
Fast polynomial factorization and modular composition∗

Kiran S. Kedlaya†

MIT
Christopher Umans‡

Caltech

August 31, 2008

Abstract

We obtain randomized algorithms for factoring degree n univariate polynomials over Fq requiring
O(n1.5+o(1) log1+o(1) q + n1+o(1) log2+o(1) q) bit operations. When log q < n, this is asymptotically
faster than the best previous algorithms (von zur Gathen & Shoup (1992) and Kaltofen & Shoup (1998));
for log q ≥ n, it matches the asymptotic running time of the best known algorithms.

The improvements come from new algorithms for modular composition of degree n univariate poly-
nomials, which is the asymptotic bottleneck in fast algorithms for factoring polynomials over finite fields.
The best previous algorithms for modular composition use O(n(ω+1)/2) field operations, where ω is the
exponent of matrix multiplication (Brent & Kung (1978)), with a slight improvement in the exponent
achieved by employing fast rectangular matrix multiplication (Huang & Pan (1997)).

We show that modular composition and multipoint evaluation of multivariate polynomials are es-
sentially equivalent, in the sense that an algorithm for one achieving exponent α implies an algorithm
for the other with exponent α + o(1), and vice versa. We then give two new algorithms that solve the
problem optimally (up to lower order terms): an algebraic algorithm for fields of characteristic at most
no(1), and a nonalgebraic algorithm that works in arbitrary characteristic. The latter algorithm works by
lifting to characteristic 0, applying a small number of rounds of multimodular reduction, and finishing
with a small number of multidimensional FFTs. The final evaluations are reconstructed using the Chi-
nese Remainder Theorem. As a bonus, this algorithm produces a very efficient data structure supporting
polynomial evaluation queries, which is of independent interest.

Our algorithms use techniques which are commonly employed in practice, so they may be competi-
tive for real problem sizes. This contrasts with all previous subquadratic algorithsm for these problems,
which rely on fast matrix multiplication.

∗The material in this paper appeared in conferences as [Uma08] and [KU08].
†Supported by NSF DMS-0545904 (CAREER) and a Sloan Research Fellowship.
‡Supported by NSF CCF-0346991 (CAREER), CCF-0830787, BSF 2004329, and a Sloan Research Fellowship.

Dagstuhl Seminar Proceedings 08381
Computational Complexity of Discrete Problems
http://drops.dagstuhl.de/opus/volltexte/2008/1777

1 Introduction

Polynomial factorization is one of the central problems in computer algebra. Milestones in the development
of polynomial-time algorithms for factoring in Fq[X] are the algorithms of Berlekamp [Ber70], Cantor &
Zassenhaus [CZ81], von zur Gathen & Shoup [vzGS92] and Kaltofen & Shoup [KS98]. See the surveys
[vzGP01, Kal03, vzG06]. Presently, there are practical algorithms that factor degree n polynomials over
Fq using a quadratic number of operations (ignoring for a moment the dependence on q), and sub-quadratic
algorithms that rely on fast matrix multiplication [KS98]. Efficient algorithms for factoring polynomials
over other domains (e.g. Q, Z, algebraic number fields) and for factoring multivariate polynomials in turn
depend on factoring in Fq[X].

The bottleneck in most modern factoring algorithms (including the asymptotically fastest ones) turns
out to be the computation of the “Frobenius power” polynomials, Xqi

, modulo the degree n polynomial f
to be factored, for various i between 1 and n. When i = n, a repeated-squaring approach requires n log q
modular multiplications of degree n polynomials. A clever improvement based on the so-called “polynomial
representation of the Frobenius map” (an idea attributed to Kaltofen) was exploited in this context by von
zur Gathen & Shoup [vzGS92]: first compute Xq mod f(X) by repeated squaring, then compose that
polynomial with itself modulo f(X) to get

(Xq)q mod f(X) = Xq2
mod f(X).

Repeating the composition log n times produces Xqn
mod f(X) with only log q modular multiplications

and log n modular compositions overall. There are sub-quadratic algorithms for modular composition, and
so this approach is asymptotically superior to the straightforward repeated-squaring algorithm. The same
idea can also be applied to other problems that arise in polynomial factorization, like computing the norm
and trace maps, Xqn−1+qn−2+···+q+1 and Xqn−1

+ Xqn−2
+ · · ·+ Xq + X , with similar speedups.

Thus the modular composition problem emerges as a crucial component of the fastest factoring al-
gorithms (as well as other problems, such as irreducibility testing and constructing irreducible polyno-
mials [Sho94], and manipulating normal bases of finite fields [KS98]). Indeed, if we could compute
f(g(X)) mod h(X) for degree n polynomials f, g, h ∈ Fq[X] in nα operations, then there are algorithms
for factoring degree n polynomial over Fq using

O(nα+1/2+o(1) + n1+o(1) log q)

operations. For comparison, the currently fastest algorithms take either O(n2 + n log q) · poly log(n, q)
[vzGS92] or O(n1.815 log q) · poly log(n, q) [KS98] operations (also, see the more precise accounting and
detailed comparisons in Figure 1 of [KS98]).

1.1 Modular composition of polynomials

The problem of modular composition is, given three degree n univariate polynomials f(x), g(x), h(x) over
a ring with h having invertible leading coefficient, to compute f(g(x)) (mod h(x)). In contrast to other
basic modular operations on polynomials (e.g modular multiplication), it is not possible to obtain an asymp-
totically fast algorithm for modular composition with fast algorithms for each step in the natural two step
procedure (i.e., first compute f(g(x)), then reduce modulo h(x)). This is because f(g(x)) has n2 terms,
while we hope for a modular composition algorithm that uses only about O(n) operations. Not surprisingly,
it is by considering the overall operation (and beating n2) that asymptotic gains are made in algorithms that
employ modular composition.

2

Perhaps because nontrivial algorithms for modular composition must handle the modulus in an inte-
grated way (rather than computing a remainder after an easier, nonmodular computation) there have been
few algorithmic inroads on this seemingly basic problem. Brent & Kung [BK78] gave the first nontrivial
algorithm in 1978, achieving an operation count of O(n(ω+1)/2), where ω is the exponent of matrix multi-
plication (the best upper bound is currently ω < 2.376 [CW90]). Huang & Pan [HP98] achieved a small
improvement, by noting that the bound is actually O(nω2/2) where ω2 is the exponent of n × n by n × n2

matrix multiplication, and giving an upper bound on ω2 that is slightly better than 2.376 + 1. Even with op-
timal matrix multiplication, these algorithms cannot beat O(n1.5), and it is currently not feasible in practice
to achieve their theoretical guarantees, because those rely on the asymptotically fastest algorithms for matrix
multiplication, which are currently impractical. Finding new algorithms for MODULAR COMPOSITION with
running times closer to O(n) was mentioned several times as an important and longstanding open problem
(cf. [Sho94, KS98], [BCS97, Problem 2.4], [vzGG99, Research Problem 12.19]).

We note that the special case of modular composition in which m = 1 and the modulus h(X) is Xd

has an algorithm attributed to Brent & Kung that uses O(n1.5) · poly log(n) operations (see Exercise 12.4
in [vzGG99]), and a different algorithm by Bernstein [Ber98] that is faster in small characteristic. However,
this special case is not useful for polynomial factorization (and other applications), because in these applica-
tions h(X) ends up being the input polynomial, and modular composition is used as a means of determining
its (initially unknown) structure.

1.2 From modular composition to multivariate multipoint evaluation

While the algorithms of [BK78] and [HP98] reduce MODULAR COMPOSITION to matrix multiplication, in
this paper, we reduce MODULAR COMPOSITION to the problem of MULTIVARIATE MULTIPOINT EVALUA-
TION of polynomials over a ring R: given an m-variate polynomial f(X0, . . . , Xm−1) over R of degree at
most d− 1 in each variable, and given αi ∈ Rm for i = 0, . . . , N − 1, compute f(αi) for i = 0, . . . , N − 1.
Using this reduction, an algorithm for MULTIVARIATE MULTIPOINT EVALUATION that is optimal up to
lower order terms yields an algorithm for MODULAR COMPOSITION that is optimal up to lower order terms.

In fact, we consider a slight generalization of modular composition, in which we are given a multivariate
polynomial f(X1, X2, . . . , Xm) ∈ R[X1, X2, . . . , Xm] and m univariate polynomials

g1(X), . . . , gm(X) ∈ R[X]

together with the modulus h(X) ∈ R[X] (with invertible leading coefficient) and we wish to compute

f(g1(X), . . . , gm(X)) mod h(X).

We show that MULTIVARIATE MULTIPOINT EVALUATION and this general version of MODULAR COMPOSI-
TION are in a precise sense equivalent (via reductions in both directions). This suggests that the reduction to
MULTIVARIATE MULTIPOINT EVALUATION is the “right” approach, and indeed that progress on MODULAR

COMPOSITION cannot be achieved without progress on MULTIVARIATE MULTIPOINT EVALUATION.
Recall that one can evaluate a degree n univariate polynomial at n evaluation points in O(n log2 n)

operations, for an amortized cost of only O(log2 n) operations per evaluation. However, nothing similar is
known for multipoint evaluations of multivariate polynomials, which seems to be a significantly more chal-
lenging problem. The only improvement over the straightforward algorithm is by Nüsken & Ziegler [NZ04],
who show how to evaluate bivariate polynomial with individual degrees d at d2 points in O(dω2/2+1) op-
erations; their algorithm generalizes to the m-variate case where it takes O(d(ω2/2)(m−1)+1) operations.
Unfortunately, this is not enough to yield an improved algorithm for MODULAR COMPOSITION via the
above equivalence.

3

1.3 Our results

In this paper, we essentially solve the MODULAR COMPOSITION problem completely, presenting algorithms
that work over any finite field, whose running times are optimal up to lower order terms. We do this via the
aforementioned reduction, by giving new algorithms for MULTIVARIATE MULTIPOINT EVALUATION with
running times that are optimal up to lower order terms.

We give two very different algorithms for MULTIVARIATE MULTIPOINT EVALUATION. The first works
over any finite field (and even more general rings of the form (Z/rZ)[Z]/(E(Z)), where E is some monic
polynomial). It solves the problem by lifting to characteristic 0 followed by recursive multimodular reduc-
tion and a small number of multidimensional FFTs. A major advantage of this algorithm is that it is simple,
practical and implementable. A minor disadvantage is that it is nonalgebraic — it requires bit operations
to compute the modular reductions. A purely algebraic algorithm carries some aesthetic appeal, and could
be important in settings where one is working in an arithmetic model of computation (see, e.g., the pseudo-
random generator of [KI04] for an example involving polynomial factorization). Our second algorithm has
the advantage of being algebraic, but works only in fields of small characteristic. It solves the problem by
reducing MULTIVARIATE MULTIPOINT EVALUATION to multipoint evaluation of a univariate polynomial
over an extension ring; to actually make this natural idea work requires a fairly intricate lifting using the
p-power Frobenius, where p is the characteristic.

An important feature of both of our algorithms is that they do not rely on fast matrix multiplication. The
main operations are standard fast univariate polynomial arithmetic operations, and multipoint evaluation
and interpolation of univariate polynomials. All of these problem have algorithms that are asymptotically
optimal up to lower order terms, and that are very reasonable in practice. In all of the settings we have
mentioned where modular composition is the crucial subroutine, the other parts of the algorithms are again
these standard fast and practical operations, so the algorithms derived from our new algorithm could be
feasible in practice.

In the next two subsections, we describe in more detail the techniques used in each of our two algorithms.

1.4 Techniques used in the multimodular reduction algorithm

We describe the main idea assuming the ring is Fp, for p prime; the reduction from the general case to this
case uses similar ideas.

A basic observation when considering algorithms for MULTIVARIATE MULTIPOINT EVALUATION is that
if the evaluation points happen to be all of Fm

p , then they can be computed all at once via the multidimen-
sional (finite field) FFT, with an operation count that is best-possible up to logarithmic factors. More gen-
erally, if the evaluation points happen to be well-structured in the sense of being all of Sm for some subset
S ⊆ Fp, then by viewing Fp[X1, X2, . . . , Xm] as Fp[X1, X2, . . . , Xm−1][Xm] and applying an algorithm
for univariate multipoint evaluation, and repeating m times, one can achieve an essentially optimal algo-
rithm. But these are both very special cases, and the general difficulty with MULTIVARIATE MULTIPOINT

EVALUATION is contending with highly unstructured sets of evaluation points in Fm
p .

