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We propose a solution to the problem of quickly and accurately predicting gravitational waveforms

within any given physical model. The method is relevant for both real-time applications and more

traditional scenarios where the generation of waveforms using standard methods can be prohibitively

expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both

parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family.

First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis

representation is constructed. Second, these m parameters induce the selection of m time values for

interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform

family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m

times. The cost of predicting L waveform time samples for a generic parameter choice is of order

OðmLþmcfitÞ online operations, where cfit denotes the fitting function operation count and, typically,

m ≪ L. The result is a compact, computationally efficient, and accurate surrogate model that retains the

original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate

surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with

durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find

that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of

generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform

families and models follows the same steps and has the same low computational online scaling cost. For

expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large

speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant

costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new

and practical way to dramatically accelerate such studies without impacting accuracy. Surrogates built in

this paper, as well as others, are available from GWSurrogate, a publicly available python package.

DOI: 10.1103/PhysRevX.4.031006 Subject Areas: Astrophysics, Computational Physics,

Gravitation

I. INTRODUCTION

A direct detection of gravitational waves generated by

the coalescence of a compact binary system is among the

most anticipated discoveries to be made in gravitational

wave physics. The signal from such an event will codify

perhaps the only attainable information about the existence,

dynamics, and underlying physics of the strongest gravi-

tating objects in the Universe. Currently, there are few, if

any, direct observations pertaining to gravity in the strong

field regime, but there is enough data to show agreement

with the predictions of general relativity when gravitational

fields and speeds are not too large [1,2].

In the case of binary black holes (BBHs), where the fields

and speeds can be large, one must rely on numerical

simulations of the Einstein equations to discover how these

systems evolve. The resulting solution depends on the choice

of initial data. The intrinsic parameter space of binary black

holes in quasicircular orbit is seven dimensional, consisting

of the mass ratio and the three spin angular momentum

components for each black hole. Different choices of

parameters can lead to qualitatively different outcomes, such

as the final speed of the merged black hole due to a “kick”
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from the asymmetric emission of gravitationalwaves [3–14].

In addition, potentially interesting effects due to strong

precession from highly spinning black holes have not yet

been discovered and understood. Unfortunately, each

numerical relativity (NR) simulation typically involves the

use of large-scale supercomputers, making an exploration of

the parameter space currently a computationally intractable

problem. For example, one might employ a uniform or

random sampling strategy of the parameter space that, for a

mere 4 points per dimension, requires47 ≈ 16;000 expensive
numerical solutions of binary black hole coalescences. This

number, while still being a very coarse survey of the

parameter space, is substantially greater (by more than an

order of magnitude) than all the simulations performed by all

of the numerical relativity groups to date [15–18].

To help alleviate this computational bottleneck, models

of the inspiral, merger, and ringdown phases of a binary

black hole (BBH) coalescence have been developed over

the last decade [19–29]. The purpose of these phenom-

enological models is to provide a sufficiently accurate

representation of a BBH waveform within some range of

parameters by fitting certain coefficients and functions to a

set of waveforms extracted from numerical simulations.

In doing so, the models help to reduce the amount of

information needed to representNRwaveforms.While these

models are significantly faster than solving the Einstein

field equations, they remain computational bottlenecks for

parameter estimation studies, which typically require gen-

erating millions of waveforms on the fly. Additionally, they

still rely on waveforms computed from numerical simula-

tions of binary black hole mergers and are thus unable, at

least currently, to accurately model gravitational waveforms

throughout the entire seven-dimensional parameter space,

although efforts to attack this problem are underway

[18,30,31].

Other important considerations come from precessing

inspirals of compact binaries. Generating the corresponding

waveforms requires solving a set of ordinary differential

equations (ODEs) and substituting the solutions into the

post-Newtonian expressions for the phase and amplitude

corrections. Given that around 520,000 to 860,000 wave-

forms are needed to build template banks for nonprecessing,

slowly spinning, binary neutron stars for advanced LIGO

[32], which would already be a computational challenge, it

follows that the large number of ODE solutions would be

prohibitively expensive in the general precessing case.

Waveform generation for precessing compact binary

inspirals constitutes the main computational bottleneck

for both template bank construction and parameter estima-

tion studies.

In this paper, we offer a solution to the need for cheap and

accurate generation of gravitational waveforms that may

otherwise be too expensive to compute for the application of

interest. Alternative waveform prediction methods have

recently been proposed [33–36] (see Appendix F for a brief

discussion and Ref. [36] for comparison details, especially).

