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Abstract

This paper presents a novel method for deciding the
locations of “guards” required to visually inspect a
given 2D workspace. The decided guard positions can
then be used as control points in the path of a mo-
bile robot that autonomously inspects a workspace. It
is assumed that each of the guards (or the mobile
robot that visits the guard positions in some order)
is equipped with a panoramic camera of 360 degrees
field of view. However, the camera has limited visi-
bility, in the sense that it can observe with sufficient
detail objects that are not further than a predefined
visibility range. The method seeks to efficiently pro-
duce solutions that contain the smaller possible num-
ber of guards. Experimental results demonstrate that
the proposed method is computationally efficient and
that, although suboptimal, decides a small number of
guards.

1 Introduction

This paper deals with the problem of 2D area inspec-
tion which belongs to the category of “art gallery
problems”. The original art gallery problem, origi-
nally stated by Klee (see [1]) and studied by Chvatal
[2], is to find the smallest number of guards neces-
sary to lookout every point in the interior of an n-wall
art gallery room. The gallery room is modelled as a
simple, not necessarily convex polygon consisting of
n vertices. Covering the art gallery by ng guards
translates to finding ng points in the interior of the
polygon such that every point on the polygon is vis-
ible by at least one guard. A point is considered vis-
ible by a guard if the straight line connecting them
does not intersect the polygon. This problem is also
related to the “watchman route” problem [3], where
the goal is to compute a path in a given workspace
such that every point of the workspace will become
visible from at least one point on the path. The
above problem definitions deal with unconstrained

guard visibility. Interesting variants can be formu-
lated by constraining the visual capabilities of the
guards. Example constraints, which arise from prac-
tical considerations, include limitations in the visual
field of the guards and/or on their visibility range.
For example, conventional cameras have a limited
field of view and cannot capture features of the en-
vironment with sufficient quality, if these features lie
far away.

There are several surveys on solutions for the art
gallery problems [4,5]. In [6], an overview of what is
known about the computational complexity of sev-
eral art gallery problems is provided. It is has been
proven that providing an optimal solution to the
inspection problem for simple polygons is an NP-
hard problem, either for polygons without holes [7]
or for polygons with holes [8]. Therefore, to practi-
cally deal with the problem, someone has to opt for
sub-optimal solutions. Fisk [9] found a fast guard
placement algorithm in linear time, using Chazelles
algorithm that triangulates polygons in linear time
[10]. However, this solution works for polygons with-
out holes, and requires that the guards have uncon-
strained visibility. Bjorling-Sachs and Souvaine [11]
gave an O(n2) time complexity algorithm to find
the position of the guards in a polygon with holes.
Still this solution works for unconstrained guard vis-
ibility. Solutions for the constrained visibility vari-
ant of the inspection problem are based on random-
ized approaches, such as the algorithms proposed
by Gonzales-Banos, Latombe [12], and Danner and
Kavraki [13]. These randomized approaches consider
a constraint on the size of the visual field of guards.
The two algorithms described in [12] have complex-
ity bounded by O(nm2) and O(ngnlog(ngn)) respec-
tively, with n being the number of edges of the
workspace, m the number of random samples drawn
to inspect it, and ng the number of guards that the
algorithm defines for the specific workspace. As ex-
pected, ng and m are related to the complexity of



the workspace.

In our formulation of the problem, we consider
guards equipped with panoramic cameras with a field
of view of 360 degrees. Such cameras are now readily
available in the market and widely used in a number
of robotic applications [14, 15]. The employment of
such cameras makes unnecessary the consideration
of constraints on the field of view of the guards.
Even with conventional cameras, such constraints
are less important because a rotating camera can
sweep the full 360 degrees field of view and produce
a panoramic view of the environment at a certain
location. However, most of the available panoramic
cameras provide images of low resolution because the
full visual field is squeezed on an conventional CCD
array. Thus, to solve the inspection problem with
sufficient quality of observation, it is necessary to im-
pose a constraint on the visibility range of the guards.
The actual value of the visibility range depends on
the sensor employed and on the characteristics of the
target application.

There are many applications that could benefit from
an efficient solution of the above formulation of
the inspection problem. These include inspection
and surveillance tasks performed by a moving robot
equipped with a panoramic camera. The solution of
the inspection problem can derive a minimal number
of points that the robot should visit to guarantee full
inspection of the workspace. The fast computation
of inspection points is of particular importance in
time-critical situations. Other interesting applica-
tions are the automatic computation of architectural
walk-throughs, virtual reality exploration systems,
3D reconstruction of a workspace etc.

The proposed method uses an algorithm [16] that de-
composes the initial, simple polygon with holes that
models the workspace into a number of convex poly-
gons. Then, a divide and conquer strategy is applied,
to successively divide each of the resulting convex
polygons into smaller polygons that can be locally
inspected with only one guard. The algorithm can
handle both versions of the inspection problem (i.e.
inspecting the workspace borders or the whole area
of the workspace) in a unified manner. However, the
computational time required by the algorithm in the
first case, is substantially smaller.

