflection outputs is used to achieve positive angular deflection, looking toward

increasing spin phase, and the other deflection output is used to achieve negative angular

deflection, looking toward decreasing spin phase.

To accomplish measurements at all 32 required energies and 4 azimuth zones with the

required temporal resolution of 30 ms (DES) or 150 ms (DIS), the DxS ESA voltage and

deflector voltages are stepped rapidly as illustrated in Fig. 26, where nominal maximum and

minimum energy target centers are shown (actuals for DES or DIS may be slightly different).

In 7.5 ms (DES) or 37.5 ms (DIS), the HVPS ESA stepper output is stepped through a

progression of 32 logarithmically spaced voltage steps (say the even steps, 0,2, . . . ,60,62

of a 64-step sequence) sampling electrons (DES) or ions (DIS) from the low to the high end

of the required E/q range. Simultaneously and in synchronization with the ESA stepping,

the HVPS DEF1/0 (DES/DIS) stepper output is stepped through 32 voltage steps of its own,

as required to maintain a constant Zone-0 deflection centered near −16.875◦ for both sensor

heads at each of the 32 energies/charge sampled in the ESA sequence. This is achieved by

stepping just the HVPS DEF1/0 (DES/DIS) stepper output. The HVPS DEF0/1 (DES/DIS)

stepper output is held near ground through this portion of the sequence. The DEF1 stepper

output is wired to the lower deflection plate in sensor-0 and to the upper deflection plate in

sensor-1 whereas the DEF0 stepper output is wired to the upper deflection plate in sensor-0

and to the lower deflection plate in sensor-1 in both DES and DIS.

This process first provides samples in both DxS sensors at 32 energies/charge within az-

imuth angle Zone-0, centered at −16.875◦. The process is then repeated, hitting the same

(even) energy/charge steps on a downward ESA stepper sweep, again using only the DEF1/0

(DES/DIS) stepper output to sample azimuth angles within Zone-1, near −5.625◦. Whereas

the target voltages on this downward ESA stepper sequence are identical to those on the up-

ward ESA sequence just executed, the target voltages on the corresponding Zone-1 DEF1/0

(DES/DIS) stepper sequence are smaller at any E/q by approximately a factor of 3, than
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Fig. 26 Control of the ESA and deflector plates in the DxS to achieve measurements across all required

electron energies and azimuth look angles (zones). Note that the bounding energies shown at top represent

band pass centers such that the lowermost and uppermost band pass edges correspond to 10 eV and 30 keV

(the DES example with dE/E ∼ 0.17 is used for illustration)

those in the previous Zone-0 sequence, corresponding to the 3 times smaller deflection re-

quired for Zone-1 (−5.625◦) compared to that required for Zone-0 (−16.875◦). Again, while

sampling Zone-1, the HVPS DEF0/1 (DES/DIS) stepper output is held near ground.

Having sampled Zone-0 and Zone-1 at all 32 even energy steps, a similar up/down even

E/q step sequence is executed to sample fluxes within Zone-2 (+5.625◦, upward E/q

sweep) and then within Zone-3 (+16.875◦, downward E/q sweep). For Zones 2 and 3,

the HVPS DEF0/1 (DES/DIS) stepper is activated, stepping synchronously with the HVPS

ESA stepper while the HVPS DEF1/0 (DES/DIS) stepper output is held near ground. The

four energy sweeps described above (upward, even E/q , Zone-0; downward, even E/q ,

Zone-1; upward, even E/q , Zone-2; downward, even E/q , Zone-3) require 128 distinct

stepper states—and 30 ms (DES) or 150 ms (DIS) to execute—providing the required DxS

time resolution but at one-half the E/q sampling density that our 64-step logarithmic sweep

provides. Therefore, the entire 128-step sequence is then repeated, utilizing the odd E/q

steps from the 64-step sweep. Thus the complete DxS energy angle sequence is comprised

of 256 states that are repeatedly executed every 60 ms for DES and 300 ms for DIS.

DxS deflector voltages are always positive and only one deflector in each sensor head

is energized at any time, depending upon the algebraic sign of αcenter . For positive values

of αcenter (Zones 2 and 3, looking toward increasing spacecraft spin phase), the leading

deflectors (upper for sensor head 0 and lower for sensor head 1) are energized for DES

through the DEF0 supply output and the trailing deflectors (lower for sensor head 0 and

upper for sensor head 1) are energized in the case of DIS through the DEF1 supply output.
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For negative values of αcenter (Zones 0 and 1, looking toward decreasing spacecraft spin

phase), the trailing (lower for sensor head 0 and upper for sensor head 1) deflectors are

energized for DES through the DEF1 supply output and the leading deflectors (upper for

sensor head 0 and lower for sensor head 1) are energized in the case of DIS through the

DEF0 supply output. In every case, the deflector electrode that is not energized is held at

ground potential. Based on the defined 32 energy steps (up/down for first two angles then

up/down for the next two angles) and the interleaved 32 energy steps (again, up/down for the

first two angles then up/down for the next two angles) two stepper tables, each comprised

of 128 states, are constructed containing all the required ESA, DEF0 and DEF1 voltages to

be set in succession to achieve execution of the complete stepping cycle and resulting in the

output voltages shown in Fig. 26. In this manner a full but somewhat coarse energy/angle

array is sampled every 30 ms (DES) or 150 ms (DIS) and filled in to provide more dense

energy sampling every 60 ms (DES) or 300 ms (DIS).

The average time allocated between stepper transitions is 234 µs (30 ms/128 steps) for

DES and 1172 µs (150 ms/128 steps) for DIS. These durations are apportioned between

HVPS settling time (both ESA and DEF) and count integration time. The count integration

times for each species are the same for every step in the sequence: 195 µs for DES and

1000 µs for DIS. The settling times are apportioned across the sweeps based on detailed

characterization of the dynamic behavior of each high voltage stepper supply.

Command and Data Handling The C&DH systems are responsible for communication

with the FPI IDPU, control and monitoring of the HVPS and LVPC, collection and transmis-

sion of pulse data from the detector assemblies, control of pulse detection thresholds, count-

ing of pulses and control of pulse count integration time, control of stimulus test sources for

the detection system, and collection and transmission of monitored housekeeping data.

Each C&DH board executes commands received from the IDPU in a command-response

format. The IDPU operates in one of two basic modes of operation. When the FPI suite

operates in engineering, calibration, or safe modes, it issues single independent commands

to the C&DH. When the suite is operating in Fast or Slow Survey mode, the IDPU issues a

three-step command and data pipelined process to each C&DH. Upon receipt of appropriate

commands from the IDPU, the C&DH board enables the detector output pulse counters,

waits for a pre-programmed period of time (integration period), disables the counters, copies

the data in the counters, resets the counters, and transmits the counter data to the IDPU.

During this process, it also writes command data to the stepping HVPSs, transfers data from

the housekeeping system to the IDPU for the low voltages, for temperatures monitored in

the detection system, HVPS and LVPC, and for the MCP voltages and currents, and sends

channel selection information to the housekeeping analog multiplexer.

Fast High Voltage Stepping, Accuracy and Settling Time Requirements Tables of

stepper voltage commands resident in the IDPU are used for controlling the stepping out-

put voltages through the C&DH. These tables can be revised and uploaded as necessary

throughout the mission. There are several error sources inherent in the stepping process that

may affect the values of the stepper voltages and therefore the locations in velocity space

actually sampled. These include incomplete dynamic transition and settling, offsets in the

C&DH digital-to-analog converters (DACs), and offsets in the HVPS itself. These offsets

can be important at the low end of both the low range and high range of the stepper sup-

plies. These vary from instrument to instrument and over temperature and will also vary in

an unknown manner over time due to radiation impact. Therefore the IDPU accommodates

separate revisable stepper tables for each DES and DIS.



Fast Plasma Investigation for Magnetospheric Multiscale 363

Fig. 27 HVPS stepping output voltages in the DxS HVPS stepping control circuit under flight operation

For DES, the end-to-end offsets (C&DH and HVPS) were calibrated over temperature

for each individual stepping supply output. The calibrations were used to develop distinct

stepper tables for every DES at different temperatures in 10° C increments. Further, in-flight

operational sequences were designed to track these offsets so that the flight stepping tables

can be modified as necessary through the life of the mission. Stepper offset errors are thus

estimated to be limited to less than 3 %. This is the worst case and is realized at the bottom

end of the stepper supply’s low and high ranges near 10 eV and 300 eV, where the offsets

will be largest as a fraction of nominal output voltage.

The precision of the end-to-end stepper offset characterization over temperature that was

achieved for the DES supplies was not matched in the case of the DIS supplies, with the

exception of DIS flight units 11 and 12, which were fully and precisely characterized over

temperature. That information together with calibration measurements of the DIS HVPS

units and knowledge of the C&DH digital to analog converters (DACs) based on DES mea-

surements (same part was used) were used to calculate approximate end-to-end calibration

factors for DIS. With this method, the offset errors in the DIS stepper voltages are limited

to 5 % and mainly localized to the bottom end of the low and high ranges, most significant

near 10 eV and 300 eV.

Stepper timing is a critical consideration for the DxS high voltage stepping supplies, with

transition magnitudes sometimes in excess of 1000 volts. The DxS stepper output voltages

during Fast Survey mode are shown in Fig. 27, which shows two complete 128-step low

density sweeps (even E/q values followed by odd E/q values). These voltage stepping

curves represent the actual target voltage values in the stepping scheme shown in Fig. 26.

The average duration of each step in the DES (DIS) application is 234 (1172) µs. Each
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Fig. 28 Dynamic characteristics of model DES stepper voltage transitions

complete low density 128-step DES (DIS) sweep lasts 30 (150) ms. During Fast Survey

voltage stepping, it is required for each step that the output values have transitioned and

settled sufficiently to ensure acceptably small error in the energy/charge and deflection angle

set points during counts integration. For DES (DIS), we have adopted 195 (1000) µs per step

as the integration interval, leaving on average 39 (172) µs/step, or 4992 (22016) µs/sweep

budgeted for transition and settling. The stepper table enables the available transition and

settling budget to be arbitrarily distributed among the 128 steps. This allocation is encoded

in the IDPU-resident stepping table.

We have imposed the requirement that the Root Mean Square (RMS) error between tar-

get voltage and real voltage resulting from step transitions shall not exceed 3 % of the target

voltage throughout the integration interval during which counts are collected. We have per-

formed detailed characterization of the dynamic performance of the DES steppers, including

all flight voltage steps and low/high range transitions. Figure 28 shows prototypical cases of

a voltage transition that is under damped (blue line), critically damped (red line) and over

damped (green line). The over damped case illustrates the limiting acceptable case where

the RMS error through the integration interval is 3 %. Modeling the real stepper transitions

in this way, we have performed fits of the real stepper behavior at each transition, includ-

ing range change transitions, to one of these instances, thereby parameterizing the steppers’

detailed dynamic behavior in each case. We have apportioned the DES settling times accord-

ingly so that our standard DES flight stepper program achieves less than 2 % RMS voltage

error on all steps, providing margin against evolution of the dynamic stepper performance

under the influence of aging and radiation as the MMS mission progresses.

3.3.6 Ray Tracing Approach and Tools

The DES and DIS optics designs were subjected to detailed ray tracing of particle paths,

both to guide its design and to compute the anticipated performance and its response to
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impulse sources that are mono-energetic and mono-directional as for laboratory calibration

beams, and also for ensembles of particles widely distributed in angle and energy as is the

case for the natural plasma populations to be observed in space.

The performance of the DES was calculated using a SIMION based Monte Carlo simula-

tion toolkit that has accurately described the response of several previous space plasma ana-

lyzers, including the DES Engineering Test Unit (ETU) (Collinson et al. 2012), the Plasma

Electron And Current Experiment (PEACE) on Cluster, and the electron spectrometers of

the Analyzer of Space Plasma and EneRgetic Atoms (ASPERA) on the Mars Express and

Venus Express missions (Collinson et al. 2009).

