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ABSTRACT

The solution of partial differential equations on adaptively generated grids play an important role in scientific computation.
In this paper we compare two Poisson solvers for data on nonequispaced mesh points. A new meshless Fourier method
based on NFFT is constructed in R

3. This algorithm is compared to the well-established multigrid method working on
nonequidistant meshes. Our investigations are motivated especially by simulations of the behaviour of charged particles in
accelerators.
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1. INTRODUCTION

The development of efficient solvers for the numerical solution of Poisson’s equations, for instance for the simulation of
electrostatic fields, is still an important field of research, because problems get more and more demanding with respect
to computing time. Further, the appropriate modelling of practical problems often requires adaptive discretisations or
meshless methods.

While the efficient solution of Poisson’s equation is an important topic in various fields our paper is motivated by recent
developments in the simulations of the behaviour of charged particles in accelerators. Here, the fast calculation of space-
charge effects as full 3D simulation becomes more and more important. The full 3D treatment is particularly challenging
because the bunches typically have varying shape during their path through the accelerator ranging from very short to very
long. Thus, an appropriate approximation of the space-charge density ρ which is determined by the distribution of the
charged particles in a bunch requires a nonequidistant mesh for such shapes. The Poisson problem for this application
reads as

−∆u = ρ/ε0 in Ω ⊂ R
3

u = 0 on ∂Ω.
(1.1)

where u denotes the electrostatic potential and ε0 the dielectric constant of the vacuum.

In this paper we describe two different Poisson solvers working on nonequidistant grids. The first method newly
introduced in section 2.1 is based on the recently developed fast Fourier transform for nonequispaced knots (NFFT), see1

and the references therein. The construction of this new solver was inspired by an approach to fast direct solvers for
equispaced problems using d-variate periodic interpolation in shift-invariant spaces which was given by P öplau.2 This
idea provides error estimates and the construction of numerical algorithms based on FFT in a very convenient way. In
order to overcome the equispaced grid in2 we propose a new NFFT based algorithm. A software package for the NFFT
can be found in.3

The second method given in section 2.2 uses the discretisation of the Laplacian by second order finite differences. A
multigrid algorithm with a coarsening technique adapted to nonequidistant grids is applied for the solution of the resulting
linear system of equations. The adaptive coarsening first introduced in4 and further developed in5 ensures that the same
convergence rate is achieved for nonequidistant grids as well as for equidistant grids.17
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The numerical investigations in section 3 compare the two Poisson solvers. For equidistant meshes the behaviour of
both, multigrid for finite difference discretisations and FFT based Poisson solvers is well known: The iterative multigrid
method requires O(N) operations for N grid points, while FFT method as direct Poisson solver requires O(N log N)
operations on equispaced grids. Hence, the numerical effort is comparable as long as the number of grid points is not
too large, that is if the log N -term is in the range of mC assuming O(N) = mCN . Here, m refers to as the number of
multigrid iterations and C the number of operations necessary within every iteration step which depends on the choice of
the multigrid components.6

Although the multigrid algorithm turns out to be one order of magnitude faster in CPU time than the NFFT Poisson
solver, the use of a mesh for the discretisation include some open problems. These are, for instance, the choice of the
number of mesh lines and the optimal distribution of mesh lines.19 The advantage of the NFFT method is that it can be
applied to scattered data. The here developed meshless method never discretise the Laplacian. The operator is instead
applied directly to the exponentials.

2. SOLUTION ON NONEQUISPACED GRIDS

2.1. Fourier Method

First we introduce some notations. For fixed N ∈ N let Id
N denote the set

Id
N := {k = (k1, . . . , kd)

T ∈ Z
d : −

N

2
≤ kj <

N

2
; j = 1, . . . , d} .

The three-variate torus T 3 is represented by the cube

T 3 := {x = (x1, x2, x3)
T ∈ R

3 : |xj | ≤ 1/2; j = 1, 2, 3} ,

where the opposite sides of T 3 are identified. Furthermore, let W s
2 (T 3) be the periodic Sobolev space of order s ∈ R.

