
Fast Pose Estimation with Parameter-Sensitive Hashing

Gregory Shakhnarovich1∗ Paul Viola2 Trevor Darrell1

gregory@ai.mit.edu viola@microsoft.com trevor@ai.mit.edu

1Computer Science and Artificial Intelligence Lab, MIT 2Microsoft Research

Cambridge, MA 02139 Redmond, WA 98052

Abstract

Example-based methods are effective for parameter esti-

mation problems when the underlying system is simple or

the dimensionality of the input is low. For complex and

high-dimensional problems such as pose estimation, the

number of required examples and the computational com-

plexity rapidly become prohibitively high. We introduce a

new algorithm that learns a set of hashing functions that ef-

ficiently index examples in a way relevant to a particular

estimation task. Our algorithm extends locality-sensitive

hashing, a recently developed method to find approximate

neighbors in time sublinear in the number of examples. This

method depends critically on the choice of hash functions;

we show how to find the set of hash functions that are opti-

mally relevant to a particular estimation problem. Experi-

ments demonstrate that the resulting algorithm, which we

call Parameter-Sensitive Hashing, can rapidly and accu-

rately estimate the articulated pose of human figures from a

large database of example images.

1. Introduction

Many problems in computer vision can be naturally for-

mulated as parameter estimation problems: given an image

or a video sequence x, we estimate the parameters θ of a

model describing the scene or the object of interest. Exam-

ples include estimation of the configuration of an articulated

body, the contraction of muscles in the face, or the orienta-

tion of a rigid object. Example-based estimation methods

capitalize on the availability of a large set of examples for

which the parameter values are known: they infer the pa-

rameter values for the input from the known values in sim-

ilar examples. This does not require modeling the global

structure of the input/parameter relationship, which is only

∗Part of this research was performed while first two authors were

at Mitsubishi Electric Research Labs, Cambridge, MA. Their support is

gratefully acknowledged.

assumed to be sufficiently smooth to make such inference

meaningful.

Classic methods for example-based learning, such as the

k-nearest neighbor rule (k-NN) and locally-weighted re-

gression (LWR), are appealing due to their simplicity and

the asymptotic optimality of the resulting estimators. How-

ever, the computational complexity of similarity search,

used by these methods, in high-dimensional spaces and on

very large data sets has made them infeasible for many vi-

sion problems.

In this paper we describe a new example-based algorithm

for fast parameter estimation using local models, which are

dynamically built for each new input image. We overcome

the problem of computational complexity with a recently

developed algorithm for fast approximate similarity search,

Locality-Sensitive Hashing (LSH) [11]. The training ex-

amples are indexed by a number of hash tables, such that

the probability of collision is large for examples similar in

their parameters and small for dissimilar ones. For practi-

cal problems, such as pose estimation, good results can be

achieved with a speedup factor of 103 to 104 over an ex-

haustive search in a database as large as 106 examples.

What one really wants is to base the estimate on exam-

ples similar to the input in their parameter values as well as

in the input space. Note, however, that while LSH provides

a technique for quickly finding close neighbors in the input

space, these are not necessarily close neighbors in the pa-

rameter space. An exact solution for this task would require

knowledge of the parameter values for the input - precisely

the problem one needs to solve!

The main contribution of this paper is Parameter-

Sensitive Hashing (PSH), an extension of LSH. PSH uses

hash functions sensitive to the similarity in the parameter

space, and retrieves in sublinear time approximate nearest

neighbors of the input with respect to parameter values as

well as the features. The key construction is a new binary

feature space that is learned from examples in order to more

accurately reflect the proximity in parameter space. We

show how the objective of parameter sensitivity can be for-

1

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set

0-7695-1950-4/03 $17.00 © 2003 IEEE

(a) Input (b) A subset of the features (c) 3 top matches in PSH, left to right (d) Robust LWR

Figure 1. Pose estimation with parameter-sensitive hashing and local regression.

mulated in terms of a classification problem, and propose a

simple and efficient algorithm for evaluating this objective

and selecting parameter-sensitive hash functions. Finally,

the goal estimate is produced by robust LWR which uses the

approximate neighbors found by PSH to dynamically build

a simple model of the neighborhood of the input. Our ap-

proach is illustrated in Figure 1. To our knowledge, this is

the first use of an LSH-based technique with local regres-

sion.