These works have focused on gravitational waveform

models known through closed-form expressions, while

the focus of this paper is on those described by differential

equations. To achieve this, it is crucial to take advantage of

the rich structure underlying the waveforms of interest.

Importantly, our method builds accurate surrogate models

that do not sacrifice the underlying physics but instead

combine the efficiency and power of reduced order model-

ing techniques with high-accuracy sparse representations

and an offline-online decomposition of the problem.

Work over the last few years has shown that gravitational

waveforms exhibit redundancy in the parameter space

[37–42], suggesting that the amount of information neces-

sary to represent a fiducial waveform model is smaller than

might be anticipated. This reduction can be captured

accurately using only a remarkably few number m of

representative waveforms. These m representative wave-

forms can be found by using a greedy algorithm, and they

comprise a reduced basis (RB) [39] from which all other

waveforms within the same physical model can be repre-

sented, provided one can compute their projections onto the

basis. In practice, this is neither feasible nor worthwhile

because projecting onto the basis requires already knowing

the waveform that one is seeking to represent in the first

place. This is particularly the case for waveform families

that are expensive to generate, such as those from numerical

relativity (NR) simulations of the full Einstein equations.

Instead, we aim to use only the information provided by the

m representative waveforms of the reduced basis to predict
waveforms accurately and cheaply for any desired param-

eter values.

Toaccomplish this goal,we first build the reducedbasis, as

mentioned above and described in more detail in Sec. III A

and Appendix A. Second, we construct a temporal inter-

polant [43] whereby any fiducial waveform is fully specified

through its evaluation at m appropriately chosen times.

While this may seem surprising, it is important to recall

that there are onlym independent pieces of information in the

waveform family, as indicated by the m waveforms that

comprise the reduced basis. Indeed, wewill show that them
reduced basis uniquely specifies these m specially chosen

times. The interpolation method outlined above, which is

called empirical interpolation because it generates an inter-

polant specific to the given fiducial waveform family, takes

advantage of this nearly optimal representation strategy in

parameters to provide a corresponding representation strat-

egy in time. See Sec. III B and Appendix B for more details.

Finally, at each empirical interpolation time,we perform a fit

in the parameter dimension of thewaveform’s amplitude and

phase. Evaluating these fits yields m time samples from

which the waveform is accurately recovered through its

empirical interpolant representation. Remarkably, the out-

lined method allows for a waveform within any physical
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model to be predicted for any parameter value of interest

based solely on the knowledge of m fiducial waveforms.

Combining these pieces of information yields a surrogate

model for the fiducial waveform family. The method to

build the surrogate has several useful properties. First, the

method is entirely hierarchical; i.e., the accuracy of the

surrogate model can be improved, if necessary, by adding
fiducial waveforms without discarding any of the previous

ones. Second, the surrogate model can be evaluated using

only OðmLþmcfitÞ computational operations, where L is

the number of time samples at which the model is evaluated

and cfit is the typical fitting-function operation count. This

provides a significant speedup compared to the usual way

that fiducial waveforms are generated, as we demonstrate

below with a surrogate model for nonspinning effective-

one-body (EOB) waveforms. The speedup compared to

numerical simulations of the full Einstein equations is

expected to be significantly larger.

II. SURROGATE WAVEFORM MODELS

We denote the gravitational waveform produced from a

fiducial model by hðt; λÞ. Here, t denotes time and λ is the

waveform parametrization (e.g., mass ratio and spins). We

denote the surrogate model of the fiducial waveform family

by hSðt; λÞ and describe its construction in this section.

When numerically generating waveforms, by solving

partial or ordinary differential equations, one typically

solves an initial (or initial-boundary) value problem for a

fixed λi, thereby generating hðt; λiÞ on a densely sampled

grid in time. In this paper, we develop a procedure for

building hSðt; λÞ through judicious choices of λi and the

corresponding output hðt; λiÞ found by solving the relevant
equations defining the fiducial problem. Crucially, given

the complexity of existing numerical solvers, our approach

to surrogate modeling is intentionally nonintrusive to

legacy codes.

We seek a minimal number of λi selections for a target

accuracy such that the surrogate has a comparable or

smaller error than that associated with the underlying

waveform model. This is important both for the speed of

evaluating the surrogate model and for overcoming com-

putational challenges with building it in cases where one

cannot generate hðt; λiÞ for arbitrarily many values of λ.

Naturally, if more data are available, it should be possible to

include them and improve the surrogate’s quality. This

means that the surrogate model should be hierarchical by

construction, improving as more simulations become

available and without discarding previous ones.