This space is equipped with the norm

‖f‖s,2 :=

(

∑

k∈Z3

(

1 + ‖2πk‖2
2

)s
|ck(f)|2

)1/2

,

where the Fourier coefficients are given by

ck(f) :=

∫

T 3

f(t) e−2πikt dt (k ∈ Z
3) .

For s = 0 we have W 0
2 = L2(T

3). In the following, we consider the problem to find u ∈ W s
2 (T 3) which satisfies the

differential equation
−∆u = f (2.1)

for given f ∈ W s−2
2 (T 3). In particular we have periodic boundary conditions.

For a 1–periodic three-variate integrable function f : R
3 → R, we write

I(f, KN , v) =

∫

T 3

f(t)KN (v − t) dt =

∫

T 3

f(v − t)KN(t) dt .

We are interested in kernels of the form
KN(t) :=

∑

k∈I3

N

ωs
k e−2πikt

with ωs
k

= (1 + ‖2πk‖2
2)

−s. In the case s = 2m with m ∈ N the kernel KN is related to the periodic version of the
cardinal polyharmonic splines introduced by Madych and Nelson7 as fundamental solutions of the polyharmonic equation
(see8 for details).



In contrast to finite difference method (FDM) we never discretise the differential operator, instead the operator is applied
to the basis functions directly, such that we obtain a meshless method. Let u be a function with uniformly convergent
Fourier series

u(v) =
∑

k∈Z3

ûk e−2πikv .

Then it follows that
I(u, KN , v) =

∑

k∈I3

N

ûkωs
k e−2πikv . (2.2)

Our aim is to approximate the solution of (1.1) by functions of the form (2.2) by iterative solutions of large least squares
problems. More precisely we have to determine the coefficients ûk (k ∈ I3

N ). In general the functions f and g in (1.1)
are not given explicitly. The problem is to recover I(u, KN ) from M samples vj ∈ Ω and R samples wj ∈ δΩ. In the
following we assume that Ω ⊂ [−1/2, 1/2]3, than (1.1) can be written as follows:
Given a set of M arbitrary distinct nodes vj (j ∈ I1

M ) with vj ∈ T 3, and values f1
j = f(vj) at the nodes vj . We are

looking for a numerical method to compute an approximation of (1.1) such that

f1
j = ∆ I(u, KN , vj) (2.3)

and furthermore given a set of R arbitrary distinct nodes wj (j ∈ I1
R) with wj ∈ δ[−1/2, 1/2]3, and values g1

j = g(wj)
at the nodes wj . By (1.1) we obtain the equations

g1
j = I(u, KN , wj) . (2.4)

In matrix vector notation the equations (2.3) read as

AWûN = f1
M ,

where the matrix A is given by
A :=

(

e−2πikvj
)

j∈I1

M
,k∈I3

N

.

The vector
ûN := (ûk)k∈I3

N
,

denotes the unknown Fourier coefficients, where

W := diag(ω̃s
k
)k∈I3

N
with ω̃s

k
:=

−‖2πk‖2
2

(1 + ‖2πk‖2
2)

s
.

is a diagonal matrix and
f 1

M := (fj)j∈I1

M

is a vector with the given values in the domain Ω ⊂ T 3. From equation (2.4) we obtain

ABW BûN = g1
R , (2.5)

where the matrices AB and W B are given by

AB :=
(

e−2πikwj
)

j∈I1

R
,k∈I3

N

and
W B := diag(ωs

k
)k∈I3

N
,

respectively. The vector
g1

R := (gj)j∈I1

R

denotes the given values at the boundary. In order to find an approximate solution for (1.1) we have to solve the equation
[

AW

ABW B

]

ûN =

[

f1
M

g1
R

]

. (2.6)



Using an approach with radial basis functions in (2.2) instead of the exponentials, this method is known as Kansa’s9, 10

method.