The remainder of this paper is organized as follows. Pre-

vious work is reviewed in Section 2. The PSH algorithm is

presented in Section 3 (the algorithm for constructing effi-

cient hash functions is described in Section 3.1). We eval-

uate our framework on an articulated pose estimation prob-

lem: estimating the pose of a human upper body from a

single image. The details of the task and our experiments

are described in Section 4. We conclude and discuss some

open questions in Section 5.

2. Background and previous work

The body of literature on object parameter estimation

from a single image, and in particular on estimating the pose

of articulated bodies, is very large, and space constraints

force us to mention only work most related to our approach.

In [17] 3D pose is recovered from the 2D projections of

a number of known feature points on an articulated body.

Other efficient algorithms for matching articulated patterns

are given in [9, 15]. These approaches assume that detec-

tors are available for specific feature locations, and that a

global model of the articulation is available. In [14] a ‘shape

context’ feature vector is used to represent general contour

shape. In [16], the mapping of a silhouette to 3D pose is

learned using multi-view training data. These techniques

were successful, but they were restricted to contour features

and generally unable to use appearance within a silhouette.

Finally, in [1] a hand image is matched to a large

database of rendered forms, using a sophisticated similar-

ity measure on image features. This work is most similar

to ours and in part inspired our approach. However, the

complexity of nearest neighbor search makes this approach

difficult to apply to the very large numbers of examples

needed for general articulated pose estimation with image-

based distance metrics.

We approach pose estimation as a local learning task,

and exploit recent advances in locality- sensitive hashing to

make example-based learning feasible for pose estimation.

We review each of these topics in turn.

2.1. Example-based estimation

The task of example-based parameter estimation in vi-

sion can be formulated as follows. Input, which consists of

image features (e.g. edge map, vector of responses of a filter

set, or edge direction histograms) computed on the original

image, is assumed to be generated by an unknown paramet-

ric process x = f(θ) (e.g., θ is a vector of joint angles in

the articulated pose context. A training set of labeled exam-

ples (x1, θ1), . . . , (xN , θN) is provided. One must estimate

θ0 as the inverse of f for a novel input x0. The objective is

to minimize the residual in terms of the distance (similarity

measure) dθ in the parameter space.

Methods based on nearest neighbors (NN) are among the

oldest techniques for such estimation. The k-NN estimate

[7] is obtained by averaging the values for the k training

examples most similar to the input:

θ̂NN =
1

k

∑

xi∈neighborhood

θi, (1)

i.e. the target function is approximated by a constant in

each neighborhood defined by k. This estimate is known to

be consistent, and to asymptotically achieve Bayes-optimal

risk under many loss functions [7]. Note that similarity

(neighborhood) is defined in terms of the distance dX in

the input space.

A natural extension to k-NN, in which the neighbors are

weighted according to their similarity to the query point,

leads to locally-weighted regression (LWR) [5, 2]: the target

function is approximated locally (within any small region)

by a function from a particular model class g(x; β). The

parameters β are chosen to optimize the weighted learning

2

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set

0-7695-1950-4/03 $17.00 © 2003 IEEE

criterion in the test input x0,

β∗ = argmin
β

∑

xi∈neighborhood

dθ (g(xi; β), θi)K (dX(xi,x0)) ,

(2)

where K is the kernel function that determines the weight

falloff with increasing distance from the query point.

In robust LWR [4], the influence of outliers is diminished

through a short iterative process. In each iteration after the

model is fit, the neighborhood points are re-weighted so that

points with higher residual w.r.t. the fitted values become

less influential.

