
MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 142

APRIL 1978, PAGES 441-446

Fast Poisson Solvers for Problems with Sparsity*

By Alexandra Banegas

Abstract. Fast Poisson solvers, which provide the numerical solution of Poisson's

equation on regions that permit the separation of variables, have proven very use-

ful in many applications. In certain of these applications the data is sparse and

the solution is only required at relatively few mesh points. For such problems

this paper develops algorithms that allow considerable savings in computer storage

as well as execution speed. Results of numerical experiments are given.

1. Introduction In many applications there arises a need to solve the Poisson

equation,

-Au =/,

by finite difference methods, in regions where the method of separation of variables

can be used. The region must, after a possible change of the independent variables, be

rectangular and the boundary conditions must not change type along the different

sides of the rectangle, see Widlund [13]. Fast, reliable solvers for such problems have

been developed by Bank [1], Buneman [2], Buzbee, Golub and Nielson [3], Fischer,

Golub, Hald, Leiva and Widlund [6], Hockney [7], [8], Swarztrauber and Sweet [12]

and others.

In certain applications the data is sparse and the solution might also be required

only at relatively few mesh points. We have such a case if the function / is zero. The

only finite difference equations with nonzero right-hand side are then those which in-

volve mesh points on the boundary. A similar situation arises in certain implementa-

tions of capacitance matrix methods where the data is nonzero only at two to four

mesh points per mesh line, and similarly, the solution is needed only at relatively few

points, see O'Leary and Widlund [9], Proskurowski [10] , Proskurowski and Widlund

[11] and Widlund [14].

The purpose of this paper is to develop methods which exploit this sparsity. In

Sections 2 and 3, we will discuss problems in Cartesian coordinates for two and three

dimensions, respectively. We will refer to the mesh points with nonzero data as source

points and those where the solution is desired as target points. We will show that

when the number of source and target points is relatively small, substantial savings can

be realized both in terms of computer time and storage. Our method has been used

extensively by Proskurowski [10] in his recent work on capacitance matrix methods.

Received lune 2, 1977; revised August 8, 1977.

AMS (MOS) subject classifications (1970). Primary 65F05, 65N20.

*The work presented in this paper was supported by the ERDA Mathematics and Computing

Laboratory, Courant Institute of Mathematical Sciences, New York University, under Contract

EY-76-C-02-3077*000 with the Energy Research and Development Administration.

Copyright T 1978. American Mathematical Society

441

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

442 ALEXANDRA BANEGAS

Results from numerical experiments are presented in Section 4.

Acknowledgement. The work presented in this paper was carried out while the

author was a student at the Courant Institute. The project was suggested to her by

Professor Olof Widlund.

2. Algorithms for Problems in Two Dimensions. We begin this section by de-

scribing a conventional fast Poisson solver based on the fast Fourier transform (FFT).

We consider the standard five-point difference approximation of the Poisson equation

on a rectangle using a uniform mesh. We further specialize our discussion to a case

where the solution is periodic in one variable and Dirichlet conditions are imposed on

two opposite horizontal sides of the rectangle.

The five-point approximation gives rise to a block tridiagonal system of linear

equations,

/ „<., \ i £/ A
-I

-I AI

/O

.(m-l)

I \ /<m-l)

The number of blocks, m, equals the number of horizontal mesh lines in the rectangle

and the components of the vector u^ and /^ represent the values of the approximate

solution and the data at the mesh points, respectively. The matrix A is n x n,

14 -, -.\
-1 4 -1

A =

1 -1 4

Here n is the number of vertical mesh lines. We assume that n is an even number.

Since A is a symmetric matrix, there exists an orthonormal matrix of eigenvec-

tors Q such that

/*,

QTAQ = D

W
Here the X;- are the eigenvalues of A. The matrix A has two simple eigenvalues 2 and

6 which have the eigenvectors

(l/V«)(l,l,..-,l)r and (1/V«)(1,-1,..

respectively. There are also (« - 2)/2 double eigenvalues,

D3

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

FAST POISSON SOLVERS FOR PROBLEMS WITH SPARSITY 443

4-2 cos(27r//«), 1=1,2, ..., in- 2)/2,

with eigenvectors given by

0(i!l = V2/h sini2Mln),

$\,k = y/2/ñ cosi2nkl/n),

k = 0,\, . . . ,n-\,

I = 1,2, ...,(« -2)12.

The change of basis corresponding to the diagonalization of A can be carried out very

efficiently by using the FFT provided n has many prime factors; see Cooley, Lewis

and Welch [4]. We note that we can think of the Fourier coefficients of a vector f-1^

in terms of inner products of this vector with the eigenvectors given above.