Our main idea is to use multimodular reduction to transform an arbitrary set of evaluation points into
a “structured” one to which the FFT solution can be applied directly. We lift f and each evaluation point
αi to the integers by identifying the field Fp with the set {0, . . . , p − 1}. We can then compute the multi-
point evaluation by doing so over Z and reducing modulo p. To actually compute the evaluation over Z, we
reduce modulo several smaller primes p1, . . . , pk, producing separate instances of MULTIVARIATE MULTI-
POINT EVALUATION over Fpi for i = 1, . . . , k. After solving these instances, we reconstruct the original
evaluations using the Chinese Remainder Theorem.

4

This multimodular reduction can be applied recursively, with the primes in each round shrinking until
they reach p∗ ≈ (md) in the limit. By this last round, the evaluation points have been “packed” so tightly
into the domain Fm

p∗ that we can apply the FFT to obtain all evaluations in Fm
p∗ with little loss: dm operations

are required just to read the input polynomial, and the FFT part of our algorithm requires only about (dm)m

operations (and recall our requirement that m < do(1)).
To obtain our most general result, we may need to apply three rounds of multimodular reduction; for the

application to MODULAR COMPOSITION, only two rounds are needed, making the algorithm quite practical.
It is worth noting that we benefit from multimodular reduction for a quite different reason than other

algorithms that employ this technique. Typically, multimodular reduction is used to reduce the “word size”,
when computing with large word sizes would be prohibitive or spoil the target complexity. In our case we
are perfectly happy computing with word size log q, so the multimodular reduction provides no benefit there.
What it does do, however, is “pack” the evaluation points into a smaller and smaller space, and it does so
extremely efficiently (requiring only local computations on each point). Thus, we are benefiting from the
aggregate effect of applying multimodular reduction to an entire set, rather than directly from the reduced
word size.

Our algorithm can also be used in the univariate (m = 1) case (via a simple transformation to the m À 1
case via the map in Definition 2.3). The overall algorithm requires only elementary modular arithmetic in Z,
and the FFT. Thus, our algorithm may be competitive, in simplicity and speed, with the “classical” algorithm
for univariate multipoint evaluation (see any standard textbook, e.g., [vzGG99]). One striking contrast with
the classical algorithm is that after a preprocessing step we can achieve poly(log n, log q) actual time for
each evaluation (as opposed to amortized time); this can be interpreted as giving a powerful data structure
supporting polynomial evaluation queries. This observation is fleshed out in Section 5.

1.5 Techniques used in the algebraic algorithm for small characteristic

As mentioned above, our algebraic algorithm for MULTIVARIATE MULTIPOINT EVALUATION utilizes the
very natural idea of reducing to multipoint evaluation of a univariate polynomial over an extension ring.
Suppose we have a multivariate polynomial f(X0, X1, . . . , Xm−1) with individual degrees d − 1, with
coefficients in Fq. A related univariate polynomial f∗ is obtained by the Kronecker substitution:

f∗(Z) = f(Z, Zd, Zd2
, . . . , Zdm−1

).

A tempting approach is to describe some (efficiently computable) mapping from evaluation points α =
(α1, . . . , αm) ∈ Fm

q intended for f to evaluation points ᾱ in an extension field, intended for f∗, with the
property that f(α) can be easily recovered from f∗(ᾱ). Then we could perform multipoint evaluation of f
by mapping all of the evaluation points to their counterparts in the extension field, and then invoking a fast
univariate multipoint evaluation algorithm to evaluate f∗ at these points.

We are able to make something very close to this strategy work. To do so we need to (1) define f∗ by
raising to successive powers of a parameter h ≈ dm2 instead of d, (2) carefully construct the extension field,
and (3) arrange for h to be a power of the characteristic (this is why we need small characteristic) so that we
can exploit properties of the Frobenius endomorphism.

A technical requirement of our algorithm is that it needs an element of multiplicative order h− 1 in Fq.
If Fq does not contain the subfield Fh, such an element does not even exist. As a result, we need to first
extend Fq to guarantee such an element. This complication is not needed in settings where an order-(h− 1)
element is already available.

5

The inspiration for this algorithm is two recent works in coding theory: a new variant of Reed-Solomon
codes discovered by Parvaresh & Vardy [PV05] and a particular instantiation of these codes used by Gu-
ruswami & Rudra [GR06]. The analysis of the decoding algorithm in [PV05] uses the Kronecker substitution
to obtain a univariate polynomial from a multivariate polynomial that carries information about the received
word. This univariate polynomial is then viewed over an extension field, just as in this work. In [GR06],
they utilize a particular extension field with the property that raising a polynomial (that is a canonical repre-
sentative of a residue class in the extension field) to a Frobenius power is the same as shifting the polynomial
by a generator of the field. We use the same trick to “store” the coordinates of an intended evaluation point
in a single extension ring element, and then “access” them by raising to successive Frobenius powers.

1.6 Obtaining algorithms for transposed modular composition

The transpose of the modular composition problem is called MODULAR POWER PROJECTION, and it is also
useful in algorithms for computing with polynomials. There is a general method (the “transposition princi-
ple”) for transforming algebraic algorithms into algorithms for the transposed problem with nearly identical
complexity. Our algebraic algorithm for MODULAR COMPOSITION thus immediately yields algorithms for
MODULAR POWER PROJECTION with operation counts that are optimal up to lower order terms, but only
over fields of small characteristic.

Because our multimodular reduction-based algorithm for MODULAR COMPOSITION is nonalgebraic, the
transposition principle does not directly apply. However, in Section 7.2 we show that this disadvantage can
be overcome — the nonalgebraic parts of our algorithm interact well with the transposition principle —
and consequently we obtain from it an algorithm for MODULAR POWER PROJECTION in any characteristic,
whose running time is optimal up to lower order terms.

1.7 Application to polynomial factorization

As noted above, MODULAR COMPOSITION is used as a black box in a number of important algorithms for
polynomials over finite fields, and the same is true for the transposed problem MODULAR POWER PROJEC-
TION discussed in the previous subsection. Perhaps the most important example is factorization of degree n
univariate polynomials; in this section we summarize our improvements for that problem1.

Kaltofen & Shoup [KS98] show that an algorithm for modular composition of degree n polynomials
over Fq requiring C(n, q) bit operations gives rise to an algorithm for polynomial factorization requiring

n0.5+o(1)C(n, q) + n1+o(1) log2+o(1) q

bit operations. This dependence on C(n, q) is worked out explicitly in Section 8. Using our algorithm for
modular composition, we thus obtain an algorithm for polynomial factorization requiring

(n1.5+o(1) + n1+o(1) log q) log1+o(1) q

bit operations. By contrast, the best previous algorithms that work over arbitrary finite fields (von zur
Gathen & Shoup [vzGS92] and Kaltofen & Shoup [KS98]) require (n2+o(1) + n1+o(1) log q) log1+o(1) q
and n1.815 log2+o(1) q bit operations, respectively; we thus obtain an asymptotic improvement in the range
log q < n.

1Here we discuss our most general improvements (i.e., in arbitrary characteristic) using the nonalgebraic multimodular
reduction-based algorithm. The running times therefore count bit operations, so the reader familiar with the accounting in pre-
vious work, which counts arithmetic operations in the field, should expect to see an “extra” log q factor.

6

In Section 8 we also discuss additional problems for which our results lead to faster algorithms, including
two fundamental ones: irreducibility testing, and computing minimal polynomials.

1.8 Outline

In Section 2, we give some preliminary definitions and conventions, and formally define the modular compo-
sition and multipoint evaluation problem for multivariate polynomials. In Section 3, we give the reductions
showing that these two problems are essentially equivalent. In Section 4, we give our new multimodular
reduction-based algorithm for multipoint evaluation of multivariate polynomials. In Section 5, we describe
the data structure for polynomial evaluation arising from this algorithm. In Section 6, we give our new alge-
braic algorithm for multipoint evaluation of multivariate polynomials in small characteristic. In Section 7,
we describe nearly-linear time algorithms for modular composition, and for its transpose (modular power
projection). In Section 8, we describe some applications of our new algorithms, most notably to factorization
of polynomials over finite fields. In Section 9, we mention some remaining open problems.

2 Preliminaries

In this paper, R is an arbitrary commutative ring, unless otherwise specified. For cleaner statements, we
sometimes omit floors and ceilings when dealing with them would be routine. We use o(1) frequently
in exponents. We will always write things so that the exponentiated quantity is an expression in a single
variable x, and it is then understood that the o(1) term is a quantity that goes to zero as x goes to infinity.

2.1 Problem statements

The problems we are interested in are formally defined below:

Problem 2.1 (MULTIVARIATE MULTIPOINT EVALUATION). Given f(X0, . . . , Xm−1) in R[X0, . . . , Xm−1]
with individual degrees at most d − 1, and evaluation points α0, . . . , αN−1 in Rm, output f(αi) for i =
0, 1, 2, . . . , N − 1.

Note that the input is specified by dm+mN ring elements. The straightforward algorithm takes Ω(dmN)
ring operations, while one may hope instead for an algorithm that uses only O(dm + mN) ring operations.

Problem 2.2 (MODULAR COMPOSITION). Given f(X0, . . . , Xm−1) in R[X0, . . . , Xm−1] with individual
degrees at most d − 1, and polynomials g0(X), . . . , gm−1(X) and h(X), all in R[X] with degree at most
N − 1, and with the leading coefficient of h invertible in R, output f(g0(X), . . . , gm−1(X)) mod h(X).

We note that the term “modular composition” more commonly refers to the special case of this problem
in which m = 1 and N = d. This generalization doesn’t seem to make the problem significantly more
difficult to handle, though; we note, for example, that when N = dm the algorithms of [BK78, HP98] can
be adapted in a straightforward way to solve this variant in O(Nω2/2) operations. Similar to above, the
input is specified by dm + (m + 1)N ring elements, and the straightforward algorithm takes Ω(dmN) field
operations, while one may hope for an algorithm that uses only O(dm + mN) ring operations.

For both problems, we sometimes refer to the problem “with parameters d, m, N” if we need to specify
these quantities explicitly.

7

Operation Input Output Operations
Multiplication f(X), g(X) of degree ≤ n f(X) · g(X) M(n) = O(n log n)
Remainder f(X), g(X) of degree ≤ n f(X) mod g(X) O(M(n))
GCD f(X), g(X) of degree ≤ n gcd(f(X), g(X)) O(M(n) log n)
Evaluation f(X) of degree n; α1, · · · , αn f(αi), i = 1, . . . n O(M(n) log n)
Interpolation α0, · · · , αn, β0, · · · , βn f(X) of degree n, f(αi) = βi O(M(n) log n)

Figure 1: Operation counts for standard operations on univariate polynomials over a commutative ring. For
interpolation, we additionally require that αi − αj is a unit, for i 6= j.

2.2 Useful facts

We have already discussed the Kronecker substitution, which can be viewed as a transformation that de-
creases the number of variables at the expense of increasing the degree. We now define a map that is (in a
sense made precise following the definition) the “inverse” of the Kronecker substitution – it increases the
number of variables while decreasing the degree:

Definition 2.3. The map ψh,` from R[X0, X1, . . . , Xm−1] to R[Y0,0, . . . , Ym−1,`−1] is defined as follows.
Given Xa, write a in base h: a =

∑
j≥0 ajh

j and define the monomial

Ma(Y0, . . . , Y`−1)
def= Y a0

0 Y a1
1 · · ·Y a`−1

`−1 .

The map ψh,` sends Xa
i to Ma(Yi,0, . . . , Yi,`−1) and extends multilinearly to R[X0, X1, . . . , Xm−1].

Note that ψh,`(f) can be computed in linear time in the size of f , assuming f is presented explicitly by
its coefficients. Also note that ψh,` is injective on the set of polynomials with individual degrees at most
h` − 1. For such a polynomial f , if g = ψh,`(f), then

f(X0, . . . , Xm−1) = g(Xh0

0 , Xh1

0 , . . . , Xh`−1

0 , Xh0

1 , Xh1

1 , . . . , Xh`−1

1 , · · · , Xh0

m−1, X
h1

m−1, . . . , X
h`−1

m−1).