There are two major problems with the straightforward

application of example-based methods to parameter estima-

tion in vision. The first is the computational complexity of

the existing NN search algorithms, particularly in the high-

dimensional spaces often encountered in vision tasks. Us-

ing fast approximate NN algorithms may overcome this ob-

stacle. The idea of using approximate NN has been men-

tioned in previous work for object or texture classification

[3, 10], and for some estimation tasks [13, 1]. However to

our knowledge no experiments using recent algorithms for

estimation tasks have been conducted.

The second problem, not immediately solved by adopt-

ing an efficient similarity search algorithm, is the reliance

of the search on the input space metric dX , without explic-

itly taking into account dθ. We will show how to explic-

itly select a feature subspace in which dX approximates dθ ,

without an explicit global model of this relationship. The

approximate NN in this space are of much higher relevance

that those retrieved using distance in the original feature

spaces.

2.2. Locality-Sensitive Hashing

The following problem, called (r, ǫ)-NN, can be solved

in sublinear time by LSH [11]: if for a query point u there

exists a training point v such that d(u,v) ≤ r, then (with

high probability) a point v′ is returned such that d(u,v′) ≤
(1 + ǫ)r. Otherwise, the absence of such point is reported.

We shall now define the term “locality-sensitive” and sum-

marize the LSH algorithm.

A family H of functions over X is called locality-

sensitive, or more specifically (r, r(1+ ǫ), p1, p2)-sensitive,

if for any u,v ∈ X ,

if d(u,v) ≤ r then Pr
H

(h(u) = h(v)) ≥ p1,

if d(u,v) > (1 + ǫ)r then Pr
H

(h(u) = h(v)) ≤ p2,
(3)

where PrH is the probability with respect to a random

choice of h ∈ H. We will assume, w.l.o.g., that every

h ∈ H is binary valued.

A k-bit locality-sensitive hash function (LSHF)

g(x) = [h1(x), h2(x), . . . , hk(x)]T (4)

constructs a hash key by concatenating the bits computed by

a randomly selected set of h1, . . . , hk. Note that the proba-

bility of collision for similar points is at least 1− (1− p1)
k,

while for dissimilar points it is at most pk
2 . A useful LSHF

must have p1 > p2 and p1 > 1/2.

In the preprocessing stage of LSH, each training exam-

ple is entered into l hash tables indexed by independently

constructed g1, . . . , gl. For a query point x0, the exhaustive

search is only carried out among the examples in the union

of l hash buckets indexed by x0. If the algorithm succeeds,

these candidates include an (r, ǫ)-NN of x0.

The values of l and k affect both the precision and the ef-

ficiency of LSH. A large l increases the probability of suc-

cess, but also the potential number of candidate examples

(and thus the running time). A large k speeds up the search

by reducing the number of collisions, but also increases the

probability of a miss. Suppose that our goal is to search ex-

haustively at most B examples for each query; then setting

k = log1/p2

(

N

B

)

, l =

(

N

B

)

log(1/p1)

log(1/p2)

(5)

ensures [11] that LSH will succeed with high probability.

Its expected query time is O
(

dN1/(1+ǫ)
)

, which translates

into a factor 1000 speedup compared to exhaustive exact

search for N = 106, ǫ = 1.

The construction of an efficient set of LSHFs (with high

p1 and low p2) is obviously critical to the success of the

algorithm. In the next section we develop a learning algo-

rithm for constructing such a set for parameter estimation.

3. Estimation with Parameter-Sensitive Hash-

ing

Let (x1, θ1), . . . , (xN , θN) be the training examples

with their associated parameter values. An example is rep-

resented by a feature vector x = [x1, . . . , xD] where xj is

computed by a scalar-valued function φj on the input im-

age, such as a filter response at a certain location or a bin

count in edge direction histogram in a certain region. We

assume the following:

1. A distance function dθ is given which measures simi-

larity between parameter vectors, and a radius R in the

parameter space is given such that θ1, θ2 are consid-

ered similar iff dθ(θ1, θ2) < R.