The performance of the DIS was calculated using an ISAS electrostatic field model-

ing program that has accurately predicted the response of several space plasma analyzers,

including the DIS ETU, the MAgnetic field and Plasma experiment—Plasma energy An-

gle and Composition Experiment sensors on the Kaguya lunar mission (Saito et al. 2010;

Yokota et al. 2005), and the Mercury Plasma Particle Experiment, a part of the Bepi-

Colombo mission (Delcourt et al. 2009).

In both cases, electrostatic fields for each electrode were calculated by solving the

Laplace equation with boundary conditions. Models of the DES and DIS optics were built

from the mechanical drawings, using cylindrical symmetry to maximize spatial resolution.

One million or more particle trajectories were computed for each deflector setting, with

initial conditions randomized.

Representative trajectories and energy/angle band pass distributions for DES are shown

in Figs. 29, 30 and 31 for DIS. Three deflection states are illustrated, together with the

corresponding response of the analyzer in energy-angle space, illustrating that deflection has

an asymmetric effect upon the response, as expected given the axial up-down asymmetry of

the optics. The significant change in the shape of the energy/angle band pass is characterized

by (1) a significant variation in the width of the deflected angle band pass, (2) small or

negligible change in the width of E/q band pass and (3) small or negligible change in

volume, or total counts in the distribution.

DES Figure 30 shows the incidence pattern of particles passing through the DES optics to

the detector input surface in the case of an input beam that is broad in energy and angle. The

beam becomes somewhat localized upon a single detector pixel but does not overexpose the

pixel. When using a mono-directional and mono-energetic beam, the beam spot becomes

smaller in both radius and azimuth on the pixel, leading to premature saturation of the pixel

count rate relative to what occurs with the widely distributed excitation. Figure 32 summa-

rizes key aspects of the DES predicted optics response and their variation with deflected

angle. The upper panel (Fig. 32a) shows the variation in the predicted width of the DES

azimuth band pass (�φ, FWHM) with deflection angle. �φ is 6.7◦ for the undeflected case,

and varies between 4.2◦ at −19.3◦ deflection to 8.7◦ at +19◦ deflection. This variation in

azimuth resolution is a known feature of electrostatic deflection plates (Collinson 2010).

DIS Figure 33 shows the incidence pattern on the MCP detector surface of particles pass-

ing through the DIS optics in the case of an input population near 8 keV that is broad in

energy/charge and azimuth angle, but narrow in the polar angle. This beam is incident onto

a somewhat radially localized asymmetric footprint on the detector (about 4 mm FWHM), in

spite of its broadness in energy/charge and deflected angle. This spot size varies with energy

in the DIS design, as is discussed further below.

Figure 34 summarizes key aspects of the predicted DIS optics response near 8 keV/q.

Not shown in Fig. 33 or 34 is the variation of the peak of the deflected angle bandpass (φ0)
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Fig. 29 Example of DES ray-trace simulation results of the energy and azimuth angle response

with voltage applied to the deflector plates. The center of this bandpass is, however, a highly

linear and repeatable function of the ratio of applied deflector voltage to ESA voltage. The

response of both the upper and lower deflector plates is nearly invariant with energy/charge.

Figure 35a shows the variation of the deflected angular resolution (�φ, FWHM) with deflec-

tion angle. �φ is 4.9◦ for the undeflected case, and varies between 2.8◦ at −16.9◦ deflection

to 5.7◦ at +17.1◦ deflection.

Figures 32b and 34b show the DES and DIS deflection angle variation in analyzer con-

stant (kǫ), the constant of proportionality between the peak of the accepted energy/charge

bandpass of the analyzer (E/q), and the voltage applied to the ESA, where E/q = kǫV .

Despite the variations in the shape of the predicted energy-angle response, the simulations

predict that the analyzer constant is nearly constant across the range of deflections to be used

in flight, with a variation of less then 5 % for DES and less than 1 % for DIS.

Figures 32c and 34c show the DES and DIS variation in the width of the E/q band pass,

defined as the FWHM of the E/q band pass divided by the E/q location of the band pass
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Fig. 30 Ray-trace simulations of

the DES optics showing the

electron spot size on the surface

of the MCP generated by the

optics under illumination by an

isotropic source

peak. For DES the width of the predicted undeflected energy/charge band pass is 17.4 %

and it falls off to 15 % at higher deflection angles. For DIS, the nominal undeflected en-

ergy/charge resolution is 11.8 %, falling off to 11.6 % at higher deflection angles as the

plates impinge slightly on the energy/charge bandpass.

Figures 32d and 34d show the predicted variations in Geometric Factor with deflection

angle. The Geometric Factor quantifies DxS sensitivity and is calculated as the product of

the geometric aperture area, the width of the polar angle response, the size of the coupled

energy and azimuth angle response provided by the optics, the transmission afforded by the

grids along the optics path, and the detection efficiency. It is used to perform conversion

between counts on the detector to average phase space density within the energy/angle band

pass. Computer simulations can only determine the raw physical geometric factor resulting

from the optics. Other effects such as detection efficiencies and grid transparency must be

estimated. The solid line in the figures is the raw output of the ray tracing simulation and

shows this physical geometric factor to be near 1 × 10−3 cm2 for DIS. Grid transparency

and detector efficiency have been estimated for two energies (20 eV, dashed line and 30 keV,

dotted line) to plot a prediction of the actual Geometric Factor. Full details using laboratory

data from the ETU can be found in Collinson et al. (2012).

An additional ray tracing study was performed at GSFC using the SIMION program in

order to study the impact of leakage of the electric field produced by the unshielded top of

the MCP detector assembly (held near −2 kV) into the lower portion of the ESA. Though

strongly attenuated, the attractive potential of the MCP assembly penetrates a short distance

into the ESA with the result that some particles pass through that otherwise would not. Like

the first ray tracing study, the subsequent SIMION study illuminated the DIS model aperture

with ions that have broad spatial distribution (fill the aperture) and ranges of energies/charge

and azimuth angles that are large compared with the instrument band passes but a range of

polar angles that is narrow. The ray tracing predicts impacts on instrument performance as

shown in Fig. 35, where various performance parameters are plotted versus E/q . None of

these parameters would be expected to vary with E/q in the case where the MCP input grid

was grounded. The values seen at high E/q (above 1 kV) are not significantly influenced by

the leakage of MCP field into the ESA and therefore represent behavior to be expected in

the case where the MCP input grid is grounded. In Fig. 35a the predicted geometric factor
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Fig. 31 Ray-tracing simulation trajectories used to predict the performance of FPI-DIS

assuming unity efficiency and no decrement from grids in the flight path is shown to increase

from near 1 × 10−3 cm2 sr eV/eV for E/q above 1 kV to near 1.6 × 10−3 cm2 sr eV/eV for

E/q near 1 eV/q, a 60 % increase from nominal. The value at higher energies is consistent

with the prediction of the original ISAS ray tracing study (Fig. 35d, solid line). Figure 35b

shows predicted variation of the analyzer constant (E/qV ) and energy band pass (dE/E).

While the analyzer constant shows only a few percent variation across E/q , the energy band

pass is seen to increase from its nominal value of near 12 % for E/q above 1 kV up to 17 %

at E/q of 1 eV, an increase of 42 %. Figure 35c shows the center and width of the deflected
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Fig. 32 Predicted response of

the FPI-DES sensor from Monte

Carlo ray tracing optics

simulation

Fig. 33 Spatial distributions of

particle arrivals on DIS MCPs, as

predicted by numerical

electrostatic ray tracing
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Fig. 34 Predicted DIS response

parameters near 8 keV/q, based

on numerical ray tracing as

functions of the electrostatic

deflection angle. Panel A shows

the FWHM of the azimuthal

angle response; Panel B shows

the analyzer constant ((E/q

VESA) peak); Panel C shows the

FWHM (%) of the energy/charge

response; Panel D shows the

geometric factor. In Panel D, the

solid line assumes both unity

detection efficiency and

transmission through grids; the

dashed and dotted lines include

90 % transmissions for all grids

and estimated detection

efficiencies at 20 eV and 30 keV,

respectively

angle band pass. The center shifts about 0.5◦ toward more positive angles (viewing away

from MCP plane) at the lowest values of E/q and the width increases by about 0.6◦ (about

10 %) from high to low E/q . Together, the 42 % increase in the energy band pass and the

10 % increase in the deflected angle band pass nearly, but not quite fully, account for the

60 % increase in predicted geometric factor from high to low energy.

There is another important effect of the lack of shielding between the MCP high voltage

and the ESA. Figure 36 shows representative rays from the SIMION study illustrating the

electrostatic focusing properties near the exit of the ESA. The variation in radial spot size

is large and minimizes within the DIS E/q range near 500 V (Fig. 36c). This effect will

have the important and unfortunate impact that the saturation performance of the MCP will
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Fig. 35 Predicted DIS response

parameters as functions of ion

energy per charge, based on

numerical ray tracing. Panel A

shows the geometric factor;

Panel B shows both the analyzer

constant ((E/q VESA) peak;

blue solid circles) plotted on the

left axis and the fractional width

of the E/q band pass (dE/E;

red open circles) plotted on the

right axis; Panel C shows the

location (black open circles; left

axis) and width (red filled circles;

right axis) of the polar angle

response peak for the case of no

voltage applied to the deflectors

be a function of E/q , becoming most severe for DIS near 500 eV/q. This is because MCP

detectors saturate on the basis of event rate per unit area. Since the beam spot is smallest near

500 eV this will be the energy/charge at which the onset of event rate saturation will occur
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Fig. 36 Electrostatic focusing properties for transmitted ions are displayed in the vicinity of the DIS ESA

exit aperture for several values of E/q

at the lowest event rates. If unaccounted for, this effect will produce incorrect distribution

function dependence on energy at large event rates.

In summary, these optics simulations showed that the response of the DES and DIS spec-

trometers were predicted to meet or exceed the required performance parameters.

3.4 Instrument Data Processing Unit

3.4.1 IDPU Overview and Implementation

The FPI IDPU is a block redundant system that commands the four DES and DIS units on an

MMS Observatory. It consists of a Data Processing Card (DPC), a Low Voltage Power Con-

verter (LVPC) board and a Spectrometer Power Switch Card (SPSC). The IDPU performs

numerous functions, including: (i) command and telemetry processing, (ii) power switching

for the spectrometers, (iii), commanding the high voltage stepping supplies responsible for

energy and angle selection, (iv) collection and organization of spectrometer counts data into

skymaps, (v) calculation of metrics (trigger terms and trigger numbers) indicating the sta-

tistical quality of the sky map data, and (vi) acquisition of data in engineering mode as part

of macro execution during MCP ramps and other macro driven calibration activities. These

functions are completed in real time so the results can be stored in the CIDP Mass Memory

Module (MMM) synchronously with their generation. Table 3 provides a summary of the

modes and functionality of the FPI IDPU.