In this sense, ψh,` is the inverse of the Kronecker substitution.
Figure 1 gives the operation counts for standard operations on univariate polynomials that we use in the

remainder of the paper. See, e.g. [vzGG99]. In this paper polynomials are always represented explicitly
by a list of their coefficients. We use M(n) throughout the paper as the number of operations sufficient to
multiply two univariate polynomials of degree n (and we assume M(O(n)) = O(M(n))). Thus, when we
construct an extension field (or ring) by adjoining an indeterminate X and modding out by a polynomial
of degree n, arithmetic operations in the extension field (or ring) take O(M(n)) operations in the base
field, since they entail the addition or multiplication of degree n − 1 polynomials followed by a remainder
operation involving degree O(n) polynomials.

For our first algorithm we will need the following number theory fact:

Lemma 2.4. For all integers N > 2, the product of the primes less than or equal to 16 log N is greater than
N .

The constant 16 is not optimal; the Prime Number Theorem implies that any constant c > 1 can be used
for N above some bound depending on c.

8

Proof. The exponent of the prime p in the factorization of n! equals
∑∞

i=1b n
pi c since this counts multiples

of p, multiples of p2, etc., in {1, . . . , n}. This implies Kummer’s formula

(
n

m

)
=

∏

p6n

pep , ep =
∞∑

i=1

(⌊
n

pi

⌋
−

⌊
m

pi

⌋
−

⌊
n−m

pi

⌋)
.

Note that ep ≤ 1 for
√

n < p 6 n, and ep 6 logp n for all p. From this, and the fact that
(

n
bn/2c

)
>

(
n
m

)
for

all m, it follows that

2n

n + 1
6

(
n

bn/2c
)

6

 ∏
√

n<p6n

p

n

√
n 6

∏

p6n

p

n

√
n.

For N > 50, we have 2nn−
√

n/(n + 1) > N for n = b16 log Nc, so the claim follows. For N < 50, the
claim may be checked by hand.

3 The reductions

In this section we give the reductions showing (essentially) that MULTIVARIATE MULTIPOINT EVALUATION

and MODULAR COMPOSITION are equivalent. The reductions are not difficult, even though it appears that
at least one direction of this equivalence – the one needed for our main result – was not known before2. The
other direction, reducing multipoint evaluation of multivariate polynomials to modular composition, is just
beneath the surface of the results in [NZ04].

We first reduce MODULAR COMPOSITION to MULTIVARIATE MULTIPOINT EVALUATION (this is the
direction that we use in order to give our improved algorithm for MODULAR COMPOSITION).

Theorem 3.1. Given f(X0, . . . , Xm−1) in R[X0, . . . , Xm−1] with individual degrees at most d − 1, and
polynomials g0(X), . . . , gm−1(X) and h(X), all in R[X] with degree at most N − 1, and with the leading
coefficient of h invertible in R, there is, for every 2 ≤ d0 < d, an algorithm that outputs

f(g0(X), . . . , gm−1(X)) mod h(X)

in
O((dm + mN)d0) · poly log(dm + mN)

ring operations plus one invocation of MULTIVARIATE MULTIPOINT EVALUATION with parameters d0,m
′ =

`m,N ′ = Nm`d0, where ` = dlogd0
de, provided that the algorithm is supplied with N ′ distinct elements

of R whose differences are units in R.

Proof. We perform the following steps:

1. Compute f ′ = ψd0,`(f).

2. Compute gi,j(X) def= gi(X)dj
0 mod h(X) for all i, and j = 0, 1, . . . , `− 1.

2However, we recently learned that in an unpublished 1992 manuscript, Shoup and Smolensky used essentially the same trans-
formation for the purpose of solving MODULAR COMPOSITION in smaller space than [BK78].

9

3. Select N ′ distinct field elements β0, . . . , βN ′−1, whose differences are units in R. Compute αi,j,k
def=

gi,j(βk) for all i, j, k using fast (univariate) multipoint evaluation.

4. Compute f ′(α0,0,k, . . . , αm−1,`−1,k) for k = 0, . . . , N ′ − 1.

5. Interpolate to recover f ′(g0,0(X), . . . , gm−1,`−1(X)) (which is a univariate polynomial of degree less
than N ′) from these evaluations.

6. Output the result modulo h(X).

Correctness follows from the observation that

f ′(g0,0(X), . . . , gm−1,`−1(X)) ≡ f(g0(X), . . . , gm−1(X)) (mod h(X)).

The first step takes O(dm) time. For each gi, the second step takes O(M(N) log(dj
0)) operations to

compute g
dj
0

i by repeated squaring, and this happens for j = 0, 1, 2, . . . , ` − 1 giving an upper bound of at
most O(M(N)`2 log d0)) operations to compute the required powers. This happens for each gi for a total
of O(M(N)`2m log d0) operations.

The third step takes O(M(N ′)(log N ′)`m) operations using fast (univariate) multipoint evaluation. The
fourth step invokes fast multivariate multipoint evaluation with parameters d0, `m, N ′. The fifth step re-
quires O(M(N ′) log N ′) operations, and the final step requires O(M(N ′)) operations. Note that both of
the log N ′ terms can be removed if the field supports an FFT and the β’s are chosen accordingly.

Corollary 3.2. Fix parameters d,m,N . If for every δ > 0 MULTIVARIATE MULTIPOINT EVALUATION

with parameters d0 = dδ, m0 = m/δ and N can be solved in O((dm + mN)α) operations for some
constant α > 1, then for every δ > 0, MODULAR COMPOSITION with parameters d,m can be solved in
O((dm + mN)α+δ) operations.

The corollary is stated with matching N parameters for simplicity; it follows easily after observing that
MULTIVARIATE MULTIPOINT EVALUATION with parameters d0,m0, N

′ > N can be solved with dN ′/Ne
invocations of MULTIVARIATE MULTIPOINT EVALUATION with parameters d0,m0, N .

Now, we reduce MULTIVARIATE MULTIPOINT EVALUATION to MODULAR COMPOSITION, which demon-
strates the equivalence of the two problems.

Theorem 3.3. Given f(X0, . . . , Xm−1) in R[X0, . . . , Xm−1] with individual degrees at most d − 1, and
evaluation points α0, . . . , αN−1 in Rm, there is an algorithm that outputs f(αi) for i = 0, 1, . . . , N − 1, in

O(dm + mN) · poly log(dm + mN)

ring operations, plus one invocation of MODULAR COMPOSITION with parameters d,m, N , provided that
the algorithm is supplied with N distinct elements of R whose differences are units in R.

Proof. We perform the following steps:

1. Select distinct field elements β0, . . . , βN−1. Find gi ∈ R[X] for which gi(βk) = (αk)i for all i, k
using fast univariate polynomial interpolation.

2. Produce the univariate polynomial h(X) def=
∏

k(X−βk), and then compute f(g0(X) . . . , gm−1(X))
modulo h(X).

10

3. Evaluate this univariate polynomial at β0, . . . , βN−1 using fast (univariate) multipoint evaluation, and
output these evaluations.

Correctness follows from the observation that

f(g1(X), . . . , gm(X))(βk) = f(αk)

and the same holds when taking the left-hand-side polynomial modulo h(X) since h vanishes on the evalu-
ation points βk.

The first step takes O(M(N) log N) operations for each interpolation, and there are m such interpo-
lations. The second step requires O(M(N) log N) time to compute h(X), and then it invokes MODULAR

COMPOSITION with parameters d,m, N . The final step requires O(M(N) log N) operations. Note that the
log N terms in the first and final step can be removed if the field supports an FFT and the β’s are chosen
accordingly.

Corollary 3.4. Fix parameters d, m,N . If MODULAR COMPOSITION with parameters d,m,N can be
solved in O((dm + mN)α) operations for some constant α > 1, then MULTIVARIATE MULTIPOINT EVAL-
UATION with parameters d,m, N can be solved in O((dm + mN)α) operations.

4 Fast multivariate multipoint evaluation (in any characteristic)

We describe our first algorithm for MULTIVARIATE MULTIPOINT EVALUATION, first for prime fields, then
for rings Z/rZ, and then for extension rings (and in particular, all finite fields).

4.1 Prime fields

For prime fields, we have a straightforward algorithm that uses fast Fourier transforms. The dependence on
the field size p is quite poor, but we will remove that in our final algorithm using multimodular reductions.

Theorem 4.1. Given an m-variate polynomial f(X0, . . . , Xm−1) ∈ Fp[X0, . . . , Xm−1] (p prime) with
degree at most d− 1 in each variable, and α0, . . . , αN−1 ∈ Fm

p , there exists a deterministic algorithm that
outputs f(αi) for i = 0, . . . , N − 1 in

O(m(dm + pm + N) poly(log p))

bit operations.

Proof. We perform the following steps to compute f(αi) for i = 0, . . . , N − 1.

1. Compute the reduction f of f modulo Xp
j −Xj for j = 0, . . . , m− 1.

2. Use a fast Fourier transform3 to compute f(α) = f(α) for all α ∈ Fm
p .

3. Look up and return f(αi) for i = 0, . . . , N − 1.

3We need the finite field Fourier transform here, since we care about evaluations over Fp.

11

In Step 1, the reductions modulo Xp
j −Xj may be performed using mdm arithmetic operations in Fp,

for a total complexity of O(mdm poly(log p)).
In Step 2, we may perform the FFTs one variable at a time for a total time of O(mpm poly(log p)).

The details follow: we will give a recursive procedure for computing evaluations of an m-variate poly-
nomial with individual degrees at most p − 1 over all of Fm

p , in time m · O(pm poly(log p)). When
m = 1, we apply fast (univariate) multipoint evaluation at a cost of O(ppoly(log p)). For m > 1, write
f(X0, X1, . . . , Xm−1) as

∑p−1
i=0 Xi

0fi(X1, . . . , Xm−1), and for each fi, recursively compute its evaluations
at all of Fm−1

p in time (m − 1) · O(pm−1 poly(log p)). Finally, for each β ∈ Fm−1
p evaluate the univariate

polynomial
∑p−1

i=0 Xi
0fi(β) at all of Fp at a cost of O(p poly(log p)), again using fast (univariate) multipoint

evaluation. The overall time is

(m− 1) ·O(pm−1 poly(log p) · p + O(ppoly(log p)) · pm−1,

which equals m ·O(pm poly(log p)) as claimed.
In Step 3, we look up N entries from a table of length pm, for a total complexity of O(mN poly(log p)).

This gives the stated complexity.

4.2 Rings of the form Z/rZ

We now apply multimodular reduction recursively to remove the suboptimal dependence on p. Our main
algorithm for rings Z/rZ (r arbitrary) appears below. It accepts an additional parameter t which specifies
how many rounds of multimodular reduction should be applied.

Algorithm MULTIMODULAR(f, α0, . . . , αN−1, r, t)

where f is a m-variate polynomial f(x0, . . . , xm−1) ∈ (Z/rZ)[x0, . . . , xm−1] with degree at most
d − 1 in each variable, α0, . . . , αN−1 are evaluation points in (Z/rZ)m, and t is the number of
rounds.

1. Construct the polynomial f̃(X0, . . . , Xm−1) ∈ Z[X0, . . . , Xm−1] from f by replacing each
coefficient with its lift in {0, . . . , r−1}. For i = 0, . . . , N−1, construct the m-tuple α̃i ∈ Zm

from αi by replacing each coordinate with its lift in {0, . . . , r − 1}.

2. Compute the primes p1, . . . , pk less than or equal to ` = 16 log(dm(r − 1)md), and note that
k 6 `.

3. For h = 1, . . . , k, compute the reduction fh ∈ Fph
[X0, . . . , Xm−1] of f̃ modulo ph. For

h = 1, . . . , k and i = 0, . . . , N − 1, compute the reduction αh,i ∈ Fm
ph

of α̃i modulo ph.