The rest of the paper is organized as follows. The
proposed method is described in detail in section 2.
The computational complexity of the method is anal-
ysed in section 3. Experimental results are presented
in section 4. Finally, section 5 summarizes the paper.

2 Method description

The proposed algorithm operates on a 2D, sim-
ple, non-convex polygon with holes that models the
workspace to be inspected. The holes of the poly-
gon correspond to obstacles or internal structures in
the environment. The algorithm solves the inspec-
tion problem under constrained visibility for the in-
terior borders of every such polygon. If an exterior
inspection is desired, then a rectangle enclosing the
workspace defines a new virtual border, and the orig-
inal polygon appears as a hole of the new workspace.
The internal inspection of the new polygon will yield
the desired result.

The algorithm first decomposes the original non-
convex polygon into a collection of convex polygons
[16]. This decomposition is advantageous because
it simplifies the definition of guards. More specifi-
cally, deciding whether a panoramic guard with lim-
ited visibility range can inspect a convex polygon is
reduced to measuring the distance of the guard to the
vertices of the polygon and thus, the employment of
more complex sweep algorithms is avoided.

In order to cope with the visibility range constraint,
we apply a successive division of every convex poly-
gon into convex sub-polygons, until each of them can
be inspected locally by one guard. In the remain-
der of this section, this algorithmic procedure is de-
scribed in more detail.

2.1 Polygon division

In order to determine the set of guards that are suf-
ficient for the inspection of a convex polygon given
limited visibility range β, the following division pro-
cedure is employed. First, a potential guard (obser-
vation point - OP) inside the polygon is computed,
using a procedure that is described later in this sec-
tion. Then, the polygon vertex (MDV) with the
maximum distance α from the selected OP is de-
termined. Point OP is considered as a guard if it is
capable of inspecting the polygon, that is, if and only
if α is smaller compared to the visibility range β. In
the opposite case, the line L that is perpendicular to
the line segment that connects OP and the MDV and
passes through OP is computed. This line, divides
the convex polygon into two convex sub-polygons.
Then, the same procedure is recursively applied to
each of the derived convex sub-polygons. The key
aspects of this algorithmic procedure is the selection
of observation points (OPs) as well as the method
for decomposing a convex polygon into convex sub-
polygons, which are further discussed in the sequel.

Selection of observation points (OPs). The
optimum OP is the one that minimizes the maximum
distance from the polygon’s vertices. Equivalently,



the optimum OP is the center of the minimum-radius
circle that contains the polygon. Unfortunately, the
optimum OP may be a point on the edges of the poly-
gon which is obviously a poor location for a guard.
Moreover, the selection of OPs should be a computa-
tionally cheap process because it is encountered very
often. An alternative OP is the point defined by
the mean of the coordinates of the polygon vertices
(MC). The disadvantage of MC is that it differs sub-
stantially from the optimum OP, in cases of polygons
with non-uniformly distributed vertices. To alleviate
this problem, instead of using MC, we use the point
WS defines as:

WS(x, y) =
A∑

i=1

‖Ei‖Mi(x, y)/
A∑

i=1

‖Ei‖, (1)

where Mi(x, y) is the coordinates of the midpoint of
the ith edge Ei of the polygon (1 ≤ i ≤ A), and
‖Ei‖ is the length of edge Ei. The idea behind this
selection is to bias OP towards long polygon edges.
Extensive experiments have shown that OPs defined
as in eq.(1) perform much better than MC (see also
Fig. 1).

Figure 1: Definition of OPs: MC vs WS (as defined
in eq.(1)). A smaller visibility range is required for
WS to inspect the polygon, compared to MC. This is
due to the fact that in this polygon, vertices have a
non-uniform spatial distribution.

The choice of polygon division line. The choice
of the line that divides a given polygon (that can-
not be inspected locally) into two sub-polygons, is
also an important factor for the success of the al-
gorithm. The goal of polygon division is to come-up
with sub-polygons that can locally be inspected from
their observation points. In order to achieve this
goal, it is required that polygon division produces
sub-polygons where the distance α (the distance of
OP from MDV) is decreased as much as possible in
successive polygon generations. As already stated
earlier in this section, the selected divisor line L is
the line that is perpendicular to the line defined by
OP (defined as WS) and MDV and passes through
OP (see also Fig. 1). This definition of line L aims
at minimizing the distance between the OP and the

MDV in the resulting polygons. As an example, in
the case of a very elongated convex polygon, this de-
composition will reduce this distance by a factor of
almost two. At the same time, this choice assures
the termination of the algorithm since the maximum
distance between OPs and MDVs in all generations
of polygon divisions is guaranteed to be a monoton-
ically decreasing function.