2. The training examples are representative of the prob-

lem space, i.e. for a randomly drawn example there

exists, with high probability, an example with similar

parameter values.

3

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set

0-7695-1950-4/03 $17.00 © 2003 IEEE

3. The process that generates the examples is unbiased,

or it is possible to correct for such bias.

The distance function and the similarity threshold are de-

pendent on the particular task, and often reflect perceptual

similarities between the scenes or objects.

The second assumption may appear a bit vague, and in

fact its precise meaning depends on the nature of the prob-

lem. If we control the example generation process, we can

attempt to “fill” the space, storing an example in every node

on an R-grid in parameter space. This becomes infeasi-

ble very quickly as the dimension of θ increases. Alterna-

tively, it has been often observed or conjectured [12, 18]

that images of many real-world phenomena do not fill the

space uniformly, but rather belong to an intrinsically low-

dimensional manifold, and densely covering that manifold

is enough to ensure this property.

The last assumption implies that there are no significant

sources of variation in the examples besides the variation in

the parameters, or that the contribution of such sources can

be accounted for. While perhaps limiting, this is possible

to comply with in many vision problems, either explicitly,

by normalizing the examples, or implicitly, e.g. by using

features invariant with respect to the “nuisance” parameters.

3.1. Parameter-sensitive hash functions

For a hash function h, let p1(h) and p2(h) be the prob-

abilities of collision for similar/different examples. Recall

(Section 2.2) that a family of hash functions H is useful

when, averaged over h ∈ H, p2(h) is low and p1(h) is

high. In [11] quantities like p1(h) are derived for the task

of finding neighbors in the input space. For the parameter

estimation task, where the goal is to find neighbors in the

unknown parameter space, analytic derivation of p1(h) and

p2(h) is infeasible since h is a measurement in the input

(not parameter) domain.

However, we can show that p1(h) and p2(h) have an in-

tuitive interpretation in the context of the following clas-

sification problem. Let us assign to each possible pair of

examples (xi,xj) the label

yij =

+1 if dθ(θi, θj) < r,

−1 if dθ(θi, θj) > R,

not defined otherwise,

(6)

where r = R/(1 + ǫ). Note that we do not define the label

for the “gray area” of similarity between r and R, in order

to conform to Eq. (3).

We can now formulate a classification task related to

these labels. A binary hash function h either has a colli-

sion h(xi) = h(xj) or not; we say that h predicts the label

ŷh(xi,xj) =

{

+1 if h(xi) = h(xj) (collision),

−1 otherwise.
(7)

Thus, when h is interpreted as a classifier, p2(h) is the prob-

ability of a false positive Pr(ŷij = +1|yij = −1), and

similarly 1 − p1(h) is the probability of a false negative.

Our objective therefore is to find h’s with high prediction

accuracy. This can be done by evaluating h on a large set

of paired examples for which true labels can be computed.

Such a paired problem set can be built from our training set,

since we know dθ, r, R.

We should be careful about two things when construct-

ing the paired problem. First, we must not include pairs

with similarity within the “gray area” between r and R.

Second, we should take into account the asymmetry of the

classification task: there are many more negative examples

among possible pairs than there are positive. Consequently,

in order to represent the negative examples appropriately,

we must include many more of them in the paired problem.

The exact nature of the hash functions h will affect the

feature selection algorithm. Here we consider h which are

decision stumps:

hφ,T (x) =

{

+1 if φ(x) ≥ T,

−1 otherwise.
(8)

where φ(x) is a real-valued image function and T is a

threshold. Figure 2 shows an algorithm which for a given

φ finds the optimal T in two passes over the paired training

set. Intuitively, it tries all possible distinct thresholds and

counts the number of negative examples that are assigned

the same hash value and positives that are assigned different

values. Since examples are sorted by feature value, these

quantities can be updated with little work. The threshold

Tbest is the one that minimizes their sum.