The IDPU receives data and commands from the ground via the CIDP. The IDPU di-

rectly controls and collects data from and the four DES and DIS units. In response to the

promptings of the IDPU, each dual spectrometer executes ESA and deflector voltage step-

ping, collects data and provides the data in the form of counts per integration interval. The
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Table 3 IDPU modes and functions

Name Description

Auto gain control When enabled, steady unmodulated high count rates may trigger reduced

gain with recovery to full gain when lower rates are restored. This is

essentially radiation belt protection but also serves to detect discharges,

should they occur

Optimized sampling (pruning) Remove/combine samples to enforce uniform solid angle coverage. This is

typically used only in calculation of Trigger terms and numbers

Slow survey mode Single spectrometer box for DES and DIS used to build skymap over 3

spins

Fast survey/burst mode Nominal FPI mode. All FPI spectrometers operating in concert at full

speed. Both burst data products and fast survey data products are produced

in this mode

Burst trigger terms A set of pseudo-moments (sums over energy and angle) defined in Table 6

and reported in Telemetry with skymaps as high time resolution (30 ms

electrons; 150 ms ions) elements of the FS data

Burst trigger numbers Statistical quantities computed based on the trigger terms and reported on

10 s intervals

Compression Utilizes application specific integrated circuit to apply wavelet

compression as commanded, targeting fixed data volume per telemetry

frame

Engineering mode Enables execution of individual instrument commands from any source,

including ground. Used for several routine activities, real time

troubleshooting and table uploads

IDPU assembles these counts into both Burst and Fast Survey skymaps and produces data

streams to the CIDP of the following types:

Burst and Fast Survey Skymaps The burst skymaps comprise the raw counts from DES

and DIS acquired in Fast Survey mode. These are count rate arrays (32 energy × 32 azimuth

angle × 16 pixels) accumulated every 30 ms for DES and 150 ms for DIS. To form the Fast

Survey skymaps, the IDPU sums 150 (DES) or 30 (DIS) Burst Skymaps yielding a 4.5 s

product in both cases. The Fast Survey sky map data are de-spun and then binned onboard

into a De-spun Body Spacecraft Coordinate System (DBCS) that is very close to Geocentric

Solar Ecliptic (GSE) coordinates (within 2–3 degrees). The Fast Survey sky map have pixels

that feature contributions from more than one sensor or deflection state, owing to the Fast

Survey 4.5 s integration time.

Burst Quality Indices (BQI) FPI trigger terms are defined as seven weighted sums (three

for electrons and four for ions) that are performed in the IDPU over the DES and DIS Burst

skymaps at the burst time resolution (30 ms for DES and 150 ms for DIS). These sums are

intended to represent quantities analogous to physical moments of the electron and ion phase

space density distributions. A trigger data packet is delivered by the IDPU in response to a

periodic message from the CIDP that is received nominally every 10 s. This packet contains

the time series of trigger terms for electrons and ions, in addition to a set of eleven trigger

numbers for each species that represents the means and variances of the trigger term time

series.

Slow Survey Skymaps When operating in Slow Survey mode, sky maps are constructed

using a single dual spectrometer unit for each species operating in a conventional spin-scan

mode without deflection. The operating DxS changes from orbit to orbit. Three spins are

used to accumulate a single Slow Survey sky map.
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Calibration Data For each orbit, a sequence of calibration measurements is made in an

interval of 10 minutes at the boundary between the end of the science ROI and the start of

the inbound Slow Survey portion of the orbit. The result is a set of data characterizing the

health and relative sensitivity of the MCP detectors.

Housekeeping Data Engineering parameters, referred to collectively as Housekeeping

data, are routinely monitored and reported in telemetry from the IDPU and through the IDPU

from the spectrometers. These parameters include voltages and currents characterizing the

engineering performance of the system. Trending and reviewing housekeeping data will be

a critical element of system management and maintenance.

3.4.2 Functions and Tables of the IDPU Data Processing Card

The IDPU is limited to functions hard coded in an FPGA state machine. Many instrument

parameters are stored in up-loadable tables and/or in command registers that can be ad-

justed based on experience and the results of on-orbit calibration sequences. In addition

the wavelet compression is performed via a GSFC-developed application specific integrated

circuit (ASIC) with low power consumption.

High Voltage Stepper Tables and K-Tables While the details vary with context, all de-

flection and energy selection is controlled using high voltage stepping tables. These tables

supply timing information and index values used to inform the IDPU’s building of sky maps

from returned instrument counts. Other tables supply MCP biases used in automated flight

calibration sequences. In addition, FPI tracks two sets of values for each species’ sequence

of energy targets. These differ in their energy scaling. For every energy E, there is a density-

type quantity that results from scaling the counts with 1/
√

E and a pressure-type quantity

that results from scaling the counts with
√

E. As with high voltage steppers and compression

configurations these scaling quantities are encoded in configurable operating tables.

Fast Survey Stepper Tables Four tables must be configured for each spacecraft to operate

in Fast Survey. Each species continuously alternates between two 128-row tables. Out of

a full sequence of 64 energy-selection filters, assigned indices 0–63, energies 0,2, . . . ,62

form the even and 1,3, . . . ,63 form the odd set. The 128 steps of each single-parity table are

comprised of: a sweep through 32 energies at deflection state 0, then corresponding sweeps

at each of states 1–3. Each dual spectrometer is commanded with independently configured

words at each step, allowing independent adjustments to be made over lifetime, temperature,

etc. All dual spectrometers of a given species on a given spacecraft must use common timing

and indexing values at each step.

Slow Survey Stepper Tables Slow Survey stepper timing is spin-synchronous, only the

dual spectrometers in a single instrument deck quadrant are used on any orbit in slow survey

mode and no deflection is used. The pattern of stepping then only involves sweeping the

even and odd energies. This two-sweep pattern is repeated for each of 16 equal azimuthal

sectors, fixed with respect to the Sun direction. Counts from common azimuth sectors are

summed. Once again, four tables must be configured for each spacecraft to operate in Slow

Survey: two species by two parities, 32 rows each. The active-quadrant dual spectrometer

of a species, per spacecraft, is sent the same command word, regardless of active quadrant.

A simple energy-bin index instructs the building of summed sky maps.
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Ensemble Calibration Mode Stepper Tables The Ensemble Calibration mode consists

of 16 spins of observation, each potentially at a different MCP voltage. During Ensemble

Calibration, each DxS sensor executes a 32-step E/q sweep 16 times during each spin. The

two 32-row stepper tables (one for ions and one for electrons) needed per spacecraft to en-

code the E/q targets are re-configurable. Operating at constant MCP voltage, the Ensemble

Calibration data is used to measure, with maximal counting statistics possible, the overlap

region between the high and low range of the stepper supplies in order to identify and correct

for evolving offsets.

Trigger Calculation K-Tables In calculating FPI trigger term series from Burst skymaps,

a total of eight 32-element tables are required per spacecraft: 2 types × 2 species × 2 pari-

ties. The types are density-like, scaling as 1/
√

(E/q) and pressure-like, scaling as
√

(E/q).

Since these are dependent only on energy targets, they are likely to remain constant across

all spacecraft and over time. The species are electrons (DES) and ions (DIS) and the parities

are associated with the even and odd segments of the E/q sweep programs.

Unit Vectors and Pruning Three unit-vector tables used in on-board trigger calculations

encode the spacecraft frame X, Y, and Z components of the unit vectors associated with the

look direction array of 32 spacecraft azimuth angles × 16 polar angles. These represent the

nominal look-directions of every FPI pixel when operating in Fast Survey mode. It is likely

that these tables will not be re-configured, and are the same for all spacecraft.

Two additional 32 × 16 spacecraft frame maps, referred to as pruning maps, are required

to configure the trigger calculations on each spacecraft. For each species, a separate binary

map encodes which of its 512 pixels will be included in the metrics. This feature is use-

ful in mitigating the effects of oversampling near the spacecraft spin axes and to remove

troublesome pixels, for the trigger term calculations.

Compression and Trigger-Encoding Look-Up Tables (LUTs) Eight compression con-

figuration tables are required per spacecraft to configure the compression of sky maps from

2 species × 3 types + 2 diagnostic cases. These configurations are applied to the Con-

sultative Committee for Space Data Systems (CCSDS) compression Application Specific

Integrated Circuits (ASICs) as appropriate. Similarly, three additional LUTs are used per

spacecraft to encode trigger data samples to 8 bits. Only the three types of sky map data

are CCSDS compressed: Burst, Fast Survey, and Slow Survey. Each spacecraft requires

a table for each type and species and can accommodate two more diagnostic tables. FPI

8-bit-encodes all Trigger Terms in Fast Survey data using the LUT for relating trigger terms

(from both species) to 0–255 values. All mean-type trigger “numbers” are encoded using

the second LUT, and all variance-type numbers use the third LUT.

IDPU Low Voltage Power Converter The two redundant IDPU LVPCs receive +32 V

bus power from the MMS CIDP. Each one provides two regulated low voltage outputs ref-

erenced to the primary side ground and five isolated, tightly regulated, low voltage outputs

referenced to secondary side grounds. Of these seven individual output voltages, four low

power outputs which include the +10 V, +5 V, +8 V, and −5 V levels are used by the Spec-

trometer Power Switch Card (SPSC) and are derived from a common multiple secondary,

pulse width modulated, voltage mode controlled bias network that provides the required

ground isolation and pre-regulation functions. The +10 V and +5 V outputs are regulated

to ±5 %. The +8 V and −5 V outputs utilize subsequent discrete linear regulator networks

that provide ±1 % line/load regulation and over-current protection. The higher power out-

puts which include the +3.33 V, +2.5 V, and 1.9 V levels are used by the IDPU DPC.
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These voltages are derived from three independent pulse width modulated, current-mode

controlled forward power stages. The 2.5 V and 1.9 V outputs also provide remote sens-

ing capability to ensure point-of-load regulation. The LVPC provides differential mode and

common mode filtering on both primary and secondary sides of the 200 KHz switching con-

verter stages. Additional features within the LVPC include input bus inrush current limiting,

input bus under/over voltage protection, and output voltage sequencing during both turn on

and turn off.

IDPU Spectrometer Power Switch Card The IDPU SPSC receives +32 V bus power

from the MMS CIDP and contains eight independent solid-state switching circuits for

ON/OFF commandable distribution of the +32 V bus voltage to each of the eight spectrom-

eters. The status of these switches is controlled by commands from the IDPU DPC. Each

spectrometer power switch utilizes a dual Field Effect Transistor arrangement such that both

the forward and return current paths may be opened or closed as required. This arrangement

enables the complex cross strapping of spectrometer power to be achieved by the two inde-

pendent on-board SPSCs while maintaining the required control of all power return currents.

Each switch network includes a soft turn on characteristic for limiting peak inrush currents

to each spectrometer. Each switch network also includes an over-current trip off network

for protection in the event of overload conditions. The SPSC provides telemetry monitoring

of the associated voltages and currents with each of the +32 V spectrometer power switch

networks and monitors the bus voltage to the IDPU and the current draw by the IDPU

subcomponents. Ground isolation is maintained between the primary referenced switch net-

works and the secondary referenced monitoring electronics by utilization of a command and

telemetry exchange through magnetically coupled signal paths. This technique was derived

specifically for this MMS application and provides capability for complete frame data (all

channels) or dwell functions (single channel) monitoring as selected by the Processor Card

interface.

4 FPI Instrument Calibration

The objectives of calibration are to obtain and retain accurate answers to the questions:

(1) Where in velocity space (E/q , 2D angle) are we sampling and with what sensitivity and

(2) What sources of spurious counts (crosstalk, noise) are present and can they be mitigated?

Velocity space sample locations are determined by the spectrometer electro-optical prop-

erties and the voltages applied by the stepping high voltage supplies in addition to the spec-

trometer orientation on the spacecraft. The goal in flight is to maintain consistency in that

sampling as closely as possible. The sensitivity is determined by the electro-optical prop-

erties and the detection efficiency of each MCP/anode/amplifier combination, including the

interaction between MCP pulse height distribution and amplifier discrimination threshold.

Pixel noise sources, aside from classical Poisson counting noise, include scattering

crosstalk from particles at or above the MCP input surface, anode-to-anode capacitive cross

talk, noise injected at the preamplifiers by the MCP supply or the stepper supplies, crosstalk

at preamplifier inputs and other elements of system EMI. Spurious counts are associated

with spontaneous electron emission (dark counts), noisy pixels, and external sources such

as photoelectrons and penetrating radiation. These noise sources are observable and—in

many cases—are quantifiable in laboratory calibration and sometimes in flight.

FPI conducted a comprehensive baseline ground calibration program to characterize

these quantities and designed a robust inflight calibration procedure. Performed on every

flight unit, the ground calibration provided characterizations of the performance of the DxS
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optical components, high voltage stepper supplies and detector system performance. Optics

and detection system characteristics were documented at two levels named the Gold and

Standard levels. Gold level calibration was more extensive and performed for one DIS and

one DES of each Observatory suite. Standard calibration was performed on the remaining six

DxSs of each suite to confirm nominal response over the full range of angles and energies.