2.2 Internal/external polygons

The decomposition of the initial non-convex polyg-
onal workspace into convex polygons and the re-
cursive division of convex polygons into convex
sub-polygons, produces edges and vertices that do
not necessarily belong to the initial edges of the
workspace. We differentiate between external and
internal vertices, edges and polygons. External ver-
tices are vertices that belong to the edges of the
workspace borders. External edges are the edges or
parts of the edges of the workspace borders. External
polygons are polygons that contain at least one exter-
nal vertex or at least one external edge. Internal ver-
tices are vertices in the inner part of the workspace
but not on its edges. An internal edge is defined
by two internal vertices. Finally, internal polygons
are those defined by internal edges, only. By def-
inition, the borders and vertices of the workspace
are external ones. The sub-polygons defined during
polygon division can be either external or internal.
Note that the intersection of any line with an internal
edge gives rise to an internal vertex and the intersec-
tion of any line with an external edge gives rise to an
external vertex. By exploiting these observations, it
can easily be determined whether the sub-polygons
that are produced by a division are internal or ex-
ternal. Moreover, at each level of recursion, only
external polygons are considered for further subdi-
vision. This is because the edges of internal poly-
gons are virtual ones and do not correspond to parts
of the borders of the workspace that need to be in-
spected. This process speeds up the computations
substantially, because large free-space areas will be
quickly excluded from the search space of possible
guards. Note, however, that for the version of the
problem that requires inspection of the full area of
the workspace, both internal and external polygons
should be inspected.

Figure 2 presents an example of polygon division.
Thick black lines show the contour of the polygon,
while the rest of the lines are the results of polygon
division. The numbers close to the division lines,
correspond to the generations of polygon divisions.
In this example, polygon division resulted in six ex-
ternal polygons, two internal ones and six guards.
The horizontal line at the bottom right of the figure
illustrates the visibility range of each guard.



Figure 2: Example of polygon division (inspection
of the borders of the workspace).

3 Complexity analysis

For decomposing the initial non-convex-polygon with
holes to a set of convex polygons, we use an imple-
mentation of a fast randomized triangulation algo-
rithm with complexity O(Nlog∗N + clogN), where
N is the number of polygon vertices of the original
workspace and c is the number of connected compo-
nents representing the polygon [16]. Then, we use
an algorithm to remove unnecessary triangle lines
to form convex polygonal areas, in time O(N). In
the case of a workspace that does not contain holes,
Chazelles [10], [17] triangulation algorithm can be
used, with O(N) complexity. The following analy-
sis concerns the computational complexity of a con-
vex polygon division (see section 2.1). The goal of
this analysis is to measure the total number of poly-
gon vertices that the algorithm needs to process un-
til it converges to the final solution. This is a di-
rect indication of the computational complexity of
the method, since all further operations are linear to
the number of vertices encountered.

Convex polygon division is applied to each convex
polygon that is derived by convex decomposition.
When dividing a polygon, the division line has two
intersections with the polygon’s edges. Let’s sup-
pose that the initial polygon has N vertices and
that the two derived sub-polygons (second genera-
tion) have N1 and N2 vertices, respectively. Then,
N1 + N2 = N + 4, because in the worst (but also
most often) case, two new vertices will be introduced
in each of the new sub-polygons. In each generation
m of divisions, the polygons are doubled (worst case
scenario). Thus the number of vertices at a genera-
tion m is N +

∑m
i=2 2i = N + 2m+1 − 4. It can be

shown that at the end (i.e. after k generations) the
total number of vertices considered by the algorithm
will be:

k(N − 4) + 2k+2 − 4. (2)

Let P be the initial convex polygon we want to di-

vide and WS the observation point for P, as defined
in eq.(1). We also define 1 < γ ≤ 2 to be the de-
crease rate of α between two successive generations
of sub-polygons. That is, αm = 1/γαm−1, or, after
k generations αk = 1/γk ∗ α1. Assuming that γ is
constant in all generations, it turns out that

k = logγ

α

β
. (3)

In fact, γ is not constant in all generations, however
this coarse approximation is useful for deriving some
coarse estimation of the overall complexity of the al-
gorithm. By substituting eq.(3) in eq.(2), we come
up with a total number of vertices of

(logγ

α

β
)(N − 4) + 2(logγ

α
β )+2 − 4. (4)

Equation (4) captures the intuition behind the per-
formance of the algorithm. The larger the dimen-
sions of the polygons with respect to the visibility
range of the sensor, the larger the quantity α

β and
the larger the number of the polygons and polygon
vertices that should be examined by the algorithm.
Moreover, the performance of the algorithm increases
as the decrease rate γ of α between generations,
increases. Experimental results have demonstrated
that for reasonably shaped workspaces, γ maintains
an average value of the 1.4, and gets higher values,
in cases of elongated convex polygons.