The algorithm for building and evaluating a surrogate for

a given fiducial family or model of gravitational waveforms

is schematically depicted in Fig. 1 and outlined below:

(1) (Offline) Described in Sec. III A. Select the most

relevant m points in parameter space (shown as red

dots in Fig. 1). The waveforms associated with these

selections (shown as red lines) provide a nearly

optimal RB for this waveform family [39]. The

resulting points and waveforms will be referred to as

greedy data.

(2) (Offline) Described in Sec. III B. Identify m time

samples of the full time series, which we call

empirical nodes or times, to build an interpolant that

accurately reconstructs any fiducial waveform. This

step, called the empirical interpolation method

(EIM), only requires knowing the reduced basis.

The number of empirical nodes m (shown as blue

dots on the vertical axis in Fig. 1) exactly equals the

number of basis elements m.

(3) (Offline) Described in Sec. III C. At each empirical

node, perform a fit (e.g., least squares) in the

parameter dimension for the amplitude and phase

of the waveform using the greedy data from step 1.

The fits are indicated by blue lines in Fig. 1.

FIG. 1. A schematic of the method for building and evaluating

the surrogate model. The red dots show the greedy selection of

parameter points for building the reduced basis (step 1, offline),

the blue dots (step 2, offline) show the associated empirical nodes

in time from which a waveform can be reconstructed by

interpolation with high accuracy, and the blue lines (step 3,

offline) indicate a fit for the waveform’s parametric dependence at

each empirical time. The yellow dot shows a generic parameter,

which is predicted at the yellow diamonds and filled in between

for arbitrary times using the empirical interpolant, represented as

a dotted black line (step 4, online).
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(4) (Online) Described in Sec. III D. Evaluate the

surrogate model constructed in steps 1–3 at any

parameter value λ0, shown as the yellow dot on the

horizontal axis in Fig. 1. This is accomplished by

computing the values of the amplitude and phase fits

from step 3 at each empirical node in time for λ ¼ λ0

(yellow diamonds). The full time series of the

surrogate waveform is then generated using the

empirical interpolant from step 2 (dotted black

vertical line).

We quantify the accuracy of the offline steps through the

convergence rates in Eqs. (9) and (20). The accuracy of the

fast online step for the complete surrogate is estimated

through the errors in Eqs. (31) and (32). If each offline step

is carried out with sufficiently good accuracy, then the

surrogate will satisfy

hSðt; λÞ ≈ hðt; λÞ ð1Þ

for all t and λ in the given ranges and retain the physics of

the original fiducial waveform family, whatever that might

be. As discussed in Sec. IV, the waveform predictions by

our surrogate model are indeed expected to have a small

error with respect to the fiducial one.

III. SURROGATE MODEL BUILDING

The following four subsections expand on the steps

outlined above. Each of these steps is illustrated with an

application to nonspinning EOB waveforms. For simplic-

ity, we consider the (2,2) mode of waveforms with mass

ratios in the range q ∈ ½1; 2� and about 12;000M in

duration. In Sec. VI, we build surrogate models for

astrophysical sources that include more cycles, cover larger

mass-ratio intervals, and contain higher spherical harmon-

ics. Important technical details describing how these EOB

waveforms were generated, as well as our peak alignment

scheme, are discussed in Appendix E. Figure 2 shows the

q ¼ 1 EOB waveform. Despite its complicated structure,

we shall demonstrate that waveforms such as this one can

be represented accurately by relatively little information.

A gravitational waveform hðt; λÞ is represented in terms

of its two fundamental polarizations hþðt; λÞ and h×ðt; λÞ
by hðt; λÞ ¼ hþðt; λÞ þ ih×ðt; λÞ. A natural inner product is

given by the complex scalar product

hhð·; λ1Þ; hð·; λ2Þi ¼
Z

tmax

tmin

dth�ðt; λ1Þhðt; λ2Þ; ð2Þ

with an inherited norm given by ∥hð·; λÞ∥2 ¼ hhð·; λÞ;
hð·; λÞi. Here, h�ðt; λÞ is the complex conjugate of

hðt; λÞ. Other inner products might be more natural for

different applications [44]. Throughout this paper, we

shall assume the waveforms are normalized such that

∥hð·; λÞ∥ ¼ 1.