The family H of parameter-sensitive hash functions

can now be constructed by selecting only hφ,T for which

p1(hφ,T) and p2(hφ,T) evaluated on the paired problem sat-

isfy the desired thresholds.

3.2. Similarity search

After H is selected, we project the data on only those

feature dimensions φ for which hφ,T ∈ H, obtain binary

representation for our data by applying (8), select k and l
based on (5) and build the l hash tables. For an unlabeled

input, LSH is used to query the database rapidly, and finds

the union of the l hash buckets, X ′ =
⋃l

j=1 gj(x0). Let M
be the number of distinct points in X ′; with high probabil-

ity M ≪ N (if M = 0 the algorithms terminates in fail-

ure mode). X ′ is exhaustively searched to produce the K
(r, ǫ)-NN x

′
1, . . . ,x

′
K , ordered by increasing dX(x′

i,x0),
with parameters θ′1, . . . , θ

′
K . The estimate is based on these

points, which with high probability, belong to an approxi-

mate neighborhood of x0 both in the parameter and in the

input spaces.

4

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set

0-7695-1950-4/03 $17.00 © 2003 IEEE

Given: Feature φ

Given: Pairs X̃ = (xin ,xjn , yn)N
n=1.

Start with an empty array A.

Tp := number of positive pairs

Tn := number of negative pairs

for n = 1 to N do

v1 := φ(xin), v2 = φ(xjn)
l1 := 1 if vin > vjn, 0 otherwise

l2 := −l1
A := A ∪ {< v1, l1, n >, < v2, l2, n >}

end for

At this point A has 2N elements. Each

paired example is represented twice.

Sort A by the values of v

Sp := Sn := 0
cbest := Tn

for k = 1 to 2N do

Let < v, l, n >= A[k]
if yn = +1 then

Sp := Sp − l

else if yn = −1 then

Sn := Sn − l

end if

c := (Tn − Sn) + Sp

if c < cbest then

cbest := c; Tbest := v

end if

end for

Figure 2. Algorithm for PSHF evaluation in the

case of decision stumps (see Section 3).

3.3. Local regression

The simplest way to proceed is to return θ′1 as the an-

swer. There are two problems with this. First θ′1 can be up

to R away from the true parameter of the input, θ0. Often,

the R for which it is feasible to satisfy the representative-

ness property mentioned above is too large to make this an

acceptable solution (see Figure 5 for examples). The sec-

ond problem is caused by our inability to directly measure

dθ(θ0, θ); the search relies on the properties of LSHF, and

on the monotonicity of dX with respect to dθ , which are

usually not perfect. We need a robust estimate based on the

approximate neighborhood found by PSH.

A possible way of achieving this is by using the k-NN

estimate as a starting point of a gradient descent search

[1]. Alternatively, active learning can be used to refine the

“map” of the neighborhood [6]. Both approaches, however,

require an explicit generative model of p(x|θ), or an “ora-

cle”, which for a given value of θ generates an example to

be matched to x0. While in some cases it is possible (e.g.

animation software which would render objects with a given

pose), we would like to avoid such a limitation.

Instead, we use robust LWR. to avoid overfitting, since

we expect the number of neighbors to be small, we con-

sider constant or linear model, which can be easily fit with

weighted least-squares. The parameters, e.g. the model or-

der and the kernel bandwidth, as well as the number of it-

erations of re-weighting, can be chosen based on validation

set.

4. Pose estimation with PSH

We applied our algorithm to the problem of recovering

the articulated pose of a human upper body. The model has

13 degrees of freedom: one DOF for orientation, namely

the rotation angle of the torso around the vertical axis, and

12 DOFs in rotational joints (2 in each clavicle, 3 in each

shoulder, and 1 in each elbow). We do not assume constant

illumination or fixed poses for other body parts in the upper

body (head and hands), and therefore need to represent the

variation in these and other nuisance parameters, such as

clothing and hair style, in our training set.