4.1 Approach to Sensor Calibration

During flight operations, data from eight electrostatic analyzers are combined into a single

3D phase space distribution. To ensure the data from each set of eight spectrometers can

be corrected to yield an accurate output for a given input, an extensive laboratory and in-

flight calibration regimen was developed to appropriately balance operating parameters and

to identify and correct for instrument variability and noise. While all DES are nominally

identical, as are all DIS, individual performance varies due to the variations in parts, de-

tectors, surface machining/finishing, and assembly. Variations in parts—MCP detectors in

particular—and noise sources can change through mission life.

4.1.1 Threshold Sweeps

Figure 37 is a schematic view of the DxS signal environment at the inputs and outputs

of the A121 preamplifiers/discriminators. Figure 37a illustrates the expected contributions

to the pulse height distributions. The gain is defined to be 50 % of the signal count rate.

This definition makes the assumption that the peak of the distribution is at the 50 % line

(i.e., a symmetric distribution), which is not strictly applicable but sufficiently close for the

purposes of estimating gain. The red Gaussian-like distribution represents the prime signal

and is slightly lower in gain than the two (orange, yellow) scattering cross talk contribu-

tors (from the ESA and MCP surfaces) directly to its right, owing to a presumed smaller

rate from scattered than from primary events and thereby possibly higher gain. The green

pulse height distribution is owing to capacitive anode-to-anode cross talk and is a direct frac-

tional image of the primary signal. Other sources of pulses include dark counts (spontaneous

emissions of MCP pulses), noise picked up from the HVPS, A121 output-to-input cross talk

(re-triggering), MCP-to-anode cross talk and partial pulse collection/cloud spreading cross

talk. Ideally, all MCP prime signal pulses fall above the discriminator threshold and are de-

tected only by the anode associated with the MCP. This requires the pulse height distribution

to have both a sufficiently large mean gain compared to the value of the detection discrim-

inator threshold and to be sufficiently narrow. A finite signal loss results when portions of

the MCP pulse height distribution falls below threshold. Further, the cross-talk terms must

be sufficiently low compared to the detection discriminator threshold.

Figure 37b shows the output pulse rates expected for each of the pulse height distributions

as a function of the discrimination threshold. The threshold is expressed in the same units

as the pulse heights that comprise the abscissa of Fig. 37a. Conceptually, the count rates are

integrals of the pulse height distributions with a domain of integration from the set threshold

value to infinity.

Figure 37c shows the schematic sum of all signals at the primary channel in red and

all crosstalk and noise signals at neighboring channels in gray. This is what is measured

during calibration and enables the isolation and direct measurement of the important detec-

tor system quantities: MCP gain, magnitude of anode-to-anode capacitive cross talk, cross

talk from scattering above the MCP, the margin against output-to-input cross talk, and high

voltage and other sources of noise. This “threshold sweep”, where we plot the rates of the
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Fig. 37 Salient characteristics of

thresholded multi-channel

electron multiplier based

detection system are illustrated

sixteen anodes in a DxS sensor versus applied threshold, are performed in the laboratory

and in flight, both with charged particle stimulus and under dark conditions. In flight, unlike

in the laboratory, many channels are stimulated simultaneously, rendering the interpretation

more complicated but still tractable.

Sensor performance then is strongly dependent upon the detection system operating

point, which is defined by the applied MCP high voltage—determining the MCP pulse

height distribution (gain)—and the pre-amplifier threshold setting. FPI exercises great care

to define, track, and maintain DxS operating points during ground calibration and in flight.

Using threshold sweeps, special operating point calibrations measure the response of all six-

teen pixels in a sensor head as functions of preamplifier discriminator threshold and MCP

voltage in the presence of a signal source. On the ground, the signal source was a monoen-

ergetic, collimated beam, directed into a single pixel, while in flight the signal source will

be the external plasma, typically directed at many pixels. On the ground, threshold scans

were performed at several (typically seven) MCP voltages while in flight threshold scans

are performed at two voltages.

4.1.2 Calibration Procedure Overview

The full calibration program included determination of the operating point (MCP gain

and voltage, and discriminator threshold), characterization of signal loss due to MCP
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gain variation, relative pixel to pixel MCP efficiency variation, cross talk, noise, coupled

energy/azimuth-angle band pass locations, shapes and amplitudes and their dependence on

high voltage stepper supply states, and the locations and shapes of the polar angle band

passes and any dependence they have on high voltage stepper supply state. The ground cal-

ibration also characterized system dead time and the effectiveness of UV rejection.

The general ground-based calibration procedure was (1) illuminate sensor with a beam

sufficiently broad to fill the entrance aperture and sufficiently narrow in both energy and

2D angle to approximate an impulse stimuli; (2) execute VESA and VDEF sweeps centered at

voltages to pass the beam particles and wide enough to capture the VESA/VDEF band pass;

and (3) mechanically articulate the sensor to measure beam incidence over the complete

angular range of pixel response. The zero deflection state—used in Slow Survey mode and

in the case of an anomaly—was also calibrated.

This procedure enabled determination of each response function and geometric factor as

documented by Collinson et al. (2012). That is,

Gi,j,k ≈ �θ

E2
0

∑
m

∑
n

Ci,j,k

Φ
Em cosφn�Em�φn, (5)

where Gi,j,k and Ci,j,k are the geometric factor and count rate for pixel i at energy step j

and deflection step k, �θ is the polar angle response width, E0 is the center of the energy

band pass at energy step j , φn is the azimuth incidence angle of the beam at step n, �φn

is the polar angle step size, and Φ is the incident beam flux (independently measured in

the calibration chamber). The geometric factor was calculated for each illuminated pixel,

deflection state, and each particle energy/charge tested.

The DxS energy analyzer constant, kǫ , is calculated per pixel and deflection state as the

ratio of the beam E/q to the VESA centroid. The VESA centroid is the ratio of the first and

second integral moments of the 1D counts vs VESA curve, which was obtained by summing a

2D VESA versus azimuth angle counts distribution over azimuth angles. The fractional width,

dE/E, is calculated as the FWHM of that same 1D curve, divided by the value of the VESA

centroid.

The DxS deflection analyzer constant, kα , is calculated per pixel as the ratio of the applied

VDEF at the peak of a 2D counts vs azimuth angle distribution to the product of: (1) the

azimuth angle centroid determined as ratio of the first and second integral moments of the

1D counts versus azimuth angle curve that is obtained by summing a VESA versus azimuth

angle counts distribution over VESA, and (2) the applied VDEF at the peak of the distribution.

The azimuth angle response width (�φ) is calculated as the FWHM of that same 1D curve.

The location and width of the polar angle band pass for each pixel is determined by an-

alyzing the Polar Angle scans. The location is determined as ratio of the first and second

integral moments of the counts versus polar angle distribution for each pixel. The width is

the boxcar width. This is the ratio of the area under the counts versus polar angle distribution

to the peak count rate in the distribution for each pixel. These quantities are largely depen-

dent upon the ESA optics but the widths in particular also vary significantly with sensor

operating point.

Measurements of the effective area were obtained from the energy-angle scan as the ratio

of the input beam flux to the peak pixel count rate in each 2D non-deflected VESA versus

azimuth angle counts distribution.

The pixel sensitivity for each DxS is specified by this geometric factor in units of

cm2 sr eV/eV. The factor (eV/eV) is retained so the fractional energy/charge band pass

(dE/E) is clearly understood to be included. The ratio of pixel count rate to the geometric

factor gives the differential directional energy flux measurement in units of eV/cm2 sr eV s.
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Fig. 38 Electron calibration

chambers used for all DES beam

testing and calibration

This represents an average over the sampled volume of velocity space, the pixel aperture

segment, and the sample integration period.

Many calibrated quantities that characterize the DxS optical performance, such as ana-

lyzer constant, the shape and locations of energy and angle band passes, and the geometric

factor itself (except for detection efficiency, including pulse height signal loss) are expected

to be properties of the electrostatic optics and therefore constant in time across the spec-

trometer sets and across energy and pixel space. Nevertheless, notable systematic variations

are introduced by variations in optical properties at different deflection angles, and by varia-

tions around the 180◦ pixel space in the angle between an incident particle’s velocity vector

at MCP impact and the MCP’s channel axis, which has an effect on MCP gain and effi-

ciency. Both random and systematic variations are inevitably introduced by imperfections

in machining and/or assembly of the optical system that impact the uniformity of response.

This has been minimized by pinned mechanical design and careful attention to precision in

the optics design and manufacture. Some of these characteristics may change with temper-

ature and, over time, in ways that are not known a priori. These include the output voltage

of the high voltage steppers, the MCP pulse height distributions and the A121 thresholds.

The MCP pulse generation efficiency is considered unlikely to change with time and/or

temperature during the MMS mission.

4.2 DES Laboratory Calibration

4.2.1 DES Calibration Facilities

The DES detector boards and electronics boxes were calibrated on the bench. DES as a

system was calibrated end-to-end under high vacuum with electron beams both prior to

and following instrument level environmental testing. The test program utilized two near-

identical electron calibration chambers, each ∼ 0.75 m diameter and 1 m long with oil

free pumps (Fig. 38). Helmholtz coils around the two chambers reduced the magnetic field

strength inside along the path of the electron beam. As a check on the variability of the

two systems, calibration measurements were performed on the same instrument sequentially

within both chambers. Results for this ‘inter-chamber calibration’ were within 3 % for all

parameters.
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Fig. 39 Magnetic field strength

in the vicinity of the vacuum

chambers modeled under the

effects of Helmholtz coils. The

vacuum chambers are represented

as rectangles in red on this page,

with cryogenic pumps also

represented as red rectangles

extending above the chambers.

The 2D rectangles actually

represent cross sections of the

cylindrical chambers and pumps,

viewed from above (cylindrical

axes lie in the plane of the page,

oriented from top to bottom)

Fig. 40 Vacuum chamber cradle

shown with DES mounted for

testing and RPA/Faraday Cup

sensor mounted in the cusp

between the two cylindrical DES

entrance apertures

Design of the Helmholtz coils was based on measurements of the magnetic field within

the test chambers. This field was dominated by background geomagnetic with components

primarily along the N-S aligned cylindrical chamber axes and the local vertical direction.

Figure 39 shows modeled magnetic field strength contours in the vicinity of the two cham-

bers with the coils operating. Chamber outlines are shown in red as is the contour of zero

magnetic field. The bold blue contours show the ±300 nT level. Typical residual magnetic

field intensity along the calibration beam path is predicted to be the order of 100 nT, less

than 1 % of the naturally occurring geomagnetic field and sufficient to enable electron beam

calibration down to 100 eV or less. Quality electron beam trajectories were confirmed at

several beam energies using an imaging detector placed at the location of a DES.

For all quantitative DES beam testing, the DES was placed on a cradle in one of the two

DES calibration chambers. These cradles feature robotically controlled configurations of

azimuth and polar angle rotation and z-axis translation (both in spacecraft coordinates in re-

lation to the instrument) and an additional rotation that enables a flip between sensor head 0,

sensor head 1, and the Faraday cup with respect to alignment with the beam, allowing lo-

cating and orienting DES aperture appropriately for beam test sequences. A photograph of

DES SN 201 in the cradle is shown in Fig. 40. The two yellow-metal colored 180◦ cylindri-

cal DES apertures are evident near center of photo, one almost directly facing the viewer.