Only in the case M + R = N 3 we obtain a square matrix, otherwise we suggest to solve the following standard
least–squares problem: Minimise

∥

∥

∥

∥

[

AW

ABW B

]

ûN −

[

f1
M

g1
R

]∥

∥

∥

∥

2

. (2.7)

It is well–known that the normal equation

[

WAH , W BAH
B

]

[

AW

ABW B

]

ûN =
[

WAH , W BAH
B

]

[

f1
M

g1
R

]

(2.8)

is used to solve the least–squares problem (2.7) for over–determined systems, i.e. M + R > N3.

We suggest to solve the equations (2.6) by a CG-type method applied to the normal equation, which can be considered
as least–squares projection method. There are many ways, all mathematically equivalent, to implement the CG method
for least–squares problems. In exact arithmetic they will all generate the same sequence of approximations, but in finite
precision the achieved accuracy may differ substantially. It is important to notice that an implementation of the CG method
for symmetric positive definite systems should not be applied directly to ill-conditioned normal equations (2.8) (see the
discussion in11). The system (2.8) and methods derived from it are often labeled with NR (N for “Normal” and R for
“Residual”). Thus CGNR denotes the Conjugate Gradient method applied to (2.8) (see,12 CGNE in13). Algorithm 2.3
of13 reads with respect to our notation as follows.

Algorithm (CGNR)
Input: N ∈ N,

M ∈ N, f
1
M , W ,

R ∈ N, g1
R, W B,

û
(0)
N % start vector

r(0) = f 1
M − AWû

(0)
N

r
(0)
B = g1

R − ABW Bû
(0)
N

q = WAHr(0) + W BAH
Br

(0)
B

k = 0
while (not stop) do

α = ‖WAHr(k)‖2
2/‖

[

AW

ABW B

]

q‖2
2

û
(k+1)
N = û

(k)
N + αq

r(k+1) = r(k) − αAWq

r
(k+1)
B = r

(k)
B − αABW Bq

β = ‖WAHr(k+1) + W BAH
Br(k+1)‖2

2/‖WAHr
(k)
B + W BAH

Br
(k)
B ‖2

2

q = WAHr(k+1) + W BAH
Br

(k+1)
B + βq

k = k + 1
end while
Output: Compute the CGNR solution ûN = û

(k)
N .

From the values û
(k)
N we compute the Fourier coefficients of I(u, KN , v) by Wû

(k)
N . Finally we are able to compute

values on a regular grid by a d–variate FFT.

Straightforward matrix vector multiplications with A, AH and with AB, AH
B requireO(N3M) and O(N3R) arithmetic

operations, respectively, too many for our application. To speed up the matrix vector multiplication with a general matrix
A and AB we use an approximative algorithm, which is known as NFFT. Fast and robust computation of the discrete
Fourier transforms for nonequispaced data

f(vj) =
∑

k∈I3

N

f̂k e−2πikvj (j ∈ I1
M ) (2.9)



and
h(k) :=

∑

j∈I1

M

f̂j e−2πikvj (k ∈ I3
N ) , (2.10)

are possible with the NFFT. Details concerning NFFT algorithms can be found for example in1 and a software package can
be found in.3 In summary the NFFT, i.e. the fast computation of (2.9) or (2.10) requires only O(N 3 log N +(2m+1)3M)
arithmetic operations where m is a constant and depend only on the accuracy of the computation.

2.2. Multigrid Method for a Finite Difference Discretisation

The finite difference method (FDM) discretises the Laplacian by second-order central differences. To give a brief expla-
nation for nonequidistant meshes we consider equation (2.1) on a d-dimensional box Ω = [ax1

, bx1
] × [ax2

, bx2
] × · · · ×

[axd
, bxd

]. Every coordinate direction is discretised by Nxj
subintervals hxj ,0, hxj ,1, . . . , hxj ,Nxj