The overlap integral of two normalized waveforms, say,

of a fiducial waveform and its surrogate model prediction,

is given by Rehhð·; λÞ; hSð·; λÞi,

Rehhð·; λÞ; hSð·; λÞi ¼ 1 −
1

2
∥hð·; λÞ − hSð·; λÞ∥2: ð3Þ

This equality is useful to translate the error in approxi-

mating a fiducial waveform by its surrogate model pre-

diction into an overlap integral that is used in some

gravitational wave applications [cf. Eq. (11)].

A. Step 1: Greedy selection of parameter samples

and reduced basis

We use a greedy algorithm (see Appendix A for more

details) to select m parameter points fΛigmi¼1 and corre-

spondingwaveformshiðtÞ ¼ hðt;ΛiÞ. The greedy algorithm
provides a nearly optimal solution to the Kolmogorov

n-width approximation problem [45,46], namely, given a

set of waveforms

fhðt; λÞ∶λ ∈ T g; ð4Þ
where T denotes a compact parameter domain, find an

m-dimensional function space that best approximates any

hðt; λÞ from this set.

More precisely, if the waveforms are known at a discrete

set of M training points T M ¼ fλigMi¼1, the greedy algo-

rithm identifies a set of parameter values

fΛ1;Λ2;…;Λmg ⊂ T M ð5Þ

and an associated set of waveforms

fh1ðtÞ; h2ðtÞ;…; hmðtÞg ð6Þ

that constitute the reduced basis. The basis is hierarchical in

the sense that if fhigm
0

i¼1 is the basis for m0 < m, then

FIG. 2. Time series of a normalized (2,2) mode of an EOB

waveform for an equal-mass, nonspinning black hole binary

coalescence. This waveform, corresponding to about 70 gravi-

tational wave cycles, is representative of the structure encoun-

tered when building a surrogate model.
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fhigm
0

i¼1 ⊂ fhigmi¼1: ð7Þ

One of the key features of the greedy algorithm is its ability

to select a small number of waveforms to serve as an

accurate basis. For practical purposes of conditioning, it is

useful to use an orthonormal basis feigmi¼1, which spans the

same approximation space as Eq. (6).

With the RB in hand, every waveform in the training set

is well approximated by an expansion of the form

hðt; λÞ ≈
X

m

i¼1

ciðλÞeiðtÞ; ð8Þ

whereas waveforms from T (even if not in the training set)

continue to be well approximated by the RB if the training

set is dense enough [39–42]. Since the waveform space is

numerically finite dimensional [39], one can verify suffi-

ciently dense training sets through convergence as M gets

larger or by checking how well the basis represents

randomly selected waveforms (see Appendix A). For an

underlying model that requires prohibitively expensive

numerical solutions, one may use a simpler model to

propose a training set building strategy. If there is sufficient

similarity amongst the members of the original set, then

m ≪ M. This is found to be the case for gravitational

waveforms [39,41,42].

Let ϵ be a user-specified tolerance whose role is to

guarantee that the approximation error for waveforms in the

training set, which we will call the greedy error σm, is

bounded by ϵ,

σm ≡max
λ

min
ci∈C

∥hð·; λÞ −
X

m

i¼1

ciðλÞeið·Þ∥
2

≤ ϵ: ð9Þ

Then, the representation (8) is accurate to ϵ. The mini-

mization over the coefficients fcig in Eq. (9) is achieved by
orthogonal projection Pmhðt; λÞ of hðt; λÞ onto the span of

the basis (see Appendix A for details) so that

ciðλÞ ¼ hhð·; λÞ; eið·Þi: ð10Þ

In Sec. III B we find efficient approximations of the optimal

projection representation in Eq. (10) that approximately

retains the accuracy implied by Eq. (9).

The error in Eq. (9) is directly related to the overlap

between a waveform and its representation [47],

min
λ

Rehhð·; λÞ;Pmhð·; λÞi ¼ 1 −
1

2
σm; ð11Þ

which follows from Eq. (3). The quantity σm quantifies

the worst error of the best approximation by the basis. The

greedy algorithm is nearly optimal in the sense that if the

Kolmogorov n-width dm [defined as the smallest error (9)

achieved by the best m-dimensional function space] decays

exponentially, then so does the greedy error [45,46],

dm ≤ De−am
b
⇒ σm ≤

ffiffiffiffiffiffiffi

2D
p

e− ~amb
; ð12Þ

where D, a, b are positive constants and ~a ¼ 2−1−2ba.
Recent work [39–42] has shown that for fixed but

arbitrary physical and parameter ranges, a small number

of basis functions is indeed sufficient to accurately re-

present any waveform of the same physical model and with

an exponentially decaying greedy error (9). Such observa-

tions are expected for functions with smooth parameter

dependence, as is the case with gravitational waveforms. To

better understand these approximation properties, one can

make an analogy to the more familiar case of spectral

methods. There, exponential decay with the number of

basis elements is expected whenever there is smoothness

with the physical dimension(s) (e.g., space or time).