A square Retarding Potential Analyzer/Faraday Cup (RPA/FC) assembly is mounted on the

cradle in between the two sensor heads to provide monitoring of the beam flux at the aperture

locations.
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Fig. 41 Normalized threshold

sweeps for DES FM205 are

shown for Pixel 0 (highest gain)

and pixel 7 (lowest gain)

The DES spectrometers were calibrated using Kimball Physics EMG-4212 electron

sources. Modifications by Kimball Physics of the electron source controller unit provided a

stable beam as low as 10 eV, with a uniform, 7 cm diameter (at the DES aperture) beam pos-

sible between 100 eV and 25 keV. The flux was measured using a Faraday cup before and

after each test to verify beam stability. The Faraday cup was located between the two DES

apertures, as illustrated in Fig. 40. Beam profiles were taken on several occasions through-

out the calibration program at several energies using a Quantar 2D beam imager to confirm

uniformity.

4.2.2 DES Operating Point Determination

Figs. 41 through 43 illustrate the process of selecting the operating point for DES Flight

Model (FM) 205. Performed for each flight sensor, this ensures all MCPs operate at the

same minimum gain target and all detection systems operate with the optimum balance

between signal-loss and crosstalk.

Figure 41a shows normalized threshold scans for Pixel 0, which is chosen owing to its

systematically high gain relative to the other pixels and so contributes the highest capacitive

crosstalk to its nearest neighbor. Pixel 0 and Pixel 1 count rates are plotted as a function of

discriminator threshold for seven MCP high voltage values. Similarly, Panel b of Fig. 42,
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Fig. 42 Use of combined

normalized threshold sweeps to

select MCP operating voltage

Fig. 43 Use of parameters signal

loss (curves rising with threshold,

plotted on left scale) and

crosstalk (curves falling with

threshold plotted on right scale)

for selecting detector operating

point

shows threshold scans for Pixel 7, near the center of the array where the gain is lowest.

Normalized count rates are plotted for the primary Pixel 7 and the average of its two nearest

neighbors (Pixels 6 and 8). Here, with lower gain, the capacitive cross talk is less but the

signal loss at a given MCP voltage and threshold (operating point) is larger. Generally, DES

detectors display larger gains near the ends of their pixel arrays and smaller gains near the

array center due to a systematic variation in the angle between the incident electron velocity

vector at impact and the axes of the cylindrical MCP pores. This has not been systematically

observed in the DIS sensors.

Figure 42 combines threshold sweeps, taking cross talk curves from the worst-case

crosstalk pixel (0 in this case) and signal curves from a worst-case signal-loss channel (7 in

this case) into a single composite threshold sweep. This illustrates the space within which

this DES sensor should operate for optimal performance. For this flight model, the initial

MCP voltage selected was that which produced a gain of 2 × 106 at the pixel with minimum

gain (7 in this case).

Converting normalized signal rate into signal loss (signal loss = 1—normalized rate) and

re-plotting both the cross talk and signal loss versus discriminator threshold yields the infor-

mation shown in Fig. 43. Though cross talk and signal loss are displayed for several values

of MCP voltage, selection of our MCP voltage (1750 V) has been already made based on

the data in Fig. 42 to ensure the gain target is met. Using the graphs acquired for the cho-

sen MCP voltage, the discriminator threshold was chosen that provided the best trade-off

between signal-loss and crosstalk, which in this case is 4 × 105 electrons/pulse. Further
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Fig. 44 Typical VESA/azimuth-angle response calibration data, in this case from DES FM Unit 201. In

panel (a) the 2D counts distribution is plotted on a logarithmic color scale versus VESA on the horizontal

axis and azimuth angle on the vertical axis. Its 1D reduced distributions are plotted versus azimuth angle in

panel (b) and versus VESA in panel (c). In both cases, the counts are summed over the second dimension to

produce the reduced distributions. Panel (d) contains sixteen such 2D distributions, one each for each of the

sixteen anodes in this sensor, illustrating at zeroth order the similarity in the response across pixels

optimization would have been possible if FPI had individually controlled the threshold set-

tings for the 16 A121 devices in each sensor, albeit for considerably increased operational

complexities.

This process of selecting the calibration operating point was followed for each sensor on

all flight DES units. A similar process will be followed on orbit to evenly maintain the DES

operating points in flight.

4.2.3 DES Energy-Azimuth Angle Scans

Measurements of the coupled energy/angle band passes were acquired and analyzed across

pixel space, at all deflection states, and at multiple energies in the range 100 eV at the lowest

to 30 keV. Examples for a single deflection state are shown in Fig. 44. There, we show the

2D angle/energy band pass (Fig. 44a) and the two corresponding 1D angle (Fig. 44b) and
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Fig. 45 Polar angle scan for

DES FM202. The count rates for

different pixels are shown in

different colors with key on the

right. The total counts, summed

over pixels, is also plotted, the

dark grey curve riding on top of

the colored curves

energy (Fig. 44c) distributions that result from summing over the second dimension. Fits

to these distributions were performed and angle and energy band pass centers and widths

derived. Count distributions like that shown in Fig. 44a were summed in accordance with

Eq. (5) and combined with independently measured beam flux and polar angle response to

yield the geometric factors for every pixel at several different energies. Figure 44d shows a

collection of 2D distributions like that shown in Fig. 44a, one for each pixel. The uniformity

of response was found to be excellent.

4.2.4 DES Polar Scans

An example polar angle scan for DES FM206 is provided in Fig. 45; these provide the �θ

factor in Eq. (5), in addition to the pixel polar angle look directions and measures of cross

talk among pixels. The count rate for each pixel is plotted in color with the sum plotted in

grey. The peaks in total rate appear at the junctions and are attributable to pulse spreading

between the MCP and the anode, which often yields two pulses for a single event. Polar

angle scans can also be used to identify noisy pixels if the count rate does not fall off as

quickly as expected. The laboratory polar responses were modeled as described in Gershman

et al (submitted), including effects such as the spot size on the MCP input face, the scattering

of primary and secondary electrons from surfaces of the ESA and MCP, and MCP pulse

spreading. This model will be used when monitoring and correcting for performance trends

in flight.

4.2.5 DES Saturation Characterization

DES has two primary sources of count rate saturation, (1) MCP saturation depends on the

count rate per unit MCP area and is paralyzable, (2) sensing amplifier saturation is non-

paralyzable with a dead time near 100 ns. Measurements of the MCP saturation are shown

in Fig. 46.

First, an electron beam narrow in energy and angle was directed at the DES optics aper-

ture while the ESA and deflection voltages were set to pass the beam to the detector; the

count rate was recorded as the incident flux was increased. MCP saturation depends upon

resistance (e.g., lower resistance MCPs count faster) and also on the rate per unit area (e.g.,
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Fig. 46 Saturation properties of DES. Data shown are from two separate sets of measurements. The black

curves represent measurements made with 10 different DES flight units (20 sensors)

size of the signal spot on the MCP). The inflection in the set of black curves (20 sensors) is

attributed to spot size localization imposed by the optics. A second set of saturation tests on

the MCP/Anode/Amplifier assemblies were performed without the optics, which resulted in

a larger spot on the MCP surface. These tests, performed at several discriminator thresholds,

are shown with the colored curves in Fig. 46. For a threshold of 4 × 105 electrons per pulse,

the count rate increases linearly with flux until it begins to deviate from linear near 100 kHz

and saturates near 3 MHz.

4.2.6 DES UV Rejection

The ratio of the count rate observed to the rate of photons entering the aperture is a measure

of Ly-α sensitivity and is required to be smaller than 10−8. ESA surfaces were coated with an

Ebanol-C layer, significantly decreasing potential reflections due to its high UV absorption.

In the beam chamber a resonant UV Kr lamp (Opthos Instruments, Inc.) was used to produce

a uniform photon flux across the DES entrance aperture with two resonant lines (116.5

and 123.6 nm) close to the Ly-α wavelength (121.6 nm). A UV AXUV-100GLA was used

to estimate the photon flux illuminating the aperture. Conversion of the current measured

through the diode to the photon flux used the published quantum efficiency of the diode,

near 1.78 electrons/photon at these wavelengths. Photon flux was controlled by the power

applied to the lamp, producing 3 × 1011–4 × 1011 photons/cm2 s, the approximate flux of

solar Ly-α at 1 AU, with a lamp power of ∼ 40 W. The DES was rotated in two dimensions

to illuminate all pixels with a range of azimuth angles. Figure 47 (DES FM206) shows that

the rejection ratio to the input photons flux remains at the level of 10−11 three orders of

magnitude lower than required ratio 10−8.
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Fig. 47 Results of UV testing of DIS FM 206

Fig. 48 Measurements of DES

geometric factor for all sensors,

pixels, and deflection states are

shown as red lines. The solid line

represents the mean value and the

two dashed lines show one

standard deviation above and

below that value

4.2.7 Summary of DES Laboratory Calibration Results

Table 4 summarizes DES performance parameters and their variability as measured for the

16 units (32 sensors). The factors kǫ and kDEF are the analyzer and deflection constants

and are defined in the table heading. The deflection state conventions are with respect to

the sensor, where “Down” means viewing toward the plane of the MCP and “Up” means

viewing away from the MCP plane. The energy at which the geometric factor is cited is

1 keV. As expected, there is significant energy dependence in the geometric factor owing to

variations in MCP detection efficiency with electron energy (Bordoni 1971); this variability

is shown in Fig. 48.
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Fig. 49 The DIS ETU in the calibration chamber at NASA’s Marshall Space Flight Center. The system

included (1) large oil-free vacuum chamber capable of reaching pressures less than 10−7 Torr, (2) an ion

source providing a steady mono-energetic, mono-directional positive ion beam with energies/charge ranging

from 10 eV to 30 keV and fluxes in the range of 103 to 108 cm−2 s−1, (3) support fixtures allowing 2D

orthogonal rotation of each sensor aperture under the ion source, (4) a Retarding Potential Analyzer (RPA) for

ion source diagnostics ≤ 4.5 keV, (5) DIS Ground Support Equipment (GSE) for control and data acquisition;

and (6) synchronized control/data collection between the GSE and chamber devices for real-time viewing and

analysis

4.3 DIS Laboratory Calibration

4.3.1 DIS Calibration Facility

The DIS flight units were calibrated at the NASA MSFC Low Energy Electron and Ion

Facility (LEEIF), which is specifically designed for the testing and calibration of particle

detectors (Biddle and Reynolds 1985). Figure 49 is a photograph of the DIS ETU mounted

in the vacuum chamber on a mechanical rotation fixture directly below the vertical ion beam.

The moveable RPA (top center of the photo) is used to determine the beam flux. The me-

chanical polar angle range of ±110◦ moved the DIS through its array of 16 anodes. The

mechanical azimuth angle range of −21◦ to 26◦ moved the DIS through the electrostatic

deflection angles.

A Kaufman Thruster ion source produced ions by electron impact ionization and acceler-

ated them electrostatically to the required energy/charge (up to 50 keV/q). Typical operating

current densities were near 0.05 pA/cm2 and ion beam temperatures ranged from < 1 % of

drift energy at 3 keV to 30 % at 10 eV.

Prior to testing, the ion source optics and RPA diagnostics were validated using a cylin-

drical ESA of 0.5 % energy and 0.25◦ angle resolution (Valek 2001). Two RPAs were used,

one to measure energy/charge up to 1.5 kV and another to measure energy/charge up to

4.5 kV. Tests were simultaneous over the overlapping energy ranges of each device to cal-

ibrate the admitted particle energy and confirm agreement between the devices. Further,

during calibration of DIS FM10, the RPA was cross-calibrated against an Absolute Beam

Monitor (ABM) (Funsten et al. 2005) provided by Southwest Research Institute (SwRI).

The beam fluxes measured by the RPA and the ABM device agreed to within 6 %.

Incident beam energy/charge is determined by fitting a Gaussian to the negative first

derivative of an RPA curve, −dIFC/dVRPA and was observed to be stable with time. The RPA

was moved into the beam approximately 20 cm above the DIS aperture at the beginning,
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Fig. 50 Example results from

DIS detector characterization

middle, and end of each procedure and the beam current measured at VRPA = 0. The mean

value of these three measurements is used in combination with the Faraday Cup Effective

Area of 2.99 cm2 to compute the beam flux.