4. If t = 1, then for h = 1, . . . , k, apply Theorem 4.1 to compute fh(αh,i) for i = 0, . . . , N −1;
otherwise if t > 1, then run MULTIMODULAR(fh, αh,0, . . . , αh,N−1, ph, t − 1) to compute
fh(αh,i) for i = 0, . . . , N − 1.

5. For i = 0, . . . , N − 1, compute the unique integer in {0, . . . , (p1p2 · · · pk)− 1} congruent to
fh(αh,i) modulo ph for h = 1, . . . , k, and return its reduction modulo r.

12

To bound the running time it will be convenient to define the function

λi(x) = x log x log log x log log log x · · · log(i−1)(x).

Note that λi(x) ≤ x(log x)log∗ x = x1+o(1) (where log∗ x denotes the least nonnegative integer i such that
log(i)(x) 6 1) and that λi(x) ≤ λj(x) for positive x and i < j 6 log∗ x.

Theorem 4.2. Algorithm MULTIMODULAR returns f(αi) for i = 0, 1, . . . , N − 1, and it runs in

O((λt(d)m + N)λt(log r)λt(d)tλt(m)m+t+1) ·O(log(t) r)m · poly log(md log r)

bit operations.

Proof. Correctness follows from the fact that 0 6 f̃(α̃i) 6 dm(r − 1)md < p1 · · · pk by Lemma 2.4, and
Theorem 4.1.

Observe that in the i-th level of recursion, the primes ph have magnitude at most `i = O(λi(m)λi(d) log(i) r).
For convenience, set `0 = 1.

At the i-th level of the recursion tree, the algorithm is invoked at most `0`1`2 · · · `i−1 times. Each
invocation incurs the following costs from the steps before and after the recursive call in Step 4. Step 1 incurs
complexity at most O((dm +mN)`i). Step 2 incurs complexity O(`i log `i) using the Sieve of Eratosthenes
(cf. [Sho08, §5.4]). Step 3 incurs complexity O((dm + mN)`i poly(log `i)) by using remainder trees
to compute the reductions modulo p1, . . . , pk all at once [Ber, §18], [vzGG99, Theorem 10.24]. Step 5
incurs complexity O(N`i poly(log `i)) as in [Ber, §23] or [vzGG99, Theorem 10.25]. At the last level
(the t-th level) of the recursion tree when the FFT is invoked, Step 4 incurs complexity O((dm + `m

t +
N)m`t poly(log `t)).

Thus, using the fact that poly log(`i) ≤ poly log(md log r) for all i, each invocation at level i < t uses

O((dm + N)m`i) · poly log(md log r)

operations while each invocation at level t uses

O((dm + `m
t + N)m`t) · poly log(md log r)

operations. There are a total of `0`1`2 · · · `i−1 invocations at level i. The total number of operations is thus
(

`1`2 · · · `t ·O((dm + `m
t + N)m) +

t−1∑

i=1

`1`2 · · · `i ·O((dm + N)m)

)
· poly log(md log r)

which is at most

O(`1`2 · · · `t) ·O((dm + `m
t + N)m) · poly log(md log r)

≤ O(λt(m)tλt(d)tλt−1(log r)) ·O((dm + `m
t + N)m) · poly log(md log r)

≤ O((λt(d)m + N)λt−1(log r)λt(d)tλt(m)m+t+1) ·O(log(t) r)m · poly log(md log r)

operations over all t levels. The bound in the theorem statement follows.

Plugging in parameters, we find that this yields an algorithm whose running time is optimal up to lower
order terms, when m ≤ do(1).

13

Corollary 4.3. For every constant δ > 0 there is an algorithm for MULTIVARIATE MULTIPOINT EVALUA-
TION over Z/rZ with paramaters d,m, N , and with running time (dm + N)1+δ log1+o(1) r, for all d,m, N
with d sufficiently large and m ≤ do(1).

Proof. Let c be a sufficiently large constant (depending on δ). We may assume m > c by applying the
map from Definition 2.3, if necessary, to produce an equivalent instance of MULTIVARIATE MULTIPOINT

EVALUATION with more variables and smaller individual degrees (and note that the quantity dm is invariant
under this map). Now if log(3) r < m, then we choose t = 3, which gives a running time of

O((d(1+o(1))m + N)d3mm(1+o(1))(1+4/c)(log r)1+o(1)) ·O(m)m · poly log(md log r),

which simplifies to the claimed bound using m ≤ do(1). Otherwise, log(3) r ≥ m, and we choose t = 2,
which gives a running time of

O((d(1+o(1))m + N)d2mm(1+o(1))(1+3/c)(log r)1+o(1)) ·O(log(2) r)log(3) r · poly log(md log r),

which simplifies to the claimed bound, using m ≤ do(1) and O(log(2) r)log(3) r ≤ O(logo(1) r).

4.3 Extension rings

Using algorithm MULTIMODULAR and some additional ideas, we can handle extension rings, and in par-
ticular, all finite fields. The strategy is to lift to Z[Z], then evaluate at Z = M and reduce modulo r′ for
suitably large integers M, r′. Our algorithm follows:

14

Algorithm MULTIMODULAR-FOR-EXTENSION-RING(f, α0, . . . , αN−1, t)

where R is a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic polynomial
E(Z) of degree e, f is an m-variate polynomial f(X0, . . . , Xm−1) ∈ R[X0, . . . , Xm−1] with de-
gree at most d − 1 in each variable, α0, . . . , αN−1 are evaluation points in Rm, and t > 0 is the
number of rounds.

Put M = dm(e(r − 1))(d−1)m+1 + 1 and r′ = M (e−1)dm+1.

1. Construct the polynomial f̃(X0, . . . , Xm−1) ∈ Z[Z][X0, . . . , Xm−1] from f by replacing
each coefficient with its lift which is a polynomial of degree at most e− 1 with coefficients in
{0, . . . , r−1}. For i = 0, . . . , N−1, construct the m-tuple α̃i ∈ Z[Z]m from αi by replacing
each coordinate with its lift which is a polynomial of degree at most e − 1 with coefficients
in {0, . . . , r − 1}.

2. Compute the reduction f ∈ (Z/r′Z)[X0, . . . , Xm−1] of f̃ modulo r′ and Z − M . For i =
0, . . . , N − 1, compute the reduction αi ∈ (Z/r′Z)m of α̃i modulo r′ and Z −M . Note that
the reductions modulo r′ don’t do anything computationally, but are formally needed to apply
Algorithm MULTIMODULAR, which only works over finite rings Z/rZ.

3. Run MULTIMODULAR(f, α0, α1, . . . , αN−1, r
′, t) to compute βi = f(αi) for i = 0, . . . , N−

1.

4. For i = 0, . . . , N − 1, compute the unique polynomial Qi[Z] ∈ Z[Z] of degree at most
(e − 1)dm with coefficients in {0, . . . , M − 1} for which Qi(M) has remainder βi modulo
r′ = M (e−1)dm+1, and return the reduction of Qi modulo r and E(Z).

Theorem 4.4. Algorithm MULTIMODULAR-FOR-EXTENSION-RING returns f(αi) for i = 0, 1, . . . , N − 1,
and it runs in

O((λt(d)m + N)λt(log q)λt(d)t+2λt(m)m+t+3) ·O(log(t−1)(d2m2 log q log log q))m · poly log(md log q)

bit operations.

Proof. To see that the algorithm outputs f(αi) for i = 0, . . . , N−1, note that f̃(α̃i) ∈ Z[Z] has nonnegative
coefficients and its degree is at most (e− 1)dm. Moreover, the value at Z = 1 of each coordinate of α̃i and
each coefficient of f̃ is at most e(r − 1), so f̃(α̃i)(1) 6 dm(e(r − 1))(d−1)m+1 = M − 1. In particular,
each coefficient of f̃(α̃i) belongs to {0, . . . , M − 1}. We now see that the polynomials f̃(α̃i), Qi ∈ Z[Z]
both have degree at most (e − 1)dm and coefficients in {0, . . . , M − 1}, and their evaluations at Z = M
are congruent modulo r′ = M (e−1)dm+1. This implies that the polynomials coincide, so the reduction of Qi

modulo r and E(Z) agrees with the corresponding reduction of f̃(α̃i), which equals f(αi).
We expect a log q = log(re) term in the running time, and recall that Algorithm MULTIMODULAR is

15

invoked over a ring of cardinality r′ = M (e−1)(d−1)m+1. We have:

log r′ = log(M (e−1)(d−1)m+1) 6 (e− 1)dm log(dm(e(r − 1))(d−1)m+1 + 1)

≤ O(ed2m2(log e + log r))

≤ O(log q log log q)d2m2. (4.1)

The dominant step is step 3, whose complexity is (by Theorem 4.2)

O((λt(d)m + N)λt(log r′)λt(d)tλt(m)m+t+1) ·O(log(t) r′)m · poly log(md log r′),

which, using (4.1) above, yields the stated complexity.

Similar to Corollary 4.3, we obtain:

Corollary 4.5. For every constant δ > 0 there is an algorithm for MULTIVARIATE MULTIPOINT EVALU-
ATION over any ring (Z/rZ)[Z]/(E(Z)) of cardinality q with parameters d,m, N , and with running time
(dm + N)1+δ log1+o(1) r, for all d,m, N with d sufficiently large and m ≤ do(1).

Proof. The proof is the same as the proof of Corollary 4.3, except the two cases depend on m in relation to
the quantity r′ appearing in the proof of Theorem 4.4. The argument in the proof of Corollary 4.3 yields the
claimed running time with r′ in place of q; we then use the inequality log r′ ≤ O(log q log log q)d2m2.

5 A data structure for polynomial evaluation

In this section we observe that it is possible to interpret our algorithm for MULTIVARIATE MULTIPOINT

EVALUATION as a data structure supporting rapid “polynomial evaluation” queries.
Consider a degree n univariate polynomial f(X) ∈ Fq[X] (and think of q as being significantly larger

than n). If we store f as a list of n coefficients, then to answer a single evaluation query α ∈ Fq (i.e. return
the evaluation f(α)), we need to look at all n coefficients, requiring O(n log q) bit operations. On the other
hand, a batch of n evaluation queries α1, . . . , αn ∈ Fq can be answered all at once using O(n log2 n) Fq-
operations, using fast algorithms for univariate multipoint evaluation (cf. [vzGG99]). This is often expressed
by saying that the amortized time for an evaluation query is O(log2 n) Fq-operations. Can such a result be
obtained in a nonamortized setting? Certainly, if we store f as a table of its evaluations in Fq, then a single
evaluation query α ∈ Fq can be trivially answered in O(log q) bit operations. However, the stored data is
highly redundant; it occupies space q log q, when information-theoretically n log q should suffice.

By properly interpreting our algorithm for MULTIVARIATE MULTIPOINT EVALUATION, we arrive at a
data structure that achieves “the best of both worlds:” we can preprocess the n coefficients describing f in
nearly-linear time, to produce a nearly-linear size data structure T from which we can answer evaluation
queries in time that is polynomial in log n and log q. This is a concrete benefit of our approach to multipoint
evaluation even for the univariate case, as it seems impossible to obtain anything similar by a suitable re-
interpretation of previously known algorithms for univariate multipoint evaluation.

Theorem 5.1. Let R = (Z/rZ)[Z]/(E(Z)) be a ring of cardinality q, and let f(X) ∈ R[X] be a degree n
polynomial. Choose any constant δ > 0. For sufficiently large n, one can compute from the coefficients of f
in time at most

T = n1+δ log1+o(1) q

16

a data structure of size at most T with the following property: there is an algorithm that given α ∈ Fq,
computes f(α), in time

poly log n · log1+o(1) q

with random access to the data structure.

Proof. We will choose parameters d,m such that dm = n, and apply map ψd,m from Definition 2.3 to f .
Then, given this m-variate polynomial f , algorithm MULTIMODULAR-FOR-EXTENSION-RING com-

putes f with coefficients in Z/r′Z. This is followed by t rounds of multimodular reduction which produces
reduced polynomials fp1,p2,...,pt ∈ Fpt [X] for certain sequences p1, p2, . . . , pt of primes (the pi are the mod-
uli in the t rounds of multimodular reduction). Each fp1,p2,...,pt is evaluated over its entire domain Fm

pt
using

the multidimensional FFT. The key observation is that these computations do not depend on the evaluation
points, and can thus comprise a preprocessing phase that produces the data structure consisting of tables of
evaluations of each fp1,p2,...,pt .