Let us apply the greedy algorithm to build a reduced

basis for our nominal EOB example introduced earlier.

Figure 3 shows the exponential decay of the greedy error

(9) over 501 waveforms in the training set, with only 19 RB

waveforms needed to represent the EOB model to machine

precision for the mass ratios considered. Errors of about

10−3 are already achieved with as few as 5 RB waveforms.

Later (cf. Fig. 9), we show that any waveform not present in

the training set yields similarly small representation errors

by the basis. This feature, because of a sufficiently well-

sampled training set, is essential for parameter estimation

studies, which seek to explore the waveform continuum.

The distribution of selected points is shown in Fig. 4. In

Sec. III C, we show how the greedy data from these

parameter selections can be used to predict waveforms

for any q in the range considered, including (and espe-

cially) values not in the original training set.

FIG. 3. Greedy error, as defined by Eq. (9), over 501 EOB

training set waveforms with mass ratios between 1 and 2. Labels

at the dots indicate the selected mass ratios at each step in the

greedy algorithm.
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B. Step 2: Greedy selection of time samples and

empirical interpolation

Once a basis is built in step 1, we can express any

waveform evaluated at any time as a sum ofm reduced basis

elements. In step 2, which is shown to significantly reduce

the surrogate’s evaluation cost in Appendix F, we now show

how to leverage this knowledge to yield a temporal pre-

diction scheme by recasting the problem as one of inter-

polation in time. Given a reduced basis feigmi¼1 and m
evaluations of a fiducial waveform at certain times fTigmi¼1,

we wish to recover the full fiducial waveform hðt; λÞ with
high accuracy for an arbitrary λ. A proper choice of these

times fTigmi¼1 is crucial. Naively selected times, such as

those randomly or equally spaced, do not guarantee that

(i) the interpolation problem is well conditioned or even has

a solution and (ii) the interpolation error is minimized with a

nearly optimal convergence rate.

A framework for finding a “good” set of times fTigmi¼1

that achieve both criteria is provided by the empirical

interpolation method (EIM) [48,49]. These special times,

which we call empirical times or nodes, are selected as a

(sparse) subset of the waveform’s given time series (or even

the continuum). The empirical nodes are uniquely defined

by the reduced basis waveforms and only these waveforms.

Like the algorithm for building a reduced basis, the EIM is

hierarchical and uses a greedy optimization strategy to

select the most representative times. While the empirical

times Ti do not explicitly depend on parameters or their

ranges, the parameter dependence is implicit, nevertheless,
through the basis. For example, a reduced basis for

spinning or precessing waveforms will exhibit different

features, and the distribution of Ti will reflect this. For the

moment, we shall assume that the empirical nodes are

known; the precise algorithm for finding them is given in

Appendix B.

The empirical interpolant, which interpolates the wave-

form hðt; λÞ in time for a given parameter λ, is denoted by

Im½h�ðt; λÞ and takes the form

Im½h�ðt; λÞ ¼
X

m

i¼1

CiðλÞeiðtÞ: ð13Þ

The coefficients fCigmi¼1 are defined by requiring the

interpolant to equal the value of the waveform at the

empirical nodes,

X

m

i¼1

CiðλÞeiðTjÞ ¼ hðTj; λÞ; j ¼ 1;…; m; ð14Þ

which is equivalent to solving an m-by-m system

X

m

i¼1

VjiCiðλÞ ¼ hðTj; λÞ; j ¼ 1;…; m ð15Þ

for the coefficients fCigmi¼1, where the interpolation matrix

V ≡

0

B

B

B

B

B

B

B

B

@

e1ðT1Þ e2ðT1Þ � � � emðT1Þ
e1ðT2Þ e2ðT2Þ � � � emðT2Þ
e1ðT3Þ e2ðT3Þ � � � emðT3Þ

..

. ..
. . .

. ..
.

e1ðTmÞ e2ðTmÞ � � � emðTmÞ

1

C

C

C

C

C

C

C

C

A

ð16Þ

is independent of the parameters λ.