−1 with bxj
− axj

=
∑Nxj

−1

i=0 hxj ,i for j = 1, . . . , d. Further we introduce

h̃xj ,i =







hxj ,i−1 + hxj ,i

2
i = 1, . . . , Nxj

− 1

0 i = Nxj

for j = 1, . . . , d which is known as mesh spacing on the dual grid. In the case d = 3 we simplify (x1, x2, x3) = (x, y, z).
Thus, this discretisation leads to the following system of equations

h̃y,jh̃z,k

(

− 1
hx,i−1

ui−1,j,k +
(

1
hx,i−1

+ 1
hx,i

)

ui,j,k − 1
hx,i

ui+1,j,k

)

+ h̃x,ih̃z,k

(

− 1
hy,j−1

ui,j−1,k +
(

1
hy,j−1

+ 1
hy,j

)

ui,j,k − 1
hy,i

ui,j+1,k

)

+ h̃x,ih̃y,j

(

− 1
hz,k−1

ui,j,k−1 +
(

1
hz,k−1

+ 1
hz,k

)

ui,j,k − 1
hz,k

ui,j,k+1

)

= h̃x,ih̃y,jh̃z,kfi,j,k

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1, k = 1, . . . , Nz − 1. The same system of equations is obtained in the field of
computational electromagnetics with the application of the Finite Integration Technique (FIT) which has been introduced
by Weiland.14

In matrix vector notation the equations read as

(H̃z ⊗ H̃y ⊗ Ax + H̃z ⊗ Ay ⊗ H̃x + Az ⊗ H̃y ⊗ H̃x)u = H̃z ⊗ H̃y ⊗ H̃xf

with the settings
H̃x := diag(h̃x,1, h̃x,2 . . . , h̃x,Nx−1),

Ax :=

















(

1
hx,0

+ 1
hx,1

)

− 1
hx,1

− 1
hx,1

(

1
hx,1

+ 1
hx,2

)

− 1
hx,2

. . .

− 1
hx,Nx−2

(

1
hx,Nx−2

+ 1
hx,Nx−1

)

















∈ R
Nx−1×Nx−1 .

The diagonal matrices H̃y and H̃z are defined analogously to H̃x and the finite difference matrices Ay and Az analo-
gously to Ax. Note the different dimensions of the matrices corresponding to the number of mesh lines in every coordinate
direction. The vectors f = (fi,j,k)

Nx−1,Ny−1,Nz−1
i=1,j=1,k=1 and u = (ui,j,k)

Nx−1,Ny−1,Nz−1
i=1,j=1,k=1 contain the values of the right hand

side and the potential at the mesh points, respectively.

State-of-the-art is the application of a multigrid method as Poisson solver. In model cases the numerical effort scales
with the number of mesh points. Here, we give only the general idea of a geometrical multigrid algorithm. Details can
be found in.6, 15 The multigrid algorithm operates on a certain number of grids starting with the mesh given by the
discretisation of Poisson’s equation. This mesh is referred to as the fine grid or the fine level. Then a sequence of coarser
grids is generated by removing mesh lines. On an equidistant mesh every second mesh line is removed. Now iteratively, a



raw approximation of the solution of the systems of equations is obtained by the application of a few steps of a relaxation
scheme (e. g. Gauss–Seidel iteration) which is called pre-smoothing. This approximation is then improved by a correction
vector obtained on the coarser grids (the so-called coarse grid correction) where restriction and interpolation work as grid
transfer operators. After applying interpolation another few steps of relaxation are necessary (post-smoothing). For the
space charge calculations a multigrid V-cycle is realised. This scheme goes strictly down from the fine to the coarsest grid
and then up again to the fine level.