Using notation from the proof of Theorem 4.2, there are at most `1`2 · · · `t reduced polynomials, each pt

has magnitude at most `t, and it holds that `i = O(λi(m)λi(d) log(i) r′). Referring to the proof of Theorem
4.1, we see that the cost incurred to produce the required tables of evaluations is at most

T = `1`2 · · · `t ·O(m`m
t) · poly log(`t)

≤ O(λt(m)t+m+1λt(d)t+mλt−1(log r′)) · (log(t) r′)m · poly log(md log r′)

At this point, an evaluation query α ∈ R can be answered from the tables by first computing the point
(α, αd, . . . , αdm−1

) ∈ Rm, then (as in algorithm MULTIMODULAR-FOR-EXTENSION-RING) lifting each
coordinate to Z/r′Z and finally applying t rounds of multimodular reduction, to produce reduced evaluation
points αp1,p2,...,pt ∈ Fm

pt
. The desired evaluations fp1,p2,...,pt(αp1,p2,...,pt) can be found in the pre-computed

tables, and then f(α) is reconstructed by t rounds of application of the Chinese Remainder Theorem. Again
adopting the notation from the proof of Theorem 4.2, this reconstruction is invoked `1`2 · · · `i−1 times at
level i, each time with cost O(`i poly log(`i)). The overall cost for an evaluation query is thus

t∑

i=1

`1`2 · · · `i−1 ·O(`i poly log(`i)) ≤
t∑

i=1

`1`2 · · · `i · poly log(md log r′)

≤ O(`1`2 · · · `t) · poly log(md log r′)
≤ O(λt(m)tλt(d)tλt−1(log r′)) · poly log(md log r′)

It remains to choose the parameters d,m and t. If r′ > 22n
, then we choose d = n,m = 1, t = 2; if

r′ ≤ 22n
, then choose d = logc n and m = (log n)/(c log log n) for a sufficiently large constant c, and

t = 4. These choices give the claimed running times for preprocessing and queries, with r′ in place of q. As
in the proof of Theorem 4.4, we have log r′ ≤ O(log q log log q)d2m2, which completes the proof.

Theorem 5.1 is surprising in light of a number of lower bounds for this problem under certain restric-
tions. For example, in the purely algebraic setting, and when the underlying field in R, Belaga [Bel61]
shows a lower bound on the query complexity of b3n

2 c + 1 (and Pan [Pan66] has given a nearly-matching
upper bound). Miltersen [Mil95] proves that the trivial algorithm (with query complexity n) is essentially
optimal when the field size is exponentially large and the data structure is limited to polynomial size, and
he conjectures that this lower bound holds for smaller fields as well (this is in an algebraic model that does
not permit the modular operations we employ). Finally, Gál and Miltersen [GM07] show a lower bound of
Ω(n/ log n) on the product of the additive redundancy (in the data structure size) and the query complexity,
thus exhibiting a tradeoff that rules out low query complexity when the data structure is required to be very
small (i.e., significantly smaller than 2n).

17

¢
¢

A
A

A
A

¢
¢

S = R[Z]/E(Z)

R = Fq[W]/P (W)

Fq Fp[W]/P (W)

Fp

Figure 2: Containment diagram. Our input polynomial will be over Fq, but we view it as a polynomial over
the extension ring R. We will end up evaluating a related polynomial at elements of the further extension S.

6 An algebraic algorithm in small characteristic

In this section we describe an algorithm for MULTIVARIATE MULTIPOINT EVALUATION that is completely
different from the one in Section 4. The advantage of this algorithm is that it is algebraic (and it achieves an
operation count that is optimal up to lower order terms); the disadvantage is that it works only over fields of
small characteristic.

As described in Section 1.5, our algorithm operates by reducing multipoint evaluation of the target multi-
variate polynomial f to multipoint evaluation of a related univariate polynomial f∗ obtained by substituting
h-th powers of a single variable for the m different variables of f (the “Kronecker substitution”). The given
m-variate polynomial f will have coefficients in a field Fq and the parameter h will be a power of the charac-
teristic. We will actually view f as a polynomial with coefficients in an extension ring R = Fq[W]/(P (W))
for some polynomial P (not necessarily irreducible over Fq). The reason for this complication is that the
algorithm needs a special element η that satisfies two properties:

1. the multiplicative order of η is h− 1, and

2. ηi − ηj is invertible for all i, j ∈ {0, 1, 2, . . . , m− 1}, with i 6= j.

We will construct R so that we can easily get our hands on such a η. If an element of order h− 1 is already
available in Fq, then it automatically satisfies the second property because Fq is a field, and there is no need
to pass to the extension ring R.

We now describe in detail how to construct the extension ring R, and find η. Fix parameters d and m,
and a field Fq with characteristic p. Let h = pc be the smallest integer power of p that is larger than m2d.
Construct the ring R = Fq[W]/(P (W)), where P (W) is a degree c polynomial with coefficients in Fp, that
is irreducible over Fp. Notice that Fp[W]/P (W) ⊆ R and also that Fq ⊆ R, and that these embeddings
are easy to compute. Choose η to be a primitive element of the field Fp[W]/(P (W)). This η clearly has
multiplicative order h − 1, and because the elements ηi for i = 0, 1, . . . , m − 1 are distinct elements of a
field, the second property above is also satisfied. Figure 2 depicts the construction of R.

Given the m-variate polynomial f over R, we want to be able to evaluate it at many points in Fm
q ⊆ Rm.

Our strategy will be to lift the evaluation points to elements of an extension ring S, evaluate a related
univariate polynomial f∗ at those points, and then project each resulting evaluation back to an element of R.
We choose the ring S to be the extension ring R[Z]/(E(Z)), where E(Z) def= Zh−1 − η. Refer to Figure 2.

18

Let σ be (a power of) the Frobenius endomorphism from R to R, given by x 7→ xh. The “lift” map
φ : Fm

q → S is defined as follows: given α = (α0, . . . , αm−1) ∈ Fm
q ⊆ Rm, φ(α) is the (residue class

whose canonical representative is the) degree m− 1 polynomial gα(Z) ∈ R[Z] which has

gα

(
ηi

)
= σ−i(αi) for i = 0, 1, 2 . . . ,m− 1. (6.1)

Note that gα is well defined because although σi is only an endomorphism of R (under which certain ele-
ments may have no preimage), we only demand preimages of elements of Fq ⊆ R, and σi is an automor-
phism when restricted to Fq.

The “project” map π : S → R that recovers the evaluation of the original multivariate polynomial f
from an evaluation of the univariate polynomial f∗ is defined as follows: given an element of S whose
canonical representative is the polynomial g(Z) ∈ R[Z] (with degree less than h−1), π(g) is the evaluation
g(1).

Our main lemma shows how to recover the evaluation of the m-variate polynomial f at a point α ∈
Fm

q ⊆ Rm, from the evaluation of the univariate polynomial f∗ at an element of the extension ring S.

Lemma 6.1. Let f(X0, X1, . . . , Xm−1) be a polynomial in Fq[X0, X1, . . . , Xm−1] with individual degrees
d − 1, and suppose Fq has characteristic p. Define h,R, E, S, φ, π as above, and define the univariate
polynomial f∗(Y) ∈ S[Y] by:

f∗(Y) def= f(Y, Y h, Y h2
, . . . , Y hm−1

).

For every α ∈ Fm
q ⊆ Rm, the following identity holds: π(f∗(φ(α))) = f(α).

Proof. Fix φ(α), which is an element of R[Z]/(E(Z)). Let gα(Z) ∈ R[Z] be its (degree m− 1) canonical
representative, and denote by σi(gα) the polynomial obtained by applying σi to the coefficients of gα. Then
we have:

(gα(Z))hi
= σi(gα)(Zhi

)

= σi(gα)(Zhi−1Z)

≡ σi(gα)(η(hi−1)/(h−1)Z) (mod E(Z))
= σi(gα)(ηiZ),

where the last equality used the fact that η has order h − 1 and so it is fixed under σ. For convenience, let
us denote by g

(i)
α (Z) the polynomial (gα(Z))hi

mod E(Z). A crucial point that we will use shortly is that
deg(g(i)

α) = deg(gα). The above equation implies that

g(i)
α (1) = σi(gα)

(
ηi

)
= σi

(
gα

(
σ−iηi

))
= σi

(
gα

(
ηi

))
= σi(σ−iαi) = αi, (6.2)

where the third equality again used the fact that η is fixed under σ, and the fourth equality used Eq. (6.1).
When we evaluate the polynomial f∗ at the element of S whose canonical representative is gα we get

the element of S whose canonical representative is:

f(g(0)
α (Z), g(1)

α (Z), . . . , g(m−1)
α (Z)) mod E(Z).

Now f is a polynomial with total degree at most dm, and each g
(i)
α is a polynomial of degree at most m− 1.

Therefore, since E has degree at least dm2 > dm(m− 1), this polynomial is just

f(g(0)
α (Z), g(1)

α (Z), . . . , g(m−1)
α (Z)),

19

and evaluating at 1 gives (using Eq. (6.2)):

f(g(0)
α (1), g(1)

α (1), . . . , g(m−1)
α (1)) = f(α0, α1, . . . , αm−1)

as claimed.

The next theorem applies the strategy we have developed above to the MULTIVARIATE MULTIPOINT

EVALUATION problem. Note that this algorithm requires a field (as opposed to the more general rings
handled by the algorithm of Section 4) and that an optimal operation count (up to lower order terms) can
only be achieved when the characteristic p is at most do(1).

Theorem 6.2. Given f(X0, . . . , Xm−1) in Fq[X0, . . . , Xm−1] with individual degrees at most d − 1, and
evaluation points α0, . . . , αN−1 in Fm

q , there is an algorithm that outputs f(αi) for i = 0, 1, 2, . . . , N − 1,
in

O((N + dm)(m2p)m) · poly(d,m, p, log N)

field operations.

Proof. We perform the following steps:

1. Choose h = pc to be the smallest power of p that is at least m2d. Find a degree c irreducible
polynomial P (W) over Fp, and a primitive element η of Fp[W]/(P (W)). Define the ring R =
Fq[W]/(P (W)), and the ring S = R[Z]/(E(Z)), where E(Z) = Zh−1 − η, as above.

2. For i = 0, 1, 2, . . . , N−1, compute the canonical representative of φ(αi): the degree m−1 polynomial
gαi(Z) ∈ R[Z].

3. Produce the univariate polynomial f∗(Y) = f(Y, Y h, Y h2
, . . . , Y hm−1

) over S.

4. Evaluate f∗ at the points gαi(Z), and for each evaluation apply π to recover f(αi).

Step 1 requires constructing the field Fh and finding a primitive element. This can be done by brute
force in poly(h) operations, although much better algorithms are available.

Each polynomial gαi computed in Step 2 requires the following operations (recall Eq. (6.1)): first,
we need to compute σ−j(αi)j for j = 0, 1, . . . ,m − 1. A single field operation gives us (αi)−1

j , and
then using repeated squaring we can apply σj using at most O(log(hm)) field operations. The overall
cost of doing this for all i is O(Nm2 log h). Next, we perform N polynomial interpolations in R, each
costing O(M(m) log m) operations in R, or O(M(m) log mM(c)) operations in Fq. Note that for every
two interpolation points ηi, ηj , the difference ηi−ηj is a unit in R (since η is an element of Fp[W]/(P (W))
which is a field). This is required for the interpolation step. The total cost for Step 2 is

O(N(m2 log h + M(m) log mM(c)))

Fq-operations.
Step 4 is a univariate multipoint evaluation problem. We have N elements of S, and a univariate poly-

nomial f∗ over S, of degree at most dmhm. If L = max(N, dmhm), this step requires O(M(L) log L)
operations in S, or

O(M(L) log LM(h)M(c))

Fq-operations, using fast univariate multipoint evaluation. The N applications of π take O(Nm) operations
in R, or O(NmM(c)) Fq-operations.

20

Corollary 6.3. For every constant δ > 0 there is an algorithm for MULTIVARIATE MULTIPOINT EVALUA-
TION over Fq with parameters d,m,N , and with operation count (dm + N)1+δ, for all d,m, N with d,N
sufficiently large, provided m ≤ do(1) and the characteristic p ≤ do(1).