After this change of basis, the matrix transforms into

A -I \\q-I A -I
Q1

Q'

Q1 \

Q

-I
!\ *

D -I

-I D

\

A permutation of the rows and columns of this matrix, which preserves symmetry and

groups the Ith equation of each block together into one block, results in a matrix of

the form

where

A» =

A,

-1 A,/

The algorithm is carried out in three steps:

X

/>; ;: -, \

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

444 ALEXANDRA BANEGAS

(i) Apply the FFT to the p'\ i = 0, . . . , m — 1, i.e. to the appropriately

partitioned data vector.

(ii) Permute the transformed vector and solve the n tridiagonal linear system

of equations by Gaussian elimination or by some other means, see Dahlquist, Bjorck

and Anderson [5, p. 166], Fischer, Golub, Hald, Leiva and Widlund [6] and Widlund

[13].
(iii) Apply the inverse FFT, after permuting and partitioning.

We now turn to our variant of this algorithm. We use no two dimensional

arrays. Since we wish to exploit the sparsity of the data, we choose to store them in

terms of the coordinates of the source points and the values of /at these points. We

note that we can find any Fourier coefficient at the expense of only a few arithmetic

operations if the data differs from zero only at a few points on any horizontal mesh

line. By using well-known properties of trigonometric functions, the components of

the eigenvectors of A can be precomputed and stored using only on the order of n

storage locations. The Fourier coefficients can be computed in an arbitrary order

without any penalty, when using this method, and the total number of arithmetic

operations required grows as n *NS, where Ns is the number of source points. To

save work space all the data required for each tridiagonal system of equations is com-

puted at one time. The system is then solved as before, and the contributions of the

resulting Fourier coefficients to the solution at the prescribed target points are found

and accumulated before the right-hand side of the next tridiagonal system is generated.

The total cost of this inverse Fourier transform part grows as n x NT, where NT is

the number of target points. The coordinates of, and values at, the target points are

stored in the same way as those of the source points. We note that the work to carry

out what corresponds to the second part of the conventional algorithm remains un-

changed.

The two methods discussed so far can be regarded as the extreme elements of a

whole family of algorithms. Suppose that certain mesh lines have so many source or

target points that it is worthwhile, for the sake of speed, to use the standard FFT for

these lines. It is then easy to combine the two Fourier methods. In our program we

have used an FFT routine by Dr. J. Cooley and ordered and renormalized the eigen-

vectors of A so that the two different Fourier methods can be used interchangeably.

The designation of any mesh line as dense requires n storage locations but, if dense

source and target lines coincide, the same storage locations can be used.

Our method can clearly be extended to other boundary conditions and coordi-

nate systems which allow the use of a discrete Fourier transform to separate the vari-

ables; see Fischer, Golub, Hald, Leiva and Widlund [6] and Widlund [13] for a dis-

cussion of certain such problems.

3. Algorithms for Problems in Three Dimensions. We now consider Poisson's

equation in three dimensions,

-Au=f,

where u and /are functions of three variables x, y and z. We assume that these func-

tions are periodic in x and y and impose Dirichlet conditions on the sides z = 0 and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

FAST POISSON SOLVERS FOR PROBLEMS WITH SPARSITY 445

z = L. A uniform mesh with nx x n2 x «3 mesh points is introduced and the La-

place operator is discretized by using a seven-point formula.

A conventional fast Poisson solver can be designed very much as in the two di-

mensional case. The FFT is first applied with respect to the x-variable and then with

respect to the y -variable. The resulting array is permuted and provides data for «j x

n2 tridiagonal systems of equations. The solutions of these systems give us the data

for inverse Fourier transforms with respect to x and.y. The algorithm requires const,

x nx x n2 x n3 x (log2Wj + log2«2 + 0(1)) arithmetic operations, where the con-

stant is of moderate size if nx and «2 have many prime factors.

We next consider ways of exploiting sparsity of the data. To simplify our nota-

tions, we assume that nx = n2 = n3 = n. If we have only a few source points on each

mesh line, the number of such points, Ns, will be on the order of n2. A direct exten-

sion of the algorithm of the previous section would require only on the order of n

computer words of storage for the solution of the tridiagonal systems but on the order

of n4 arithmetic operations.

A better compromise can be found between storage and speed. Exploiting the

sparsity of the data, a specific Fourier coefficient with respect to x is computed for

all values of y and z. The resulting two dimensional array is dense and we use the

FFT to find its Fourier transform with respect to y. We are then ready to solve «2

tridiagonal systems of equations. The inverse FFT is used on the rows of the resulting

two dimensional array, and we can then compute the contribution of these Fourier

modes to the target points just as in the case of two dimensions. It is again clear that

considerable savings in speed and storage can be realized if the number of source and

target points is relatively small. As in the two dimensional case, certain rows parallel

to the x-axis can be designated as dense source and target rows and the two Fourier

transforms used interchangeably.