As shown in16, 17 the coarsening strategy is crucial for the convergence of the multigrid algorithm on nonequidistant
grids. The generation of coarse grids with every second grid line removed as suggested in15 is not reasonable with the
discretisations for bunches. It would lead to coarser grids with increasing aspect ratio of the mesh spacing. The convergence
of a multigrid scheme on such grids would considerably slow down. Here, the removal of mesh lines follows the rule: Two
neighbouring steps h1 and h2 remain also in the next coarser grid as long as either h1 ≥ shmin or h2 ≥ shmin, where hmin

denotes the overall minimal step size of the corresponding fine level. With the objective to obtain a decreasing aspect ratio
of the mesh spacing a choice of s = 1.6 or s = 1.7 provides the best results. The application of this scheme to space-charge
calculations of charged particles sometimes requires a more rigorous coarsening with 1.5 ≤ s ≤ 2.0.17

The numerical tests have been performed with the following multigrid components: two pre- and two post-smoothing
steps with Gauss–Seidel relaxation, full weighting restriction and trilinear interpolation as grid transfer operators.

3. NUMERICAL EXAMPLES

Our algorithms were implemented in C using double precision arithmetic. All numerical experiments were run under
Linux 2.4.20 on an AMD Atlon XP 2700+ with 1 GB of RAM. The implementation of the CGNR uses the NFFT library
Version 1.0, where we apply the NFFT/NFFTT package3 with Kaiser-Bessel functions, truncation parameter m = 6 and
oversampling factor σ = 2.
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Figure 1. Potential (3.2) given on the nonequidistant grid (3.1): (x, z)-plane with y = 0.

Example: Let the mesh points on a nonequidistant grid given by vj = (v1
k1

, v2
k2

, v3
k3

)T with

vl
kl

=
sinh

(

6kl

Ml

)

2 sinh(3)
(kl = −Ml/2, . . . , Ml/2− 1; l = 1, 2, 3). (3.1)

and j = 0, . . . , M − 1, where M = M1M2M3. Such meshes are typical for the calculation of space-charge effects of
charged particle bunches: we have a fine discretisation according to the distribution of the particles in the centre of a box
around the bunch. Further the discretisation becomes coarser outside the bunch.5,18



Typically particles are assumed to have a Gaussian distribution in the begin of an accelerating process. Thus we choose
the potential for the numerical test as

u(v1, v2, v3) = e−(16v2

1
+18v2

2
+20v2

3
)

such that

−∆u(v1, v2, v3) = −(1024v2
1 + 1296v2

2 + 1600v2
3 − 108) e−(16v2

1
+18v2

2
+20v2

3
) in Ω = [−1/2, 1/2]3. (3.2)

Figure 1 shows this potential in the (x, z)-plane of the upper constructed nonequidistant grid with y = 0.

We measured the error

E := max
j=1,...,M

|f(vj) − f̃(vj)|

|f(vj)|
, (3.3)

where f̃ is the approximate solution of the multigrid scheme and Fourier method, respectively. Table 1 compares the CPU

multigrid method Fourier method

M time in sec. E time in sec. E

163 0.04 3.33e-02 0.68 2.95e-01
323 0.17 8.60e-03 5.76 5.19e-02
643 1.43 1.05e-02 41.44 3.34e-02

1283 12.1 1.07e-02 217.8 4.85e-02

Table 1. Approximation error and computational time.

time of the multigrid method and the Fourier method. We applied the algorithms such that the error E < 0.05. Column 2
and 4 contain the computational time in seconds for the multigrid method and the Fourier method, respectively. For these
tests we chose M1 = M2 = M3. The Fourier method was performed with N = M1/2. Note that each step of the CGNR
method requires the computation of 4 NFFTs because we require in addition that the solution is zero at the boundary (see
(2.4)). In our test case we set R = 3 ·N ·N and stop the iteration after four steps. The multigrid method achieves the error
E after two iteration steps. Note that the Fourier method is much slower, however we are not longer restricted to special
grids.
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2. G. P öplau, “Fast direct solvers for PDE’s in shift-inariant periodic spaces,” in Approximation Theory VIII, C. Chui
and L. Schumaker, eds., pp. 325 – 333, World Scientific Publishing, Inc., (Singapore), 1995.

3. S. Kunis and D. Potts, “NFFT, Softwarepackage, C subroutine library.” http://www.math.uni-luebeck.de/potts/nfft,
2002.
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