The choice of empirical nodes given by the EIM

algorithm, together with the linear independence of the

reduced basis, ensures that V in Eq. (16) is as well

conditioned as possible and invertible [50] so that

Ci ¼
X

m

j¼1

ðV−1ÞijhðTj; λÞ ð17Þ

is the unique solution to Eq. (14). It then follows upon

substituting Eq. (17) into Eq. (13) that the empirical

interpolant is

Im½h�ðt; λÞ ¼
X

m

j¼1

BjðtÞhðTj; λÞ; ð18Þ

where

BjðtÞ≡
X

m

i¼1

eiðtÞðV−1Þij ð19Þ

is independent of λ. Note that Eq. (18) is a linear

combination of the fiducial waveform itself evaluated at

the empirical times. The coefficients fBigmi¼1 are built

directly from the reduced basis and provide a clean

offline/online separation and affine parametrization.

Because of this, the fBigmi¼1 can be precomputed offline

once the reduced basis is generated, while the (fast)

interpolation is computed during the online stage from

Eq. (18) when the parameter λ is specified by the user.

Evaluations of the fiducial waveform are still needed at the

arbitrarily chosen parameter λ in order to construct the

FIG. 4. Histogram of parameters selected by the greedy

algorithm for the reduced basis of Fig. 3.
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interpolant in Eq. (18). In the next subsection, we explain

how to estimate the fiducial waveform at any λ, thus

approximating fhðTi; λÞgmi¼1 and completing the construc-

tion of the surrogate model.

The empirical interpolant satisfies [51]

max
λ

∥hð·; λÞ − Im½h�ð·; λÞ∥2 ≤ Λmσm; ð20Þ

where σm is the greedy error defined in Eq. (9) and Λm is a

computable Lebesgue-like quantity that changes slowly

with m (see Appendix B). For problems with smooth

dependence with respect to parameter variations, we can

expect an exponential decay of σm with m and of the

empirical interpolant’s error.

Before describing how to estimate the values

fhðTi; λÞgmi¼1 for arbitrary λ, let us assume these values

are known exactly and apply the EIM to build an empirical

interpolant for our fiducial EOB example introduced ear-

lier. Figure 5 shows all 19 empirical nodes set against a

q ¼ 1 waveform to compare with the structure of a typical

waveform. Evaluating any q ∈ ½1; 2� EOB waveform at

these 19 nodes and computing Eq. (18), one can reconstruct

the full time series of the waveform with high accuracy.

This is explicitly demonstrated in Fig. 6, where the solid

black line denotes the largest empirical interpolation error

∥hð·; qÞ − Im½h�ð·; qÞ∥2 ð21Þ

as a function of the number of reduced basis elements or

empirical nodes for 1,000 randomly selected EOB wave-

forms drawn from q ∈ ½1; 2�. Notice that this error is

remarkably close to the greedy error (dashed line) in

Eq. (9) when using Eq. (10) for the coefficients. The bound

in Eq. (20) (dashed-dotted line) guarantees an error better

than 10−8, which is sufficient for many gravitational wave

(GW) applications.

C. Step 3: Fitting at empirical nodes

The next step is to predict waveforms at the empirical

nodes fTigmi¼1 for arbitrary parameter values λ based only

on the knowledge of the fiducial waveforms at the greedy

points fΛigmi¼1. To accomplish this, we fit hðTi; λÞ with

respect to λ at each Ti using only the followingm values of

the reduced basis waveforms:

fhðTi;ΛjÞgmj¼1: ð22Þ

The accuracy of the fit using only these data relies, at

least partially, on the fact that the reduced basis wave-

forms are chosen to be the most dissimilar from one

another. Of equal importance is our choice of fitting

function which, in principle, is arbitrary. We will focus on

the choices most effective for our nominal EOB example,

while others could be more appropriate for different

waveform families.

The behavior of most astrophysically relevant gravita-

tional waveforms is highly oscillatory in time, but the phase

and amplitude themselves have a relatively simple struc-

ture. It is thus easier to perform high-accuracy parametric

fits of the phase and amplitude than of the complex

waveform itself. The amplitude A and phase ϕ are defined

through

hðt; λÞ ¼ Aðt; λÞe−iϕðt;λÞ: ð23Þ

This third step then consists of finding 2m functions,

fAiðλÞgmi¼1 and fϕiðλÞgmi¼1, approximating the amplitude

FIG. 5. Location of the empirical nodes for the fiducial family

of EOB waveforms with mass ratio q ∈ ½1; 2�. Knowing the

waveform in this parameter range at these specific times is

sufficient to reconstruct the former with very high accuracy at any

other time using the empirical interpolant in Eq. (18).