Proof. Let c be a sufficiently large constant (depending on δ). We may assume m > c by applying the
map from Definition 2.3, if necessary, to produce an equivalent instance of MULTIVARIATE MULTIPOINT

EVALUATION with more variables and smaller individual degrees (and note that the quantity dm is invariant
under this map). The operation count of Theorem 6.2 has an “extra” multiplicative factor of (m2p)m ·
poly(d, p, m, log N), and we claim this can be made to be at most (N + dm)δ. This is because m ≤ do(1)

(so m2m+O(1) ≤ do(m)), and p ≤ do(1) (so pm+O(1) ≤ do(m)), and dO(1) ≤ (dm)O(1)/c (recall we are
choosing c sufficiently large), and finally poly log N ≤ N δ for sufficiently large N .

7 Fast modular composition, and its transpose

We now obtain fast algorithms for MODULAR COMPOSITION and its transpose, MODULAR POWER PRO-
JECTION, via the reduction of Theorem 3.1, and the transposition principle.

7.1 Modular composition

By applying the reduction in Theorem 3.1, we obtain a nearly-linear time algorithm for MODULAR COM-
POSITION.

Theorem 7.1. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic polynomial
E(Z). For every constant δ > 0, if we have access to Ndδ distinct elements of R whose differences are
units in R, there is an algorithm for MODULAR COMPOSITION over R with parameters d, m,N , and with
running time (dm +N)1+δ log1+o(1) q, for all d,m,N with d,N sufficiently large, provided m ≤ do(1). If R
is isomorphic to the field Fq with characteristic p ≤ do(1), then the algorithm can be taken to be algebraic,
with operation count (dm + N)1+δ.

Proof. Let c be a a sufficiently large constant (depending on δ), and set d0 = d1/c and m0 = cm. Then
applying Theorem 3.1, we obtain an algorithm for MODULAR COMPOSITION requiring O((dm + mN)d0) ·
poly log(dm + mN) operations plus one invocation of MULTIVARIATE MULTIPOINT EVALUATION with
parameters d0,m0, N

′ = Nmcd0. By our choice of c, and the fact that m ≤ do(1) and d,N are sufficiently
large, this operation count is at most (dm + N)1+δ. By Corollary 4.5, the instance of MULTIVARIATE

MULTIPOINT EVALUATION can be solved in time (dm + N)1+δ log1+o(1) q, or with (dm + N)1+δ field
operations via Corollary 6.3 if we are working over the field Fq with characteristic p ≤ do(1).

We remark that for the “standard” parameter setting of m = 1 and N = d, one can achieve the claimed
running time by taking t = 2 when solving the MULTIVARIATE MULTIPOINT EVALUATION instance via
Algorithm MULTIMODULAR-FOR-EXTENSION-RING. This makes the overall algorithm (arguably) practical
and implementable. Indeed, use of a single round of multimodular reduction is quite common in practice;
for instance, Shoup’s NTL library [Sho] uses multimodular reduction for most basic arithmetic involving
multiprecision integer polynomials.

The following corollary addresses the most common special case of Theorem 7.1:

Corollary 7.2. For every δ > 0, there is an algorithm for MODULAR COMPOSITION over Fq with parame-
ters d,m = 1, N = d running in d1+δ log1+o(1) q bit operations, for sufficiently large d. If the characteristic
p is at most do(1), then the algorithm may be taken to be algebraic, with operation count d1+δ.

21

Proof. Construct an extension field Fq′ of Fq with cardinality at least d1+δ, then apply Theorem 7.1 with
R = Fq′ .

Remark. In the running times claimed in Corollaries 4.3, 4.5, 6.3, 7.2, and Theorem 7.1, we have chosen
to present bounds that interpret “almost linear in x” as meaning “for all δ > 0, there is an algorithm running
in time x1+δ for sufficiently large x.” In all cases, it is possible to choose δ to be a sub-constant function of
the other parameters, giving stronger, but messier, bounds.

7.2 Fast modular power projection

In this section, we restrict ourselves to “standard” parameter setting for MODULAR COMPOSITION— in
which m = 1 and N = d. We consider the “transpose” of MODULAR COMPOSITION, defined next:

Problem 7.3 (MODULAR POWER PROJECTION). Given a linear form π : Rd → R, and polynomials
g(X), h(X) in R[X], each with degree at most d − 1, and with the leading coefficient of h a unit in R,
output π(g(X)i mod h(X)) for i = 0, 1, . . . , d− 1.

One can view MODULAR COMPOSITION as multiplying the d × 1 column vector of coefficients of f
on the left by the d × d matrix Ag,h, whose columns are the coefficients of g(X)i mod h(X) for i =
0, 1, . . . , d − 1. Then MODULAR POWER PROJECTION is the problem of multiplying the column vector of
coefficients of π on the left by the transpose of Ag,h.

By a general argument (the “transposition principle”), linear straight-line programs computing a linear
map yield linear straight-line programs with essentially the same complexity for computing the transposed
map.

Theorem 7.4 ([BCS97, Thm. 13.20]). Let φ : Rn → Rm be a linear map that can be computed by a linear
straight-line program of length L and whose matrix in the canonical basis has z0 zero rows and z1 zero
columns. Then the transposed map φt : Rm → Rn can be computed by a linear straight-line program of
size L− n + m− z0 + z1.

One can verify that the algebraic algorithm of Corollary 7.2 (which may be used in the small charac-
teristic case), when written as a straight-line program, computes only linear forms in the coefficients of the
input polynomial f . Thus Theorem 7.4 applies, and immediately gives:

Theorem 7.5. For every δ > 0, there is an algebraic algorithm for MODULAR POWER PROJECTION over
Fq with operation count d1+δ, for sufficiently large d, provided the characteristic p is at most do(1).

Unfortunately the general-characteristic algorithm of Corollary 7.2 (i.e. Algorithm MULTIMODULAR-
FOR-EXTENSION-RING) does not compute only linear forms in the coefficients of polynomial f (because
of the lifting to characteristic 0 followed by modular reduction) so we cannot apply Theorem 7.4 directly.
However, with some care, we can isolate the nonalgebraic parts of the algorithm into preprocessing and
postprocessing phases, and apply the transposition principle to algebraic portions of the algorithm. We
do this in the rest of the section. Before considering MODULAR POWER PROJECTION, we consider the
transpose of MULTIVARIATE MULTIPOINT EVALUATION.

Theorem 7.6. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic poly-
nomial E(Z). There is an algorithm for the transpose of MULTIVARIATE MULTIPOINT EVALUATION with
parameters d,m, N satisfying N = dm, with running time at most that claimed in Theorem 4.4.

22

Proof. We view Algorithm MULTIMODULAR-FOR-EXTENSION-RING as computing the linear map φ :
Rdm → RN which computes the evaluations of f at evaluation points α0, α1, . . . , αN−1. This is computed
by a preprocessing phase (Steps 1 and 2), which produces f and α0, α1, . . . , αN−1, with the coefficients
of f and the coordinates of each αi in Z/r′Z. Algorithm MULTIMODULAR then computes in t successive
multimodular reductions a collection of instances of MULTIVARIATE MULTIPOINT EVALUATION over Fp,
for small primes p. Each of these is a map from φp : Fdm

p → FN
p , which is computed rapidly using Theorem

4.1. The transpose map φp can be computed in the same time bound, by Theorem 7.4, or directly by observ-
ing that the transpose of the DFT computed in Step 2 in the proof of Theorem 4.1 can again be computed
rapidly using the FFT.

In the original algorithm, a postprocessing phase (successive applications of Step 5 of Algorithm MUL-
TIMODULAR) we recover the evaluations of f in t successive rounds of reconstruction using the Chinese Re-
mainder Theorem. Finally the evaluations of f are reconstructed in Step 4 of Algorithm MULTIMODULAR-
FOR-EXTENSION-RING. In our algorithm for the transpose problem φt, we perform the same successive
rounds of reconstructions applied to the output from computing the various φt

p maps.
In the original problem, correctness in each round of reconstruction comes from choosing primes for

each multimodular reduction whose product exceeded the magnitude of any evaluation in Z. We argue cor-
rectness of these successive rounds of reconstruction in the transpose problem by noting that the magnitude
calculation is the same for the transpose problem, when N = dm. This is because the bound is calculated as
the product of the number of coefficients of the polynomial (dm) and the maximum magnitude of any matrix
entry in the matrix representation of the linear map. For the transpose problem, a valid bound is the product
of N times the maximum magnitude of any matrix entry of the transposed matrix, which is the same.

Theorem 7.7. Let R be a finite ring of cardinality q given as (Z/rZ)[Z]/(E(Z)) for some monic polynomial
E(Z). For every constant δ > 0, if we have access to d1+δ distinct elements of R whose differences are units
in R, there is an algorithm for MODULAR POWER PROJECTION over R with running time d1+δ log1+o(1) q,
for sufficiently large d.

Proof. Consider first the reduction from MODULAR COMPOSITION (with parameters d,m = 1, N = d) to
MULTIVARIATE MULTIPOINT EVALUATION of Theorem 3.1. An instance of MODULAR COMPOSITION is
specified by degree d polynomials f(X), g(X), h(X). We describe the reduction as the product of linear
maps applied to the vector of coefficients of f . Steps 2 and 3 do not involve f , and can be executed in a
preprocessing phase.

Step 1 is given by φ1 : Rd → Rd′ which maps f to f ′ by permuting the coefficients and padding with
0’s (here d′ = d`

0 ≥ d). Step 4 is given by φ4 : Rd′ → RN ′
which maps f ′ to its evaluations at the

N ′ > d′ evaluation points (the α’s). Step 5 is given by φ5 : RN ′ → RN ′
which maps these evaluations

to the coefficients of the unique univariate polynomial having these values at the β’s. Step 6 is given by
φ6 : RN ′ → Rd which maps the resulting degree N ′ − 1 univariate polynomial to its reduction modulo
h(X). All of φ1, φ4, φ5, φ6 are linear maps, and thus the overall algorithm for MODULAR COMPOSITION

(after the preprocessing phase involving g(X) and h(X)) can be described as the linear map φ6◦φ5◦φ4◦φ1 :
Rd → Rd.

We are interested in computing the transposed map φt
1 ◦ φt

4 ◦ φt
5 ◦ φt

6 : Rd → Rd. We argue that
transposed map can be computed in time comparable to the time required for the nontransposed map. In
Theorem 3.1, φ6 is computed rapidly using fast polynomial division with remainder. By the transposition
principle (Theorem 7.4), φt

6 can be computed in comparable time. In Theorem 3.1, φ5 is computed rapidly
using fast univariate polynomial interpolation. By the transposition principle (Theorem 7.4), φt

5 can be
computed in comparable time.

23

In Theorem 3.1, φ4 is computed rapidly by invoking a fast algorithm for MULTIVARIATE MULTIPOINT

EVALUATION. We claim that φt
4 can be computed in the time expended by Algorithm MULTIMODULAR-

FOR-EXTENSION-RING to compute φ4. We’d like to apply Theorem 7.6, but that requires a “square” in-
stance, and in our case N ′ is larger than d′. But, just as we could have computed φ4 by invoking Algorithm
MULTIMODULAR-FOR-EXTENSION-RING N ′/d′ times with d′ evaluation points each time, we can compute
φt

4 by computing the transpose of a N ′/d′ square instances (via Theorem 7.6) and summing the resulting
vectors.

Finally, φt
1 is just a projection followed by a permutation of the coordinates, which can trivially be

computed in time comparable to that required for computing φ1.

Remark. There are explicit algorithms known for φt
5 (transposed univariate interpolation) and φt

6 (trans-
posed univariate polynomial division with remainder) (see, e.g., [BLS03]), and our algorithm in Theorem
7.6 is also explicit. Thus we have an explicit algorithm for MODULAR POWER PROJECTION (whereas in
general, use of the transposition principle may produce an algorithm that can only be written down by
manipulating the linear straight-line program).