Note, however, that eq.(4) refers to the total num-
ber of both internal and external polygons defined
by the polygon division algorithm. It is very impor-
tant that, depending on the shape of the workspace,
a large majority of these vertices need not be exam-
ined because they belong to internal polygons and
are removed from consideration due to the algorith-
mic step described in section 2.2.

4 Experimental Results

The proposed inspection method has been exten-
sively tested. To facilitate testing, a simulator has
been developed. In this simulator the user de-
fines (a) the target workspace by drawing a poly-
gon with holes and (b) the desired visibility range.
Then, the proposed algorithm is employed to com-
pute the guards that are necessary for inspecting
the defined workspace. Figures 3 and 4 show the
results of the proposed method when applied to
different workspaces under different visibility con-
straints. The borders of the workspaces are shown
with thick black lines, while thinner lines are the re-
sults of polygon divisions. The locations of guards
appear as points in these figures. Large empty spaces
correspond to regions of internal polygons that the
method automatically rejected from further consid-
eration. The visibility range is shown as a horizontal



(a)

(b)

Figure 3: First example of inspection of a given
workspace with two different visibility ranges.

(a)

(b)

Figure 4: Second example of inspection of a given
workspace with two different visibility ranges.

line at the bottom of each figure. The algorithm ap-
pears to perform very satisfactorily, since the number
of guards is kept at acceptable levels, and they are
placed at locations that are suitable for inspection by
a mobile robot. A great advantage of the algorithm
is its ability to completely inspect the workspace,
even when there are very narrow corridors or iso-
lated spots. A disadvantage of the algorithm ap-
pears in the treatment of neighboring convex poly-
gons, with dimensions close to the visibility range.
In such cases, the algorithm may assign unnecessary
guards. This is because, at least in the current ver-
sion of the method, polygon division is applied to
all different convex sub-polygons, and defines guards
that are sufficient to inspect them, without seeking
for global improvements between neighboring convex
polygons. This effect is apparent in the bottom-right
part of Fig. 4(a), (b) (at the narrow passage of the
workspace), where more guards are placed compared
to what would actually be needed.

In a second set of experiments, the performance of
WS as an observation point was tested against the
performance of MC. A total of 23 workspaces were
tested. The proposed method was employed with the
algorithm of section 2.2 disabled, so as to inspect the
surface of the workspace in each run. When WS was
employed, the method came-up with a total of 2528
guards. In the case of MC the method resulted in
3073 guards. Thus, MC resulted in approximately
21% more guards compared to WS in these exper-
iments. Moreover, for each individual experiment,
MC was from 11.6% to 28.8% worse than WS. The
above figures show that the selection of observation
point is really important to the performance of the
algorithm and that WS outperforms MC.

A third series of experiments was conducted to test
the number of guards that the proposed method
derives as a function of the user defined visibility
range. A large convex workspace was employed with
a bounding rectangle of dimensions 1081 x 776. Then
the proposed inspection method was employed, with
varying visibility ranges. The number of guards
placed by the algorithm for the case of surface and
border inspection are shown in Fig. 5. It can be seen
that in both versions of the problem, the number of
necessary guards falls substantially as the visibility
range of each of the guards increases.

Regarding computational performance, the execu-
tion times in the 1st and 2nd series of experiments
were less than 10 msecs on a Pentium III processor at
750 MHz running under Linux. In the case of the 3rd
series of experiments, and for visibility range equal
to 10 (worst case) the execution time for surface in-
spection was 230 msecs and the execution time for
borders inspection was 20 msecs.



(a)

(b)

Figure 5: Number of guards as a function of visi-
bility range, (a) for inspecting the workspace borders,
(b) for inspecting the entire workspace surface.

5 Summary

In this paper, a method for positioning limited visi-
bility guards for the inspection of 2D workspaces has
been presented. The derived set of guard locations
can be used as control points defining the inspection
path of a mobile robot. The number of guards pro-
posed by the algorithm is suboptimal, however the
algorithm can efficiently solve the problem for large
workspaces, which is important in time-critical ap-
plications.

The proposed algorithm first decomposes the
workspace to a set of convex polygons and then suc-
cessively divides them into smaller sub-polygons, un-
til each of them can be inspected by a guard. The
time complexity of the algorithm is related to as-
pects of the shape of the workspace and to the vis-
ibility range of the selected panoramic sensor. The
proposed method guarantees the complete inspection
of the workspace, independently of its configuration
and complexity. Another important issue is that the
same general algorithmic procedure can be used for
solving the inspection problem either for the borders
or for the whole surface of the workspace. To solve
the second variant, the only requirement is the deac-
tivation of the algorithmic step of section 2.2.
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