4. Numerical Experiments. A Fortran program was prepared for and run on the

CDC 6600 at the ERDA Mathematics and Computing Laboratory of the Courant Insti-

tute of Mathematical Sciences, New York University. Our program, which solves prob-

lems in two dimensions, was later revised by Dr. Wlodzimierz Proskurowski and used

extensively by him on a CDC 7600 at the Lawrence Berkeley Laboratory, cf. Prosku-

rowski [10]. The execution times given below refer to runs at Berkeley using a FTN 4

(OPT = 2) compiler.

Proskurowski's program requires 4(NS + NT) + 2(m + n) storage locations,

where Ns and NT denote the number of source and target points, respectively. If the

sets of source and target points coincide, this requirement is decreased to 4NS +

2(m + n). We note that a conventional fast Poisson solver requires at least n x m

storage locations.

Operation counts given by Proskurowski [10] show that a conventional solver

given in Fischer, Golub, Hald, Leiva and Widlund [6] should be about 11% slower if

Ns + NT = 10« and n= m = 64. The advantage of our method grows slowly with

increasing values of n and m. The actual execution times given below reflect these

differences in the operation counts fairly closely. No experiment was carried out with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

446 ALEXANDRA BANEGAS

the conventional solver for the 256 x 256 case since such a run would have required

the use of the extended core storage of the CDC 7600.

Table

CPU Time in Seconds on a CDC 7600 Using a FTN 4 (OPT = 2) Compiler

Mesh
Time

in Seconds

Number of
Source and

Target Points

Conventional

Poisson Solver

Using FFT

Our Solver

64 x 64

128 x 128

64 x 64

64 x 64

128 x 128

256 x 256

0.043

0.203

0.027

0.0385

0.156

0.622

392

600

1224

2472

Department of Mathematics

Universidad Nacional Autónoma de Honduras

Tegucigalpa, D. C, Honduras

1. R. E. BANK, Marching Algorithms and Gaussian Elimination, Proc. Sympos. on Sparse

Matrix Computations, Argonne National Lab., Sept. 1975 (J. R. Bunch and D. J. Rose, Editors),

Academic Press, New York, 1976.

2. O. BUNEMAN, A Compact Noniterative Poisson Solver, Rep. SUIPR-294, Inst. Plasma

Research, Stanford Univ., 1969.

3. B. L. BUZBEE, G. H. GOLUB & C. W. NIELSON, "On direct methods for solving

Poisson 's equation," SIAM J. Numer. Anal, v. 7, 1970, pp. 627-656.

4. J. W. COOLEY, P. A. W. LEWIS & P. D. WELCH, "The fast Fourier transform algorithm:

Programming consideration in the calculation of sine, cosine and Laplace transform,"/. Sound

Vib., V. 12, 1970, pp. 315-337.

5. G. DAHLQUIST, A. BJÖRCK & N. ANDERSON, Numerical Methods, Prentice-Hall,

Englewood Cliffs, N. J., 1974.

6. D. FISCHER, G. GOLUB, O. HALD, C. LEIVA & O. WIDLUND, "On Fourier-Toeplitz

methods for separable elliptic problems," Math. Comp., v. 28, 1974, pp. 349-368.

7. R. W. HOCKNEY, "A fast direct solution of Poisson 's equation using Fourier analysis,"

/. Assoc. Comput. Mach., v. 12, 1965, pp. 95-113.

8. R. W. HOCKNEY, "The potential calculation and some applications," Methods in Compu-

tational Physics, Vol. 9, Academic Press, New York, 1970.

9. D. P. O'LEARY & O. WIDLUND, ERDA-NYU report. (To appear.)

10. W. PROSKUROWSKI, Numerical Solution of Helmholtz's Equation by Implicit Capaci-

tance Matrix Methods, Report 6402, Lawrence Berkeley Laboratory, February 1977.

11. W. PROSKUROWSKI & O. WIDLUND, "On the numerical solution of Helmholtz's

equation by the capacitance matrix method," Math. Comp., v. 30, 1976, pp. 433-468. Appeared

also as an ERDA-NYU report COO-3077-99.

12. P. SWARZTRAUBER & R. SWEET, Efficient FORTRAN Subprograms for the Solu-

tion of Elliptic Partial Differential Equations, Report NCAR-1N/1A-109, National Center for

Atmospheric Research, Boulder, Colorado, 1975.

13. O. WIDLUND, "On the use of fast methods for separable finite difference equations

for the solution of general elliptic problems," Sparse Matrices and Their Applications (D. J. Rose

and R. A. Willoughby, Editors), Plenum Press, New York, 1972.

14. O. WIDLUND, Capacitance Matrix Methods for Helmholtz' Equation on General Bound-

ed Regions, Proc. from a July 1976 Meeting in Oberwolfach. (To appear.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