8 Applications

In this section, we describe some improved algorithms that arise as a consequence of our new algorithms
for MODULAR COMPOSITION and MODULAR POWER PROJECTION. To emphasize the fact that modular
composition and modular power projection occur as black boxes within these algorithms, we write C(n, q)
and P (n, q) for the number of bit operations required to perform a modular composition and a modular
power projection, respectively, of degree n polynomials over Fq. As shown by Corollary 7.2 (and using
the remark following it), we now have C(n, q) ≤ n1+o(1) log1+o(1) q. Similarly, by Theorem 7.7 we have
P (n, q) ≤ n1+o(1) log1+o(1) q.

Note that all of the algorithms we describe in this section are algebraic except for the steps that use our
multimodular reduction-based algorithm for MODULAR COMPOSITION or MODULAR POWER PROJECTION.
Consequently, in characteristic p ≤ no(1), we may instead use the second part of Corollary 7.2 and Theorem
7.5 to produce completely algebraic algorithms; to obtain an upper bound on algebraic operation counts for
these, remove a factor of log q from the bit operation counts we state in this section.

8.1 Polynomial factorization

We start with the flagship application, to the problem of polynomial factorization.
There are three stages in variants of the Cantor-Zassenhaus algorithm for factoring a degree n univariate

polynomial over Fq: squarefree factorization, distinct-degree factorization, and equal-degree factorization.
The first stage, squarefree factorization, can be performed in n1+o(1) log2+o(1) q bit operations, using an
algorithm attributed by [KS98] to Yun. The second stage, distinct-degree factorization, has a deterministic
algorithm due to Kaltofen & Shoup [KS98] that takes

n0.5+o(1)C(n, q) + M(n) log2+o(1) q

bit operations, as described below. The third stage, equal-degree factorization, has a randomized algo-
rithm due to von zur Gathen & Shoup [vzGS92] that takes an expected number of n1+o(1) log2+o(1) q +
C(n, q) log n bit operations.

24

Notice that with our bound C(n, q) = n1+o(1) log1+o(1) q, the first and third stages use n1+o(1) log2+o(1) q
bit operations and the second stage improves to

n1.5+o(1) log1+o(1) q + n1+o(1) log2+o(1) q

bit operations. The second stage remains the barrier to an “exponent 1” algorithm, so we describe the algo-
rithm of Kaltofen & Shoup in enough detail here (and in a manner differing somewhat from the original) to
highlight a self-contained open problem whose resolution would improve its efficiency to n1+o(1) log2+o(1) q
bit operations. This will also illustrate the critical role played by MODULAR COMPOSITION in this algo-
rithm.

The problem we are trying to solve is:

Problem 8.1 (DISTINCT-DEGREE FACTORIZATION). Given a monic, squarefree polynomial f ∈ Fq[X]
of degree n, output f1, f2, . . . , fn ∈ Fq[X] where fi is either 1 or the product of degree-i irreducible
polynomials, and f1f2 · · · fn = f .

The crucial (standard) algebraic fact used in these algorithms is:

Proposition 8.2. The polynomial si(X) def= (Xqi − X) ∈ Fq[X] is the product of all monic irreducible
polynomials over Fq whose degree divides i.

Therefore, computing gcd(si(X), f(X)) splits off those irreducible factors of f whose degrees divide
i. In preparing the polynomial si(X) for this purpose, we are free to compute it modulo f(X).

The main step in the algorithm for DISTINCT-DEGREE FACTORIZATION will be to split the input poly-
nomial f into two nonconstant polynomials f1f2 · · · fm and fm+1fm+2 · · · fn for some m ∈ {1, 2, . . . , n}.
One could do this by computing gcd(si(X), f(X)) for i = 1, 2, . . . , n and stopping at the first nontrivial
gcd, but in the worst case, a nontrivial split will not be found until i ≈ n/2 which spoils any chance of
a subquadratic algorithm. Instead, we will perform a “binary search”: we begin with m = n/2, and if
this does not yield a nontrivial split, we proceed to either m = n/4 or m = 3n/4 depending on whether
f1f2 · · · fn/2 equals f or 1, and so on.

For this purpose we need to be able to solve the following subproblem, which gives us the polynomials
needed to compute the “splits” on-the-fly in the above binary-search strategy (and note that for our intended
application we do not care if the si(X) factors are repeated, which explains the ai’s below):

Problem 8.3. Given a monic, squarefree polynomial f ∈ Fq[X] of degree n, a positive integer m, and the
polynomial Xq mod f(X), compute a polynomial

s1(X)a1 · s2(X)a2 · · · · · sm(X)am mod f(X) =
m∏

i=1

(Xqi −X)ai mod f(X)

for any positive integers ai.

It is easy to see that this problem can be solved in

m ·O
(
C(n, q) + M(n) log1+o(1) q

)

bit operations: with m successive modular compositions with Xq, we can obtain Xqi
mod f(X) for i =

1, 2, . . . , m, and then m further polynomial additions and multiplications modulo f suffice to compute∏m
i=1(X

qi −X) mod f(X).
Kaltofen & Shoup describe a clever algorithm that reduces the exponent on m from 1 to 1/2:

25

Lemma 8.4 (implicit in [KS98]). Problem 8.3 can be solved in

O
(
C(n, q)

√
m + M(n)M(

√
m) log

√
m log1+o(1) q

)

operations.

Proof. First, compute Xqi
modulo f(X) for i = 0, 1, 2, . . . ,

√
m− 1; then compute Xqj

√
m

modulo f(X)
for j = 1, 2, . . . ,

√
m. This requires O(C(n, q)

√
m) bit operations, since we are given Xq mod f(X) to

begin with. Form the degree
√

m polynomial P (Z) over the ring Fq[X]/(f(X)) defined as:

P (Z) def=

√
m−1∏

i=0

(Z −Xqi
) mod f(X).

This requires O(M(
√

m) log
√

m) operations in the ring, or O
(
M(n)M(

√
m) log

√
m log1+o(1) q

)
bit

operations. Finally, evaluate P (Z) at the elements Xqj
√

m
mod f(X) for j = 1, 2, . . . ,

√
m, and take the

product of these evaluations modulo f(X), yielding:
√

m∏

j=1

√
m−1∏

i=0

(Xqj
√

m −Xqi
) mod f(X)

which equals: √
m∏

j=1

√
m−1∏

i=0

(Xqj
√

m−i −X)qi
mod f(X),

which is a polynomial of the desired form (the ai are various powers of q). Using fast multipoint evaluation,
this final step entails O(M(

√
m) log

√
m) operations in the ring, or O

(
M(n)M(

√
m) log

√
m log1+o(1) q

)

bit operations.

Using Problem 8.3 as a subroutine, it is not hard to describe a fast algorithm for DISTINCT-DEGREE

FACTORIZATION:

Theorem 8.5. If Problem 8.3 can be solved in O
(
nαmβ log1+o(1) q

)
bit operations (with α > 1), then

there is an algorithm for DISTINCT-DEGREE FACTORIZATION that uses

O
(
nα+β log3 n + n log n log q

)
· log1+o(1) q

bit operations.

Proof. We first prepare the polynomial Xq mod f(X) needed as input to Problem 8.3, by repeated squaring,
at a cost of O(M(n) log q) · log1+o(1) q bit operations.

Now, in addition to the input of a squarefree f(X) ∈ Fq[X] of degree n, we assume we are given a
range within which we know all of the degrees of the irreducible factors of f lie. Initially, this is just 1 . . . n.

If the range consists of only a single integer, then we can output f(X) itself and halt. Otherwise, set m
to the midpoint of this range, and compute a polynomial as specified in Problem 8.3; call this polynomial
S(X). Compute gcd(S(X), f(X)). If this gcd is f(X), then we reduce the range to the first half and
recurse; if this gcd is a constant polynomial, then we reduce the range to the second half and recurse; if this

26

gcd is a nontrivial polynomial flower(X), then we compute fupper(X) = f(X)/flower(X), and these
two polynomials represent a successful “split.” Notice that deg(flower) + deg(fupper) = deg(f). We now
recurse on flower (with the range reduced to the first half) and fupper (with the range reduced to the second
half).

We now analyze the operation count of this recursive algorithm when factoring a degree n input poly-
nomial. Notice that we never set m larger than n throughout the entire algorithm, so we will pessimistically
assume it is always n to simplify the analysis.

Let T (n′, r) denote the bit operations used by the procedure, when called with a polynomial of degree
n′ and range of size r. If r = 1, the cost is zero. Otherwise, the procedure solves Problem 8.3 at a cost
of at most c1n

′αnβ log1+o(1) q, and the other operations before the recursive call (a gcd, and possibly a
polynomial division) cost at most c2n

′ log2 n′ log1+o(1) q for some constants c1, c2. Set c = c1 + c2.
We will prove that for all T (n′, r) with n′, r ≤ n,

T (n′, r) ≤ cn′α log2 n′nβ log r log1+o(1) q,

by induction on r. The base case, when r = 1, is clear. In general we have that

T (n′, r) ≤
(
c1n

′αnβ + c2n
′ log2 n′

)
log1+o(1) q + max

1<i<n′

{
T (n′, r/2)
T (i, r/2) + T (n′ − i, r/2)

where the two lines in the inequality correspond to the cases that result in recursive calls. In the first case
we have:

(
c1n

′αnβ + c2n
′ log2 n′

)
log1+o(1) q + T (n′, r/2)

≤
(
c1n

′αnβ + c2n
′ log2 n′ + cn′α log2 n′nβ(log r − 1)

)
log1+o(1) q

≤ cn′α log2 n′nβ log r log1+o(1) q

as required. In the second case, we have:

(
c1n

′αnβ + c2n
′ log2 n′

)
log1+o(1) q + T (i, r/2) + T (n′ − i, r/2)

≤
(
c1n

′αnβ + c2n
′ log2 n′ + c[iα log2 i + (n′ − i)α log2(n′ − i)]nβ(log r − 1)

)
log1+o(1) q

≤
(
c1n

′αnβ + c2n
′ log2 n′ + c[n′α log2 n′]nβ(log r − 1)

)
log1+o(1) q

≤ cn′α log2 n′nβ log r log1+o(1) q

as required. The claimed upper bound in the theorem follows by considering T (n, n).

We now see how our new modular composition algorithm yields the fastest univariate factorization
algorithm in small characteristic:

Theorem 8.6. There is an algorithm that returns the irreducible factors of a degree n polynomial f ∈ Fq[X]
and uses an expected (

n1.5+o(1) + n1+o(1) log q
)
· log1+o(1) q

bit operations.

27

Proof. As noted above, the first and third phases already fall within this bound. Plugging Corollary 7.2 into
Lemma 8.4 yields an algorithm for Problem 8.3 using n1+o(1)m0.5+o(1) log1+o(1) q bit operations. Theorem
8.5 then yields the claimed result.

We consider it a very interesting open problem to devise an algorithm for Problem 8.3 that takes only
n1+o(1)mo(1) log1+o(1) q bit operations. By Theorem 8.5, this would give a randomized algorithm for fac-
toring a degree n polynomial over Fq requiring an expected n1+o(1) log2+o(1) q bit operations.

8.2 Irreducibility testing

In this problem we are given f(X) ∈ Fq[X] of degree n, and we want to determine whether or not it is
irreducible. Rabin’s algorithm [Rab80] can be implemented to take

n1+o(1) log2+o(1) q + C(n, q) ·O(log2 n)

bit operations, so we obtain a running time of n1+o(1) log2+o(1) q. This becomes the fastest known up to
lower order terms, and constitutes an improvement over the running time of previous implementations when
log q < n.

8.3 Manipulation of normal bases

Kaltofen & Shoup [KS98] study three natural problems related to manipulating normal bases: the problem
of basis selection (given a degree n irreducible h(X), find a normal element of Fq[X]/(h(X))); and the
problems of converting to a normal-basis representation from a power-basis representation, and vice versa.
The algorithms in [KS98] rely on two problems defined in that paper:

• Automorphism evaluation: given degree n − 1 polynomials f(X), g(X) and degree n polynomial
h(X), all in Fq[X], output the degree n − 1 polynomial

∑n−1
i=0 fi(g(X)qi

mod h(X)), where the fi

are the coefficients of f(X) (i.e., f(X) =
∑n−1

i=0 fiX
i).