Molecular nitrogen gas was used as the bleed gas to calibrate the DIS flight sensors al-

though protons will comprise the majority of ions in flight. The MCP gain is expected to

be ∼ 2X larger under proton excitation in flight, as compared with the molecular nitrogen

calibration beam, based on Fig. 2 of Oberheide et al. (1997) and Fig. 1 of Furuya and Hatano

(2002). The detection efficiency should also be larger for protons than for molecular nitro-

gen, based on Fig. 3 of Oberheide et al. (1997). Both effects will be quantified with inflight

commissioning/calibration procedures.

4.3.2 DIS Operating Point Determination

Figure 50 shows the process of selecting the operating point for DIS Flight Model 14 sensor

head 1. Figure 50a shows normalized threshold scans, where count rates in Pixel 7 and the

average of those in Pixels 6 and 8 are plotted versus the nominal value of the discriminator

threshold. As with DES, the rates in the primary pixel (in this case, Pixel 7) are used to as-

certain the MCP gain and the rates in neighboring pixels determine cross talk characteristics.

The MCP operating point was finalized using a single MCP gain plateau curve (Fig. 50b)

acquired for each pixel by fixing the threshold near 4 × 105 electrons/pulse and sweeping

MCP voltage while recording the count rate. The MCP operating point voltage was fixed

∼ 50–100 V higher than that at which the count rate in the lowest gain pixel plateaued. In

the case of DIS FM14 sensor head 1, the MCP operating voltage was chosen to be −2250 V.

4.3.3 DIS Energy-Azimuth Angle Scans

The energy-azimuth angle procedure was conducted for each pixel by mechanically scan-

ning the beam over the full range of deflected FOVs. The energy/angle stepper table was

tailored to the energy/charge under calibration and the five deflection states: −16.865◦,

−5.625, 0.0◦, +5.625◦ and +16.875◦ and resulted in 2D (VESA, Azimuth angle) count rate

maps at each deflection.

Figures 51 and 52 show the output of this procedure for Pixel 8 on DIS FM014, Sensor 0

and Sensor 1, respectively. Figures 51a and 52a contain five 2D maps of counts versus VESA
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Fig. 51 Near real time graphical and tabular output from the DIS energy/angle response procedure is pre-

sented in the case of FM 14, Sensor 0, Pixel 8. Panel a (top) shows the 2D VESA/Azimuth Angle response

at five deflection states, nominally centered at −16.875◦ , −5.625◦ , 0.0◦ , +5.625◦ , and +16.875◦ . The con-

tours are color coded according to the log 10 of the count rate as defined in the color bar at the right of

Panel a. Panel b (center) shows 1D azimuth angle response obtained by summing the distributions in Panel a

over VESA and Panel c (bottom) shows 1D VESA response obtained by summing the distributions in Panel a

over azimuth angle. The lines in Panels b and c are color coded according to deflection state, most evident in

Panel b. Between Panels a and b, provisional (near real time) values of the geometric factor (“GF”), effective

area (“Aeff ”), polar angle band pass width (“dPol”), azimuth angle band pass width (“dAz”) and energyband

pass width (“dE/E”) are tabulated

and mechanically controlled angle between the beam axis and the plane perpendicular to the

tophat symmetry axis. The energy/angle sweep uses nominal values for VDEF/VESA of 0.84

and 0.28. Summing these maps over the VESA dimension provides the 1D azimuth angle dis-

tributions shown in Figs. 51b and 52b, while summing over the azimuth angle distributions

provides the 1D VESA distributions shown in Figs. 51c and 52c. These 1D distributions were

used to compute performance parameters for each pixel and deflection state, including the

locations and widths for both VESA and azimuth angle band passes.

The Sensor 0 (Fig. 51) 2D counts distributions are highly elongated at negative azimuth

angles and more nearly circular at positive azimuth angles. Those in Sensor 1 (Fig. 52)

are more elongated at positive azimuth angles and more circular at negative azimuths. This

effect is common to DES and DIS and predicted by ray tracing. It affects the derived pa-

rameters primarily through a smaller width for the azimuth angle band pass. Neither the

energy/charge band pass nor the geometric factor is strongly affected. Note also the trunca-

tion of the 2D count rate distributions and 1D counterparts at large negative angles. These

truncations reflect the limited range of the calibration chamber’s azimuth rotation stage.



392 C. Pollock et al.

Fig. 52 Same as Fig. 51, except for the case DIS FM 14, Sensor 1, Pixel 8

4.3.4 DIS Polar Angle Response

The location and width of each pixel’s polar angle band pass was determined as the spec-

trometer was mechanically rotated from anode to anode and over each polar FOV. Figures 53

and 54 show the response for DIS FM004 Sensor 1, for deflection angles of −16.875 and

+16.875, respectively. Note the difference in the widths of the angle distributions (11◦ ver-

sus 15◦). This is observed for all DIS (not DES), at all energies/charge studied, and could be

related to enhanced cross talk due to the scattering of secondary electrons near the surface

of the MCP. The pulse height distributions of scattered events are different from those of

primary events in DIS, whereas they are the same in the case of DES. This may be because

we are always observing electron pulse height distributions in DES, whereas primary DIS

events are ions and secondary DIS events are electrons. The azimuth angle dependence of

this variation is not understood but is thought to be associated with the different radial foot-

prints of the calibration beam on the MCP and differences in local electron transport near

the MCP surface.

4.3.5 Summary DIS Laboratory Calibration Results

Table 5 summarizes DIS performance parameters for each of the five flight deflection set-

tings. The values and uncertainties listed represent mean values and standard deviations

based on independent measurements across 16 DIS × 2 sensors × 16 pixels. The heavily

truncated counts distributions discussed in the context of Fig. 51a are not included in the cal-

culations. The factors kǫ and kDEF are the analyzer and deflection constants and are defined
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Fig. 53 Near real time output from the DIS polar angle response procedure is presented in the case of FM 04,

Sensor 1, for the −16.875◦ deflection state. Panel a (top) shows the count rates of each pixel plotted versus

FPI polar angle. The lines are color coded according to pixel number. Panel b (bottom) shows centroid (axis

on right) and width (axis on left) of each pixel’s polar angle band pass plotted versus pixel number

in the table heading. The deflection state conventions are with respect to the sensor, where

“Down” means viewing toward the plane of the MCP and “Up” means viewing away from

the MCP plane. The decrease in the width (df) of the azimuth angle distribution as the look

direction proceeds from downward to upward is evident as are the relative uniformities of

the width of the energy band pass and the geometric factor. The geometric factor for DIS as

measured during laboratory calibration is lower than the required > 5 × 10−4 cm2 sr eV/eV

(Table 1). These measurements, combined with ion optics simulations, indicate a lower than

expected MCP efficiency by a factor of ∼ 2. On-orbit data will be used to resolve this dis-

crepancy through comparisons of FPI-calculated densities with those estimated from lower

hybrid wave frequencies.

5 FPI Flight Operations

In orbit (Fig. 56) FPI operates in several different modes. It operates in Fast Survey mode

when the spacecraft is within the Science Region of Interest (ROI), nominally defined as the

high altitude half of each orbital period; and operates in Slow Survey mode or one of several

calibration modes between L = 7 and the beginning of the next ROI; and operates in a low

voltage Engineering Mode below L = 7 to suspend operations when traversing the radiation

belts.
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Fig. 54 Near real time output from the DIS polar angle response procedure is presented in the case of FM 04,

Sensor 1, for the +16.875◦ deflection state. Panel a (top) shows the count rates of each pixel plotted versus

FPI polar angle. The lines are color coded according to pixel number. Panel b (bottom) shows centroid (axis

on right) and width (axis on left) of each pixel’s polar angle band pass plotted versus pixel number

In Fast Survey mode, all spectrometers are stepped at their fastest rate, with DES running

at 30 ms and the DIS at 150 ms for a full Burst sky map at 32 energies and 32 azimuth angles.

In this mode, sampling rates are much faster than the spacecraft spin. A Fast Survey data

product, reported every 4.5 sec, is constructed by de-spinning—performed in the IDPU—

and summing individual Burst sky maps.

In Slow Survey mode, a single DES and DIS unit are used in conventional spin scan mode

to generate a the full sky map every spin, by summing three spins of data for downlink. The

specific unit used for Slow Survey is rotated every orbit to balance the observing load across

the full suite of spectrometer units.

FPI inflight operational sequences are implemented in the form of Absolute Time Se-

quence (ATS) commands, which designate when planned activities are to be executed in

the context of each spacecraft’s activities. All activities are performed in accordance with

the FPI mode-switching diagram provided in Fig. 55. Elements in the ATS may take the

form of individual commands, Relative Time Sequences (RTS) or Macros. A RTS is a group

of commands that includes a relative specification of the delay introduced between each

pair of commands in the sequence. A Macro is a group of commands that can be executed

rapidly and sequentially with a reliable, fixed delay between commands. The use of RTS and

Macros enables FPI to execute the vast array of command sequences necessary to maintain

stable. Command macros are generated and managed by means of a suite of Interactive Data

Language (IDL) tools designed to facilitate human review and revision. Macros are version-



Fast Plasma Investigation for Magnetospheric Multiscale 395

T
a
b

le
5

D
IS

o
p
ti

ca
l

p
er

fo
rm

an
ce

su
m

m
ar

y

D
o
w

n
1

6
.8

7
5
◦

D
o
w

n
5
.6

2
5
◦

0
◦

U
p

5
.6

2
5
◦

U
p

1
6
.8

7
5
◦

M
ea

n
S

td
.

D
ev

.
M

ea
n

S
td

.
D

ev
.

M
ea

n
S

td
.

D
ev

.
M

ea
n

S
td

.
D

ev
.

M
ea

n
S

td
.

D
ev

.

k
ǫ

(E
/
q
V

ǫ
)

5
.1

0
0
.0

8
5
.0

8
0
.0

6
5
.1

0
0
.0

6
5
.0

6
0
.0

6
5
.0

6
0
.0

6

δ
ǫ
/
ǫ

(F
W

H
M

)
0
.1

2
1

0
.0

0
5

0
.1

2
6

0
.0

0
4

0
.1

2
6

0
.0

0
4

0
.1

2
6

0
.0

0
4

0
.1

2
4

0
.0

0
4

k
φ

(V
D

E
F
/
θ
/
V

ǫ
)

0
.0

4
5

0
.0

0
0
5

0
.0

4
4

0
.0

0
0
9

n
/a

n
/a

0
.0

4
6

0
.0

0
0
8

0
.0

4
6

0
.0

0
0
5

δ
φ

(F
W

H
M

)
5
.7

8
0
.2

5
5
.6

7
0
.3

1
5
.4

4
0
.3

1
4
.7

0
0
.3

4
2
.9

4
0
.5

1

δ
θ

(B
o
x
ca

r
w

id
th

)
1
4
.6

1
.9

1
2
.7

0
.8

1
2
.3

0
.8

1
2
.3

0
.7

1
1
.8

0
.7

G
(c

m
2

sr
eV

/
eV

)
0
.0

0
0
2
0

0
.0

0
0
0
7

0
.0

0
0
2
1

0
.0

0
0
0
8

0
.0

0
0
2
1

0
.0

0
0
0
8

0
.0

0
0
2
0

0
.0

0
0
0
7

0
.0

0
0
1
6

0
.0

0
0
0
6



396 C. Pollock et al.

Fig. 55 FPI IDPU state diagram

showing modes of operations and

permitted mode transitions

Fig. 56 Orbital progression of

routine FPI activities

controlled, stored within the CIDP Mass Memory Module, and organized into functional

groups. A typical orbit in the life of FPI is illustrated in Fig. 56.

FPI Reset FPI executes a reset upon exiting the inner magnetosphere, at L = 7, to mit-

igate corruption of system settings by radiation-related single event upsets. The procedure

performs an IDPU soft reset called from the ATS, followed by execution of the FPI Neutral

Macro. The FPI operating table chosen is based on the temperature of FPI and is selectable

via a parameter in the IDPU reset command.