FIG. 6. A comparison of errors for the example family of EOB

waveforms. The dashed line shows the greedy error σm in Eq. (9).

The solid line shows the maximum empirical interpolant error

(21) taken over 1,000 randomly selected waveforms (i.e., not

taken from the training set) for q ∈ ½1; 2�. The dash-dotted line

shows the error bound provided by the right side of Eq. (20) and

is based solely on the greedy error and Λm. All three errors

display similar decay rates.
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and phase of the waveform. Once these fitting functions

have been found, the approximation at each Ti is

hðTi; λÞ ≈ AiðλÞe−iϕiðλÞ: ð24Þ

Depending on the application, some fitting functions

might be more useful than others. Therefore, this third step

in constructing a surrogate model is flexible in the way that

the fitting is implemented and thus in how the surrogate is

ultimately generated. This is quite a useful feature of the

method that may be especially beneficial for building

surrogate waveforms for highly precessing black hole

binaries. Splines, rational polynomials, or weighted non-

oscillatory fitting approaches could help limit the impact of

numerical noise, for example.

We now return to our nominal EOB example and

perform a least squares fit for both the amplitude and

phase as a function of mass ratio at each empirical time

using polynomials,

AiðqÞ ¼
X

αi

n¼0

ai;nq
n; ϕiðqÞ ¼

X

βi

n¼0

bi;nq
n; ð25Þ

where αi, βi < m are the degrees of the polynomials at the

empirical time Ti for i ¼ 1; 2;…; m. Further details regard-
ing how to select an optimal degree are provided in

Appendix C.

The top plot in Fig. 7 shows the amplitude and phase,

along with the greedy data points, at the 15th empirical time

node T15, which is about 28.5M after merger. This node

corresponds to the largest pointwise error for the relative

amplitude

�

�

�

�

AðTi; qÞ − AiðqÞ
AðTi; qÞ

�

�

�

�

ð26Þ

for waveforms in the training set of our EOB test problem.

T15 also happens to correspond to the second largest

difference for the phase,

jϕðTi; qÞ − ϕiðqÞj: ð27Þ

The bottom plot in Fig. 7 shows the pointwise errors (solid

lines) of Eqs. (26) and (27) as a function of mass ratio for

1,000 randomly selected waveforms. These errors are

uniformly below 3 × 10−3. The horizontal dashed lines

show the maximum errors for the empirical node for which

Eqs. (26) and (27) are smallest, which occurs for the second

empirical time T2 ¼ −2; 367M. These errors are of order

10−5. As we will discuss later (see Fig. 9), all of this

FIG. 7. Top panel: Amplitude (solid line) and phase (dashed

line) of the fiducial EOB training space waveform at the 15th

selected empirical time as a function of q along with the greedy

data (circles). The empirical time is T15 ¼ 28.5M after merger

and corresponds to the largest pointwise relative error for the least

squares fit to the amplitude as quantified by Eq. (26). Bottom

panel: The pointwise least squares errors for the amplitude (red)

and phase (blue) at T15 evaluated for 1,000 randomly selected

waveforms. The dashed lines correspond to the maximum

pointwise error for the second empirical node T2 ¼ −2;367M,

which has the smallest maximum error of all the nodes.

FIG. 8. The relative amplitude differences and phase differences

of the least squares fits, as defined by Eqs. (26) and (27),

maximized over the greedy mass ratios at each empirical time

for our EOB example. The top panel shows these errors when

using a polynomial least squares fit and the bottom panel when

using a fitting function inspired by the post-Newtonian amplitude

and phase. Both types of fits exhibit very low errors at all of the

empirical times.
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information translates into a mismatch of the surrogate

model with respect to the underlying EOB family

of < 10−7.

The quality of a fit at each empirical node, using the

greedy data, depends on the smoothness of those wave-

forms with respect to parameter variation. This is discussed

in Appendix E. Here, it suffices to mention that the fitting

errors depend sensitively on accurately aligning the wave-

forms at their peaks, which affects the fits most noticeably

through merger and ringdown. This can be seen in the top

panel of Fig. 8.

Figure 8 shows the maximum of the pointwise

differences from Eqs. (26) and (27) for the relative

amplitude (circles) and phases (crosses), respectively,

evaluated at each empirical time. We see that the ampli-

tudes are accurate to better than 10−5 for the entire inspiral

phase until the merger regime, where the error increases to

about 10−3 after which it plateaus throughout the ringdown

stage. The phase errors increase modestly during the

inspiral and likewise plateau through ringdown with errors

at the level of 10−3.