For this application, it is important to separate the prob-

lem of object detection from that of pose estimation. Given

simple backgrounds and a stationary camera, body detec-

tion and localization is not difficult. In the experiments re-

ported here, it is assumed that the body has been segmented

from background, scaled, and centered in the image. For

more difficult scenarios, a more complex object detection

system may be required.

Input images are represented in our experiments by

multi-scale edge direction histograms. Edges are detected

using the Sobel operator and each edge pixel is classi-

fied into one of four direction bins: π/8, 3π/8, 5π/8, 7π/8.

Then, the histograms of direction bins are computed within

sliding square windows of varying sizes (8, 16, 32 pixels)

placed at multiple locations in the image. The feature space

consists of the concatenated values of all of the histograms.

We chose this representation, often used in image analy-

sis and retrieval, because it is largely invariant to some of

the nuisance parameters with respect to pose, such as illu-

mination and color. Figure 1(b) illustrates a subset of the

features, namely half of the 8×8 histogram bins.

The training set consisted of 150,000 images rendered

from a humanoid model using POSER [8], with param-

eter values sampled independently and uniformly within

anatomically feasible ranges; the torso orientation is con-

strained to the range [−40o, 40o]. Each training image is

180×200 pixels. In our model, all angles are constrained to

[−π, π], so as similarity measure we use

dθ(θ1, θ2) =
m

∑

i=1

1 − cos(θi
1 − θi

2) (9)

where m is the dimension of the parameter space (number

of joint angles), and θi
j is the i-th component of θj . We

5

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set

0-7695-1950-4/03 $17.00 © 2003 IEEE

POS POS NEG NEG

AND

(a) (b) dθ = 0.147 (c) dθ = 0.203 (d) dθ = 1.085 (e) dθ = 4.782
dX = 0.053 dX = 0.052 dX = 0.063 dX = 0.060
dI = 1.316 dI = 3.557 dI = 3.631 dI = 3.486

Figure 3. Positive and negative paired examples. For each image in (b)–(e), the ±1 label of the

pair formed with (a) is based on the distance dθ to the underlying parameters of (a), with similarity

threshold r = 0.25. dX and the root mean squared pixel distances dI are given for reference.

found that this distance function, while not perfect, usually

reflects our perception of pose similarity (see Figure 3 for

examples).

After examining large numbers of images correspond-

ing to poses with various distances, we set r = 0.25 and

ǫ = 1. An LSH query is therefore considered successful

if it returns examples within R = 0.5 of the input. Analy-

sis of the distribution of dθ over pairs of training examples

reveals that only about 0.05% of the pairs constitute a posi-

tive example by this criterion (the distribution appears to be

roughly log-normal). Figure 3 shows 4 of 1,775,000 paired

examples used to select hash functions; out of 11,270 fea-

tures, 137 were selected using the thresholds p1 ≥ .65 and

p2 ≤ .38. Based Based on Eq. 5, PSH was implemented

via 150 hash tables using 18-bit hash functions.

Model k = 7 k = 12 k = 50

k-NN 0.882 (0.39) 0.844 (0.36) 0.814 (0.31)

Linear 0.957 (0.47) 0.968 (0.49) 1.284 (0.69)

const LWR 0.882 (0.39) 0.843 (0.36) 0.810 (0.31)

linear LWR 0.885 (0.40) 0.843 (0.36) 0.808 (0.31)

robust const LWR 0.930 (0.49) 0.825 (0.41) 0.755 (0.32)

robust linear LWR 1.029 (0.56) 0.883 (0.46) 0.738 (0.33)

Table 1. Mean estimation error for synthetic

test data, over 1000 examples. Standard de-

viation shown in parentheses. Not shown are

the baseline error of 1-NN, 1.614 (0.88), and of

the exact 1-NN based on the input distance,

1.659.