Neutral The Neutral state ends science operation and ramps down the spectrometer HVPS

to a safe state. The command sequence consists of entry to engineering mode, disabling the

bulk power supply, and finishes with a soft reset of the spectrometer.

Ramp to Slow Survey The Ramp to Slow Survey activity configures one quadrant of

FPI (one DES and one DIS) to ramp up the MCPs and enter Slow Survey data collection.

Though all spectrometers remain powered during Slow Survey, only one of the four dual

spectrometers pairs has its high voltage enabled.
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Table 6 Voltage settings for HV

monitor check for DES and DIS DES voltages DIS values

Low range High range Low range High range

0.1 45 0.1 55

0.5 50 0.5 60

1.0 55 1 65

5.0 100 5 100

10.0 500 10 1000

30.0 1000 30 3000

50.0 3000 60 5000

– 5000 – 5600

– 4000 – 4000

– 2000 – 2000

0 0

Fast Survey The Fast Survey activity sets the integration time to 195 µs and 1 ms for

DES and DIS, respectively. A snapshot of the instrument configuration (register settings,

operating tables, etc.) is recorded prior to entry to Fast Survey mode. Nominally, an MCP

ramp is not required prior to entry to Fast Survey because the system is already at operating

voltage following Operating Point Calibration.

Operating Point Calibration The detection system operating point calibration activity

determines the balance between signal loss and crosstalk between pixels and ideally min-

imizes both of these values. Nominally, the discriminator threshold will be kept constant

and the MCP voltage will be updated periodically to retain the desired gains and signal

loss/crosstalk balance.

Ensemble Calibration Changes in the high voltage stepper outputs over time can shift

sampling phase space to locations different from nominal. Such offsets are of particular

relevance at the extreme end of each range (high range, low range) of the stepper supplies,

where they are the largest, relative to the nominal output voltages. ESA stepper offsets are

determined from the ensemble calibration activity.

HV Monitor Check Because the HV stepper voltage is not part of the regular HK packet,

an activity called HV monitor check confirms that the power supply can achieve the maxi-

mum required voltages and monitors the current to detect any failures in HV standoff ability.

MCP Ramp The MCP ramp activity steps the MCP voltage up to full operating voltage

over the course of several minutes. During this ramp, counts are collected with an optics dark

stepper configuration that eliminates incoming plasma from the aperture. These collected

counts then serve as a background noise measurement that, if consistent and significant, can

be subtracted from collected science data.

Burst Data Calibration Burst data calibration is performed by acquiring burst resolution

data for a period of up to three spins (60 s) at a selected point within the ROI of each orbit.

This data is used to perform statistical analyses, exposing and quantifying certain calibration

errors. The errors are then corrected during ground processing. The particular data to be used

are selected by the FPI team and marked for download through a similar interface to that

used by the Scientist in the Loop.

Burst Voltage Calibration The burst voltage calibration is used may be used conjunction

with ensemble calibration to provide relative calibration of the stepper voltages. Several
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spins of burst data are collected and the relative position of sharp gradients and features

are compared spectrometer to spectrometer in velocity space. These measurements are then

compared to pull out corrective voltages to the high voltage steppers.

6 FPI Data Processing and Products

FPI produces scientific data in the two modes of operation called Fast Survey and Slow

Survey. In Slow Survey mode, skymaps are acquired every minute for both DES and for

DIS. These data have low relevance for satisfying the primary mission objectives, and they

comprise less than ∼ 1 % of the FPI scientific data included in spacecraft telemetry to the

ground. These skymaps are the only scientific data produced by the FPI IDPU in the Slow

Survey mode of operation.

Fast Survey mode is used when the spacecraft are in the science ROI. In Fast Survey

mode, the FPI produces two types of skymaps for both the DES and the DIS. Burst skymaps

are acquired every 30 ms for the DES and every 150 ms for the DIS. Survey skymaps are

an accumulation of burst skymaps, with counts redistributed to 32 sun-referenced angular

sectors using the information on rotation phase recorded for each burst skymap. Survey

skymaps are produced nominally every 4.5 s. Each is a combination of 150 burst skymaps

for the DES, or 30 burst skymaps for the DIS.

All skymaps are compressed by the IDPU prior to transmittal to the ground. Dependent

on the level of complexity of the skymaps and other qualities of the data, the compression

may be either lossless, or lossy. Typical compression levels achieved for the skymaps are

between a factor of 4 and 5 for Burst and Slow Survey data products and slightly larger

than 16 for the Fast Survey data products. The skymaps are decompressed prior to ground

processing of the data sets.

6.1 On-Board Processing of Scientific Data

Because of telemetry limitations and the high volume of data acquired in Fast Survey mode,

even with compression, it is not possible with the available downlink capacity to send all

burst skymap data to the ground. The entire set of Slow Survey and Fast Survey skymaps

are telemetered, but burst skymaps are queued only for intervals identified as highest priority

for scientific analysis. Downlink priority is determined by the CIDP with an automated

triggering process that relies on trigger data produced by FPI and other instruments. The

automated selections are reviewed and can be overridden by scientists on the ground prior

to downlink.

In Fast Survey mode the FPI IDPU computes two sets of burst trigger quantities; trigger

terms (TT; 30 ms cadence) and trigger data numbers (TDN; 10 s cadence). TTs are quanti-

ties computed for each burst skymap (30 ms for electrons and 150 ms for ions). TDNs are

statistical measures that characterize the variability of the trigger terms. It is only the TDNs

that are used by the CIDP to evaluate burst intervals.

Each trigger term is a summation over a single burst skymap, weighted at each energy

step by a factor En/2, where n is an integer. Due to the speed required to keep pace with

burst skymap production, it is not possible to calculate onboard plasma moments calibrated

to physical units. Instead, the IDPU computes simplified summations with functional depen-

dencies that are analogous to integral velocity moments of the plasma distribution functions,

called “pseudo-moments”.

FPI produces three trigger terms for DES and four for DIS, as defined in Table 7. In these

equations, the burst skymap arrays of counts, Ce , for electrons and Ci for ions, are expressed



Fast Plasma Investigation for Magnetospheric Multiscale 399

Table 7 Definitions of the electron and ion trigger terms delivered in Fast Survey data packets

Trigger term Formula

Electron

pseudo-content

N ′
e− = ∑ε_max

ε_min Ke− (ε, τ1)
∑15

θ=0

∑31
ϕ=0 P(θ,ϕ) × Ce− (ε, θ,ϕ)

Electron parallel

pseudo-flux

F ′
par n = |∑ε_max

ε_min Ke− (ε, τ2)
∑15

θ=0

∑31
ϕ=0 P(θ,ϕ) × b̂ · p̂(θ,ϕ) × Ce− (ε, θ,ϕ)|

Electron directional

pseudo-content

M ′
e−dir n

= ∑ε_max
ε_min Ke− (ε, τ3)

∑15
θ=0

∑31
ϕ=0 P(θ,ϕ) × Ce− (ε, θ,ϕ)

for T2 < |b ·p| < T3

Ion pseudo-content N ′
i+ = ∑ε_max

ε_min Ki+ (ε, τ4)
∑15

θ=0

∑31
ϕ=0 P(θ,ϕ) × Ci+ (ε, θ,ϕ)

Ion X pseudo-flux |F ′
i+x

= ∑ε_max
ε_min Ki+ (ε, τ5)

∑15
θ=0

∑31
ϕ=0 P(θ,ϕ) × px (θ,ϕ) × Ci+ (ε, θ,ϕ)|

Ion Y pseudo-flux |F ′
i+y

= ∑ε_max
ε_min Ki+ (ε, τ6)

∑15
θ=0

∑31
ϕ=0 P(θ,ϕ) × py (θ,ϕ) × Ci+ (ε, θ,ϕ)|

Ion Z pseudo-flux |F ′
i+z

= ∑ε_max
ε_min Ki+ (ε, τ7)

∑15
θ=0

∑31
ϕ=0 P(θ,ϕ) × pz(θ,ϕ) × Ci+ (ε, θ,ϕ)|

as functions of ǫ, θ , and ϕ, which refer to the energy step, the polar angle, and the azimuth

angle of each measurement. Energy weighting is incorporated in the K factors, which are

stored as tables in the IDPU. The K values also include scale factors chosen to optimize the

range of output values. Each type of trigger term has a unique 32-element K table. A “pixel

pruning map”, P (θ,ϕ), holds values of 0 or 1 for each of the 16 × 32 angular elements of

the array. The calculation does not weight samples by solid angle, and the pixel map is a

mechanism that allows removal of some pixels near the poles to reduce oversampling. The

unit vectors b and p correspond to the directions of the magnetic field and the direction of

incidence of particles.

The DES trigger terms are the pseudo content, parallel pseudo flux, and directional

pseudo content. Because the energy weighting is accomplished with tables, which can be

changed by ground command, there is some flexibility in the computation. In practice, en-

ergy weighting is chosen such that these roughly correspond to electron density, flux, and

pressure. In Fast Survey mode, the direction of the vector magnetic field is passed to the FPI

IDPU every 0.125 s by the Fields instrumentation (Torbert et al. 2014), and that direction is

used to determine the component of pseudo-flux in the direction of the field. The magnetic

field direction can also be used to limit the summation over angle in the computation of

the directional pseudo content to produce a trigger term that, for example, is analogous to a

perpendicular pressure.

The DIS trigger terms are the pseudo content, corresponding to a density, and the three

Cartesian components of pseudo flux. The pseudo flux vector is referenced to axes that are

fixed to the spinning body of the spacecraft.

Each TDN is the mean, variance, or delta-of-mean computed for a 10 s accumulation

of one of the seven trigger terms. The mean and the variance are computed according to

standard statistical definitions. The delta-of-mean is defined to be the difference between

the mean of the current 10 s accumulation period and that of the previous period. Of the 21

possible TDNs, 11 were selected during mission definition for their potential to indicate that

a given spacecraft is near a site of active reconnection. The electron TDNs are the variances

of each of the three electron trigger terms, the mean values of the parallel pseudo flux and

the directional pseudo content, and the delta-of-mean of the pseudo content. For ions, the

selected TDNs are the variances of each of the four ion trigger terms, and the delta-of-mean

of the ion pseudo content. The associations between TDNs and trigger terms are illustrated in
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Table 8 Identification of

electron and ion trigger data

numbers

Electron trigger term Electron trigger data number

Mean Variance Delta of mean

Electron pseudo content X X

Electron parallel pseudo

flux

X X

Electron directional pseudo

content

X X

Table 9 Identification of ion

trigger data numbers Ion trigger term Ion trigger data number

Mean Variance Delta of mean

Ion pseudo content X X

Ion X pseudo flux X

Ion Y pseudo flux X

Ion Z pseudo flux X

Fig. 57 Elements of model FPI

DXS sensor

Tables 8 and 9, for DES and DIS, respectively. Note that, while the x, y, and z-components

of the ion pseudo-flux are delivered to the ground in absolute value as shown in Table 7,

the variance calculations are performed in the IDPU prior to performing the absolute value

operation. These variance values are performed on fully signed data.

6.2 Ground-Based Processing of Scientific Data

The several different data sets produced on the ground share common elements of methodol-

ogy. The fundamental scientific data product is the velocity distribution function, f (x,v, t),

which is directly related to the measured skymaps. It is a probability density or phase space

density such that f (x,v, t)dxdv is the number of particles in phase space volume element

dxdv at time t .