• Automorphism projection: given a linear form π : Fn
q → Fq, a degree n − 1 polynomial g(X) and a

degree n polynomial h(X), both in Fq[X], output (π(g(X)qi
mod h(X)) for i = 0, 1, . . . , n− 1.

The two problems are the transpose of each other, and bear a resemblance to MODULAR COMPOSITION

and MODULAR POWER PROJECTION, respectively (here the g(X) polynomial is raised to successive q-th
powers, rather than consecutive powers). Kaltofen & Shoup [KS98] describe explicit baby-steps/giant-steps
algorithms for the two algorithms that rely on fast matrix multiplication (a la Brent & Kung) and MODULAR

COMPOSITION and MODULAR POWER PROJECTION. In particular, their algorithms yield running times of

O
(
C(n, q)n1/2 + (nω2/2 + M(n) log q) log1+o(1) q

)

for automorphism evaluation, and

O
(
C(n, q)n1/2 + P (n, q)n1/2 + (nω2/2 + M(n) log q) log1+o(1) q

)

for automorphism projection. With our algorithms for MODULAR COMPOSITION and MODULAR POWER

PROJECTION (and noting that ω2 ≥ ω + 1 > 3), both problems can be solved in time

nω2/2 log1+o(1) q + n1+o(1) log2+o(1) q. (8.1)

28

The algorithms of [KS98] for manipulating normal bases have running times that are dominated by the
invocations of automorphism evaluation and projection. Thus the three problems — of finding a normal
element, converting from power-basis coordinates to normal-basis coordinates, and converting from normal-
basis coordinates to power-basis coordinates — have running times bounded by (8.1) (the first and second
are randomized, with this expression bounding the expected running time). These running times represent
improvements over [KS98] and are the current fastest algorithms for these problems, when log q < n.

Remark. In the algorithms in the previous three subsections, the quadratic dependence on log q (which
is nonoptimal) arises solely from the need to compute Xq modulo some degree n polynomial f ∈ Fq[X]
(specifically, the polynomial to be factored or the polynomial being tested for irreducibility). This is done
by repeated squaring at a cost of O(M(n) log q) Fq-operations. An insight of Kaltofen & Shoup [KS97]
is that when q = pk, and assuming that Fq is represented explicitly as Fp[Z]/(E(Z)) for some degree k
irreducible E ∈ Fp[Z], this term can be improved as follows.

We illustrate the idea when k is a power of 2. Define gi(X) def= Xp2i

mod f(X), and let σ : Fq → Fq

denote the Frobenius map x 7→ xp. As in Section 6, denote by σj(gi) the polynomial gi with σj applied

to each of its coefficients. Define hi(Z) def= Zp2i

mod E(Z) (so hi is the polynomial representation of the
map σ2i

). We have that
gi(X) = σ2i−1

(gi−1)(gi−1(X)) mod f(X),

and note that glog k(X) is the desired polynomial Xq mod f(X).
We can compute glog k as follows. First, compute g0(X) = Xp mod f(X) and h0(Z) = Zp mod E(Z)

using repeated squaring. Then, for i = 1, 2, . . . , log k, compute gi(X) = σ2i−1
(gi−1)(gi−1(X)) mod

f(X), and hi(Z) = hi−1(hi−1(Z)) mod E(Z). The latter computation entails a single modular composi-
tion of degree k polynomials over Fp; each coefficient of the polynomial σ2i−1

(gi−1) can be obtained from
gi−1 by a modular composition of the degree k polynomial representing the coefficient with hi−1, and then
gi is obtained with a single modular composition of degree n polynomials over Fq.

The overall cost is
O

(
log p

(
M(n) log1+o(1) q + M(k) log1+o(1) p

))

bit operations to compute g0 and h0, plus (n + 1)C(k, p) + C(n, q) bit operations for each of the log k
iterations, for a total of

k1+o(1)n1+o(1) log2+o(1) p

bit operations, using our new algorithms for MODULAR COMPOSITION. This should be contrasted with the
k2+o(1)n1+o(1) log2+o(1) p bit operations for the standard repeated squaring approach. Thus, in fixed char-
acteristic, the nonoptimal quadratic dependence on log q of the algorithms in the previous three subsections
can be replaced with the optimal one (up to lower order terms), using this idea.

8.4 Computing minimal polynomials

In this problem, we are given g(X), h(X) ∈ Fq[X], both of degree at most n, and we must output the
minimal polynomial of g(X) in the ring Fq[X]/(h(X)); i.e., the monic polynomial f(X) of minimal degree
for which f(g(X)) mod h(X) = 0. Shoup’s randomized algorithm [Sho99] can be implemented to run in
expected time

O(M(n) log n log1+o(1) q + C(n, q) + P (n, q)),

so we obtain an expected running time of n1+o(1) log1+o(1) q using our algorithms for MODULAR COMPO-
SITION and MODULAR POWER PROJECTION, which is best possible up to lower order terms.

29

8.5 Frobenius evaluation

The fact that our algorithm applies to extension rings, not just to finite fields, leads to some additional
applications. One example, suggested to us by Hendrik Hubrechts, is that of Frobenius evaluation.

Let P (X) ∈ (Z/pnZ)[X] be a monic polynomial whose reduction modulo p is irreducible. Then the ring
R = (Z/pnZ)[X]/(P (X)) admits a unique Frobenius endomorphism F : R → R satisfying F (r) ≡ rp

(mod p) for all r ∈ R. Once one has computed the image of X ∈ R under F , one can then evaluate F
efficiently on any element of R by using modular composition.

In more number-theoretic language, the ring R arises as the quotient modulo pn of an unramified exten-
sion of the ring Zp of p-adic integers. (The existence of the Frobenius endomorphism is a consequence of
Hensel’s lemma.) Consequently, an algorithm for evaluating F efficiently leads to improvements in certain
algorithms based on p-adic analysis. An explicit example occurs in Hubrechts’s computation of zeta func-
tions of hyperelliptic curves over finite fields, using deformations in p-adic Dwork cohomology: substituting
for our modular composition algorithm in [Hub, §6.2] leads to a runtime improvement therein.

9 Open problems

We conclude with some open problems.

• Our algorithm for MULTIVARIATE MULTIPOINT EVALUATION is only optimal up to lower order terms
in case m 6 do(1). It would be interesting to describe a near-optimal algorithm in the remaining cases,
or perhaps just the multilinear case to start. It would also be satisfying to give a near-optimal algebraic
algorithm for MULTIVARIATE MULTIPOINT EVALUATION in arbitrary characteristic, not just small
characteristic.

• It would also be interesting to adapt our algebraic algorithms so that they work in a commutative ring
of small characteristic. Currently we require a field (see the discussion following Eq. (6.1)).

• As noted earlier, the reduction from MODULAR COMPOSITION to MULTIVARIATE MULTIPOINT EVAL-
UATION plays an important role in our work because it is easier to control the growth of integers when
solving the lifted version of MULTIVARIATE MULTIPOINT EVALUATION. One wonders whether there
are other problems involving polynomials that can exploit the combination of transforming the prob-
lem to a multivariate version with smaller total degree, and then lifting to characteristic zero followed
by multimodular reduction. For instance, can such techniques be profitably applied to other problems
whose currently best algorithms use a “baby steps/giant steps” technique in the manner of [BK78]?
We have specifically in mind such problems as automorphism projection and automorphism evalua-
tion as defined in [KS98], and discussed in Section 8.3.

• As noted earlier, an algorithm for Problem 8.3 using only n1+o(1)mo(1) log1+o(1) q operations would
lead to a randomized algorithm for factoring a degree n polynomial over Fq using n1+o(1) log2+o(1) q
expected bit operations. It seems that giving an algorithm for Problem 8.3 with operation count
n1+o(1)mβ for any constant β < 1/2, even under an assumption of small characteristic, will require a
new idea. Another route to an “exponent 1” algorithm for polynomial factorization would be to give
“exponent 1” algorithms for automorphism projection and automorphism evaluation, and then use the
implementation described in [KS98] of the so-called Black Box Berlekamp algorithm for polynomial
factorization.

30

10 Acknowledgements

We thank Henry Cohn, Joachim von zur Gathen, David Harvey, Erich Kaltofen, and Eyal Rozenman for
useful discussions, and Éric Schost for helpful comments on a draft of [Uma08]. We thank Swastik Kopparty
and Madhu Sudan for some references mentioned in Section 5, and Ronald de Wolf and the FOCS 2008
referees for helpful comments on the conference paper [KU08]. Finally, we thank Madhu Sudan for hosting
a visit of the second author to MIT, which launched this collaboration.

References

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, volume 315 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1997.

[Bel61] E. G. Belaga. Evaluation of polynomials of one variable with preliminary preprocessing of the
coefficients. Problemy Kibernet., 5:7–15, 1961.

[Ber] D. J. Bernstein. Fast multiplication and its applications (version of 7 Oct 2004). Preprint available
at http://cr.yp.to/papers.html#multapps.

[Ber70] E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation,
24(111):713–735, 1970.

[Ber98] D. J. Bernstein. Composing power series over a finite ring in essentially linear time. J. Symb.
Comput., 26(3):339–341, 1998.

[BK78] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM,
25(4):581–595, 1978.

[BLS03] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC ’03: Pro-
ceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pages
37–44, New York, NY, USA, 2003. ACM.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb.
Comput., 9(3):251–280, 1990.

[CZ81] D.G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields.
Mathematics of Computation, 36(154):587–592, 1981.

[GM07] A. Gál and P. B. Miltersen. The cell probe complexity of succinct data structures. Theor. Comput.
Sci., 379(3):405–417, 2007.

[GR06] V. Guruswami and A. Rudra. Explicit capacity-achieving list-decodable codes. In Jon M. Klein-
berg, editor, STOC, pages 1–10. ACM, 2006.

[HP98] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J. Complexity,
14(2):257–299, 1998.

[Hub] H. Hubrechts. Point counting in families of hyperelliptic curves (version of 31 Mar 2007).
Preprint available at http://wis.kuleuven.be/algebra/hubrechts/.

31

[Kal03] E. Kaltofen. Polynomial factorization: a success story. In J. Rafael Sendra, editor, ISSAC, pages
3–4. ACM, 2003.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit
lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KS97] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions of finite
fields. In ISSAC, pages 184–188, 1997.

[KS98] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Math-
ematics of Computation, 67(223):1179–1197, 1998.

[KU08] K. S. Kedlaya and C. Umans. Modular composition in any characteristic. In FOCS, 2008. To
appear.

[Mil95] P. B. Miltersen. On the cell probe complexity of polynomial evaluation. Theor. Comput. Sci.,
143(1):167–174, 1995.

[NZ04] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials. In Susanne
Albers and Tomasz Radzik, editors, ESA, volume 3221 of Lecture Notes in Computer Science,
pages 544–555. Springer, 2004.

[Pan66] V. Ya. Pan. Methods of computing values of polynomials. Russian Math. Surveys, 21(1):105–
136, 1966.

[PV05] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in polynomial
time. In FOCS, pages 285–294. IEEE Computer Society, 2005.

[Rab80] M. O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput., 9(2):273–280, 1980.

[Sho] V. Shoup. NTL 5.4.2. Available at http://www.shoup.net/ntl/.

[Sho94] V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symb. Comput.,
17(5):371–391, 1994.

[Sho99] V. Shoup. Efficient computation of minimal polynomials in algebraic extensions of finite fields.
In ISSAC, pages 53–58, 1999.

[Sho08] V. Shoup. A Computational Introduction to Number Theory and Algebra (version 2.3). Cam-
bridge University Press, 2008. Available at http://www.shoup.net/ntb/.

[Uma08] C. Umans. Fast polynomial factorization and modular composition in small characteristic. In
Richard E. Ladner and Cynthia Dwork, editors, STOC, pages 481–490. ACM, 2008.

[vzG06] J. von zur Gathen. Who was who in polynomial factorization. In Barry M. Trager, editor, ISSAC,
page 2. ACM, 2006.

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
1999.

[vzGP01] J. von zur Gathen and D. Panario. Factoring polynomials over finite fields: A survey. J. Symb.
Comput., 31(1/2):3–17, 2001.

32

[vzGS92] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials. Com-
putational Complexity, 2:187–224, 1992.

33