To quantitatively evaluate the algorithm’s performance,

we tested it on 1000 synthetic images, generated from the

same model. Table 1 summarized the results with different

methods of fitting a local model; ’linear’ refers to a non-

weighted linear model fit to the neighborhood. On average

PSH searched 5100 candidates, about 3.4% of the data, per

input example; in almost all cases, the true nearest neigh-

bors under dX were also the top PSH candidates.

The results confirm some intuitive expectations. As the

number of approximate neighbors used to construct the lo-

cal model increases, the non-weighted model suffers from

outliers, while the LWR model improves; the gain is espe-

cially high for the robust LWR. Since higher-order models

require more examples for a good fit, the order-1 LWR only

becomes better for large neighborhood sizes. Overall, these

results show consistent advantage to LWR. Note that the ro-

bust linear LWR with 50 NN is on average more than twice

better than the baseline 1-NN estimator.

We also tested the algorithm on 800 images of a real

person; images were processed by a simple segmentation

and alignment program. Figure 4 shows a few examples of

pose estimation on real images. Note that the results in the

bottom row are not images from the database, but a visu-

alization of the pose estimated with robust linear LWR on

12-NN found by PSH; we used a Gaussian kernel with the

bandwidth set to the dX distance to the 12-th neighbor. In

some cases (e.g. leftmost column in Figure 5), there is a dra-

matic improvement versus the estimate based on the single

NN. The number of candidates examined by PSH was, as

expected, significantly lower than for the synthetic images

- about 2000, or 1.3% of the database. It takes an unopti-

mized Matlab program less than 2 seconds to produce the

pose estimate. This is a dramatic improvement over search-

ing the entire database for the exact NN, which takes more

than 2 minutes per query, and in most cases produces the

same top matches as the PSH.

Lacking ground truth for these images, we rely on visual

inspection of the pose for evaluation. For most of the exam-

ples the pose estimate was accurate; on some examples it

failed to various extents. Figures 4 and 5 show a number of

examples, including two definite failures. Note that in some

6

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set

0-7695-1950-4/03 $17.00 © 2003 IEEE

IN
P

U
T

T
O

P
M

A
T

C
H

L
W

R

Figure 4. Examples of upper body pose estimation (Section 4). Top row: input images. Middle row:

top PSH match. Bottom row: robust constant LWR estimate based on 12 NN. Note that the images

in the bottom row are not in the training database - these are rendered only to illustrate the pose

estimate obtained by LWR.

IN
P

U
T

T
O

P
M

A
T

C
H

L
W

R

Figure 5. More examples, including typical “errors”. In the leftmost column, the gross error in the top

match is corrected by LWR. The rightmost two columns show various degrees of error in estimation.

7

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set

0-7695-1950-4/03 $17.00 © 2003 IEEE

cases the approximate nearest neighbor is a poor pose esti-

mate, while robust LWR yields a good fit. We believe that

there are three main sources of failure: significant mismatch

between dθ and dX , imperfect segmentation and alignment,

and the limitations of the training set, in terms of coverage

and representativeness of the problem domain.

5. Summary and Conclusions

We present an algorithm that uses new hashing-based

search techniques to rapidly find relevant examples in a

large database of image data, and estimates the parameters

for the input using a local model learned from those exam-

ples. Experiments show that our estimation method, based

on parameter-sensitive hashing and robust locally-weighted

regression, is successful on the task of articulated pose es-

timation from static input. These experiments also demon-

strate the usefulness of synthetically created data for learn-

ing and estimation.

In addition to the use of local regression to refine the es-

timate, our work differs from that of others, e.g. [1, 13],

in that it allows accurate estimation when examining only a

fraction of a dataset. The running time of our algorithm is

sublinear; in our experiments we observed a speedup of al-

most 2 orders of magnitude relative to the exhaustive exact

nearest-neighbor search, reducing the time to estimate pose

from an image from minutes to under 2 seconds without

adversely affecting the accuracy. We expect an optimized

version of the system to run at real time speed. This has the

potential of making previously infeasible example-based es-

timation paradigm attractive for such tasks.