In deriving the relationship between the velocity distribution function and the skymaps,

it is assumed that all of the entrance apertures of a DxS analyzer are illuminated by particles

drawn from the same velocity distribution. In that case, the relationship between f (x,v, t)

at the entrance aperture σi (Fig. 57) and the number of particles, CO
i , striking section Mi of

the MCP during accumulation time τ can be expressed as follows:

CO
i =

15∑
i=0

C0
ij (6)

where CO
ij is given by:

CO
ij = τσj

∫
v−

d3v(n̂j ·v)f (x,v, t)Rij (v) (7)

Here, CO
ij is the number of particles striking section Mi of the MCP when only entrance

aperture σj is illuminated, superscript “O” indicates that the particles are exiting the optical
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system of Fig. 57, n̂j is the unit normal directed outward from the entrance aperture, Rij is

a response matrix whose elements are measured in the laboratory by exposing each pixel j

to a delta function (in energy-angle space) beam and measuring the corresponding counts in

pixel i, and the integral is taken over the region in velocity space for which v · n̂ < 0. Note

that the off-diagonal elements of the 16 × 16 matrix CO
ij are in general non-vanishing owing

to crosstalk processes occurring above the MCP (e.g., finite size of the MCP spot, scattering

by the optical system, secondary electron production at the top surface of the MCP, etc.).

If the phase space density varies slowly over the region of velocity space for which Gij

is non-vanishing, then:

CO
ij ≈ 2E2

0

m2
Gijf (v0)τ (8)

where the subscript “0” in E0 and v0 identify the location in velocity space of the maximum

of the response matrix element Rij , and the geometric factor matrix, Gij has been defined:

Gij ≡ σjm
2

2E2
0

∫
v−

d3v(n̂j ·v)Rij (v) (9)

In practice, the diagonal elements of Gij are just the usual geometric factors, determined

by numerically integrating the energy-azimuth-angle scans measured in the laboratory. The

off-diagonal elements of Gij are, in principle determined from polar scans by integrating

the part of the polar scan centered on pixel j that spreads into pixel i.

Downstream of the optical system in Fig. 57, particles strike the surface of the MCP and

produce secondary electrons with some efficiency. There will also be some signal loss due

to threshold effects which cut off a fraction of the MCP’s pulse height distribution. These

effects are incorporated into estimates of Gij as time and energy-dependent factors that are

determined through a combination of laboratory and in-flight calibration.

Finally, each pre-amp has a dead time τAMP
i ,∼ 100 ns again assumed non-paralyzable:

Ci = Co
i

1 + Co
i τ

AMP
i /τ

(10)

where Ci is the number of counts registered by the counters of the DxS C&DH boards

during accumulation time τ .

The velocity distribution function contains considerable information regarding the phys-

ical state of the plasma. Plasma fluid parameters are computed as moments of the particle

velocity distributions. The technique integrates f (v), weighted by powers of v, over the

3-dimensional velocity space. For example, the particle number density, n, is the zero-order

moment, computed by multiplying the velocity distribution function by v to a power of zero,

and integrating over velocity space. Likewise, components of the bulk flow velocity, Vl are

first-order moments, the elements of the pressure tensor, Plm are second-order moments, and

the components of the heat-flux vector, Ql , are third-order moments. Here, l and m are in-

dices for the Cartesian components, x, y, z. Formulations for these 0th–3rd order moments

are given as Eqs. (11)–(14).

n =
③

d3vf (
v) (11)

V l = 1

n

③
d3vvlf (
v) (12)

Plm = m
③

d3vf (
v)(vl − Vl)(vm − Vm) (13)

Ql = m

2

③
d3vf (
v)(vl − Vl)(
v − 
V )2 (14)
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Table 10 MMS FPI data sets

1After telemetry receipt at SDC

Data set Modes Data types Schedule1 Quality

SITL FS Survey 1.5 hour Provisional

Quick look FS, slow Survey, burst 24 hours Provisional

Level 2 FS, slow Survey, burst 30 days Research

For the FPI data products, the integrals are evaluated numerically. This method has the

advantage that it does not depend on a-priori assumptions about the form of the distribution

functions. Corrections to the energies, and hence the velocities, due to a non-zero spacecraft

surface potential are made prior to the integration. For research-quality data the measured

spacecraft potential provided by the Fields Investigation (Torbert et al. 2014) is used. Prior

to integration over velocity, a substitution of variable is employed to remap the integral

from the range [0,∞] to the range [0,1], and the trapezoidal rule is used to extrapolate the

distribution function to zero energy and to the high-energy range above the top energy step

of the FPI analyzers. The FPI does not discriminate ions according to mass. In computing

ion distribution functions from DIS data, all ions are assumed to be protons. Measurements

from the HPCA instrument (Young et al., this issue), which measures ions as a function of

mass-per-charge, but at lower temporal resolution than FPI, can be used to identify intervals

where this assumption is invalid.

6.3 FPI Data Products

The FPI data sets are produced according to definitions of product levels and the schedule

for production defined in the MMS Project Data Management Plan. The data sets are dis-

tinguished according to their intended use, which determines the nature of the parameters

included in each data set and the associated requirements for timeliness of production, accu-

racy, and level of access. Several key characteristics of the different data sets, as they apply

for the FPI data, are summarized in Table 10.

The Level-1, SITL, and Quick Look products are produced at the SOC using software

provided by the FPI instrument team. These are suitable for preliminary assessment of char-

acteristics of the plasmas. They are not intended for use in scientific research because they

are released prior to validation by the instrument team, may require updated calibration

factors, and have not been corrected for possible variation of the spacecraft potential. The

Level-1 and SITL data products are available to the MMS project only. Quick Look data

are made available to the public 24 hours after receipt of telemetry from the spacecraft. The

SITL data products are used by the SITL system to evaluate burst data for possible selec-

tion and download from the spacecraft. The SITL products are computed as soon as Level-1

Survey data become available, and they are available to the SITL system approximately

1.5 hours after receipt of telemetry.

The first-available research-quality data are the Level-2 data products, which will be

made available through the MMS Science Data Center within 30 days. The Level-2 data are

inspected by the instrument team for the presence of artifacts, and this data set incorporates

any calibration changes determined in the ∼ 30 days after receipt of data from the space-

craft. Level-2 data also utilize spacecraft potential measurements that have been validated

by the Fields team. The spacecraft potential measured by Fields is used to determine par-

ticle energies as would be observed in the absence of spacecraft charging, and to eliminate

the contributions of photoelectrons and secondary electrons emitted from the surface of the
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spacecraft prior to computation of fluid parameters characterizing the ambient plasma en-

vironment. In addition to those data sets addressed above, the MMS project will produce

Level-3 data sets for a limited number of events. The Level-3 data products are intended to

be mission-level data products that combine measurements from different MMS spacecraft,

and/or from different MMS investigations. Ion fluid moments corrected for the presence of

heavy ions using measurements from the HPCA are an example of a possible Level-3 data

product.

6.3.1 Descriptions of the Data Sets

As indicated in Table 10 all data sets, with the exception of the SITL data, are produced for

both the Fast Survey mode of operation and the Slow Survey mode. In the Fast Survey mode,

two types of science data are produced by the CIDP. The first type of science data, termed

Survey data, is routinely relayed with telemetry to the ground. The second type of science

data, called Burst data, is sent to the ground only for selected intervals, due to the high

sample rates and telemetry constraints. As described above, the FPI Survey data produced

by the IDPU in Fast Survey mode include 4.5 s survey skymaps, Trigger Terms, and Trigger

Data Numbers. The FPI Burst data produced by the IDPU in Fast Survey mode comprise

burst skymaps at cadences of 30 ms for DES and 150 ms for DIS. The Slow Survey mode

produces slow skymaps only. Several parameters required for interpretation of data are also

included in the data sets.

FPI SITL Data Product Description The parameters provided by FPI for use by the

SITL include trigger terms and trigger data numbers, plasma moments, several plasma pa-

rameters derived from the plasma moments, and arrays of counts that have been partially

summed over directions or energies. These latter quantities are the basis for displays of

electron pitch-angle distributions and ion energy spectra. Trigger Terms are semi-log com-

pressed to an un-signed 8 bit value by the IDPU prior to transmission to the CIDP, and

therefore are not fully representative of the terms used by the IDPU to compute TDN’s.

Plasma moments are computed using provisional calibration factors.

FPI Quick Look Data Description The Quick Look data are produced for both Burst

and Survey data, and are made available to the scientific community and the public by the

MMS Science Data Center. This data set includes provisional Level-2 moments, ion energy

spectra, and electron pitch-angle distributions. Descriptions for these are the same as those

given above for the SITL data.

FPI Level-2 Data Description The Level-2 data are the basic research data provided for

use by MMS instrument teams and the scientific community. They are released 30 days af-

ter receipt of data from the spacecraft. They are produced for both the Burst and Survey

data. They incorporate updates to calibration factors developed during that 30 day inter-

val. The basic scientific quantities are the phase space densities and the plasma moments.

Additionally, uncertainties in these quantities are provided at the one-sigma level. These

uncertainties are based entirely on Poisson statistics, i.e. the counting statistics (Gershman

et al. 2015a, 2015b).

The Level-2 data product also provides information suitable for producing visualizations

of the 3D skymaps in the forms of: (1) Energy-time ion spectrograms (ion flux versus time)

for a set of 6 directions (sunward, antisunward, dusk, dawn, and ecliptic north and south).
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(2) Electron pitch angle spectrograms (electron flux versus time) that subsume energy infor-

mation by summing or averaging over several specific sets of energies. (3) Energy-time spec-

trograms for electrons sorted into parallel, anti-parallel, and perpendicular angular ranges to

differentiate regions of differing magnetic topology for the purpose of identifying magnetic

field aligned structures.

7 Summary

The MMS Fast Plasma Investigation measures electron and ion differential directional flux

distributions on MMS at high temporal resolution. Our approach to conducting these mea-

surements is to use for each species, electrons and ions, eight 180◦ top hat spectrometers,

packaged as dual spectrometers that we refer to as DES for electrons and DIS for ions. The

two sets of four spectrometers on each spacecraft are supported by a single block redundant

IDPU that communicates with the Instrument Suite CIDP, controls the spectrometers, and

collects data from them.

The spectrometers were designed and built with high precision and uniformity, as verified

by instrument test and calibration. Extensive ground calibration gave a solid base line for

understanding the behavior of the sensors. An extensive program of in-flight calibration

is executed for the purpose of maintaining a high standard of instrument calibration for

all units. Quantities of interest in this calibration program include the detector systems’

operating points, detection efficiencies, and HV stepping supply performance.

Table 11 provides information on mass, power, and data rates for the major components

of FPI. Figure 58 shows the three primary FPI elements mounted for flight on an MMS

observatory. Figure 58a shows a DES (left) and DIS (right), with solar panel cells visible in

the background. The spectrometers are shown hanging off the bottom side of the instrument

deck. In this flight photo, the spacecraft z-axis points upward and, as the spacecraft spins,

the two spectrometers would spin past the viewer from left to right. Figure 58b shows a

flight IDPU also mounted for flight on an MMS observatory. Like the spectrometers, the

IDPU hangs upside down from the instrument deck, though internal to the spacecraft with

no view to the external plasma.

This approach of deploying many instruments to perform the FPI measurements required

an unusually large effort in the manufacture, test, calibration, and documentation of flight

hardware, which comprises 36 fully functional flight boxes (64 top hat plasma spectrome-

ters packaged in pairs and 4 IDPUs). Innovation was required and important lessons were

Table 11 FPI mass, power, and data rate

Avg mass

[kg]

Avg

SS power

BOL [W]

Avg

FS power

BOL [W]

Estimated

SS power

EOL [W]

Estimated

FS power

EOL [W]

Data SS

(bps)

Data FS

(bps)

1 DES 5.87 5.5 5.8 8.3 8.7 512 1195869

1 DIS 6.21 5.2 5.2 6.9 6.9 512 385017

1 IDPU 6.19 4.8 5.2 4.9 5.3 474 500

Full FPI

(4 DES,

4 DIS,

1 IDPU)

54.51 47.6 49.1 65.5 67.6 4570 6324042

SS = Slow Survey, FS = Fast Survey
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Fig. 58 Elements of the FPI,

installed and ready for flight

learned. FPI’s high time resolution and quality sensor designs and their characterizations

will enable new discoveries exploring Earth’s magnetospheric electron and ion phase space

distributions in and near the diffusion regions of reconnecting plasmas.
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national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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