There are many interesting questions that remain open.

The learning algorithm, presented in Section 3.1, implicitly

assumes independence between the features; we are explor-

ing more sophisticated feature selection methods that would

account for possible dependencies. Moreover, it should be

pointed out that there exist fast algorithms for approximate

similarity search other than LSH. It remains an open ques-

tion whether those algorithms can be modified for param-

eter sensitivity and become useful for estimation tasks in

vision, replacing LSH in our framework.

Finally, as we mentioned earlier, the presented frame-

work is not specific to pose; we intend to investigate its use

in other parameter estimation tasks.

References

[1] V. Athitsos and S. Sclaroff. Estimating 3D Hand Pose from a

Cluttered Image. In IEEE Conf. on Computer Vision and Pat-

tern Recognition, pages 432–439, Madison, WI, June 2003.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally

weighted learning. Artificial Intelligence Review, 11(1-

5):11–73, 1997.

[3] J. S. Beis and D. G. Lowe. Shape indexing using approx-

imate nearest-neighbour search in high-dimensional space.

In IEEE Conf. on Computer Vision and Pattern Recognition,

pages 1000–1006, San Juan, PR, June 1997.

[4] W. S. Cleveland. Robust locally weighted regression and

smoothing scatter plots. Journal of American Statistical As-

sociation, 74(368):829–836, 1979.

[5] W. S. Cleveland and S. J. Delvin. Locally weighted re-

gression: an approach to regression analysis by local fitting.

Journal of American Statistical Association, 83(403):596–

610, 1988.

[6] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learn-

ing with statistical models. J. Artificial Intelligence Re-

search, 4:129–145, 1996.

[7] T. M. Cover. Estimation by the nearest neighbor rule.

IEEE Transactions on Information Theory, 14:21–27, Jan-

uary 1968.

[8] Curious Labs, Inc., Santa Cruz, CA. Poser 5 - Reference

Manual, 2002.

[9] P. Felzenszwalb and D. Huttenlocher. Efficient matching of

pictorial structures. In IEEE Conf. on Computer Vision and

Pattern Recognition, pages 66–75, Los Alamitos, June 13–

15 2000. IEEE.

[10] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based

clustering in high dimnensions: A texture classification ex-

ample. In International Conference on Computer Vision,

2003. (to appear).

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In Proceedings of the 25th

International Conference on Very Large Data Bases (VLDB

’99), pages 518–529, San Francisco, September 1999. Mor-

gan Kaufmann.

[12] B. Moghaddam and A. Pentland. Probabilistic visual learn-

ing for object representation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19(7):696–710, 1997.

[13] G. Mori, S. Belongie, and J. Malik. Shape contexts enable

efficient retrieval of similar shapes. In IEEE Conf. on Com-

puter Vision and Pattern Recognition, pages 723–730, Lihue,

HI, 2001.

[14] G. Mori and J. Malik. Estimating Human Body Configura-

tions using Shape Context Matching. In European Confer-

ence on Computer Vision, 2002.

[15] R. Ronfard, C. Schmid, and B. Triggs. Learning to parse

pictures of people. In European Conference on Computer

Vision, Copenhagen, Denmark, 2002.

[16] R. Rosales and S. Sclaroff. Specialized mappings and the es-

timation of body pose from a single image. In IEEE Human

Motion Workshop, pages 19–24, Austin, TX, 2000.

[17] C. J. Taylor. Reconstruction of articulated objects from point

correspondences in a single uncalibrated image. Computer

Vision and Image Understanding, 80(3):349–363, December

2000.

[18] Y. Wu, J. Y. Lin, and T. S. Huang. Capturing natural hand ar-

ticulation. In International Conference on Computer Vision,

pages 426–432, Vancouver, BC, 2001.

8

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set

0-7695-1950-4/03 $17.00 © 2003 IEEE