Instead of using polynomials for the fitting functions,

we next consider functions inspired by the expressions

for the amplitude and phase through leading order and next-

to-leadingorder, respectively, inthepost-Newtonianexpansion,

AiðqÞ ¼ ai;0
ðq − 1Þai;1

qai;2
þ ai;3; ð28Þ

ϕiðqÞ ¼ ai;0
ðq − 1Þai;1

qai;2
ð1þ ai;4ðqþ ai;5Þai;6Þ þ ai;3: ð29Þ

ThebottompanelofFig.8showsthemaximumofthepointwise

differencesfromEqs.(26)and(27)usingthesepost-Newtonian-

inspired fitting functions. These fitting functions have a least

squares fittingerror comparable to thepolynomial errors shown

in the toppanel. Inbothcases, the fit qualitydecreases rapidly at

themergerbut still exhibitsvery lowerrorsat all of theempirical

times.We thus see in this example that the third offline step for

buildingthesurrogateisflexibleinthechoiceoffittingfunctions.

This insight could be useful for other fiducial models such as

waveforms with precession.

D. Step 4: Completing the surrogate model

Finally, our complete surrogate model hSðt; λÞ for the

fiducial waveform family is given by substituting the fitting

approximation (24) into the empirical interpolant (18),

which yields

hSðt; λÞ≡
X

m

i¼1

BiðtÞAiðλÞe−iϕiðλÞ: ð30Þ

This is the culmination of the offline steps. Only the m
reduced basis waveforms evaluated at the m empirical

times are needed to build the surrogate model and to predict

an approximation for a fiducial waveform at any time and

parameter value. In addition, the fBiðtÞgmi¼1 are computed

offline; only the fitting functions for the amplitude and

phase need to be evaluated during the online stage once λ is

specified.

IV. ASSESSING THE SURROGATE MODEL

One of the errors of interest for the complete surrogate

model is a discrete version of the normed difference

between a fiducial waveform and its surrogate, which is,

for L equally spaced time samples,

Δt
X

L

i¼1

jhðti; λÞ − hSðti; λÞj2; ð31Þ

where Δt ¼ ðtmax − tminÞ=ðL − 1Þ. We will sometimes

refer to this as the surrogate error. Recall, from Eqs. (3)

and (11), that the square of the normed difference between

FIG. 9. Top panel: Surrogate model error defined by Eq. (31),

which is related to the overlap error through Eq. (3), for 1,000

randomly selected mass ratios. The mass ratio yielding the largest

surrogate model error is q ¼ 1.068. Middle panel: The fiducial

EOB waveform and its surrogate prediction for q ¼ 1.068. There

is visual agreement throughout the entire duration of ≈12;000M.

Bottom panel: The fractional errors (32) in the amplitude and the

phase difference between the fiducial EOB waveform and its

surrogate model prediction for q ¼ 1.068. The differences are

smaller than the errors intrinsic to the EOBmodel itself, as well as

those of state-of-the-art numerical relativity simulations.
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two waveforms is directly related to their overlap. Other

errors of interest are the pointwise ones for the phase and

amplitude,
�

�

�

�

Aðt; λÞ − ASðt; λÞ
Aðt; λÞ

�

�

�

�

; jϕðt; λÞ − ϕSðt; λÞj: ð32Þ

Figure 9 shows a variety of comparisons between the

surrogate and fiducial model for our EOB test case, using

L ¼ 16; 384 time samples [52]. The top plot shows that the

surrogate error (31) is uniformly below 10−7, where

the mass ratio q ¼ 1.068 corresponds to the largest error.

The middle panel of Fig. 9 shows the fiducial EOB and

surrogate waveforms for q ¼ 1.068. Both waveforms are

visually indistinguishable and, from the bottom panel of the

same figure, we see that both amplitude and phase point-

wise errors (32) are indeed very small. The largest errors are

≲10−3 and are smaller than (i) the differences, for the same

quantities, between the EOBmodel and the NR simulations

used to calibrate the former [26] and (ii) the numerical error

of those NR simulations (see, e.g., Ref. [53]) and of more

recent state-of-the-art simulations [18], as quantified

through self-convergence tests. As discussed in Sec. III

C and Appendix E, these maximum errors for the surrogate

take place shortly after merger and are directly related to the

accuracy with which one can determine the peak amplitude

of the fiducial waveforms used to build the surrogate.

In Appendix D, we derive the following error bound for

the discrete norm (31),

Δt
X

L

i¼1

jhðti; λÞ − hSðti; λÞj2

≤ Λmσm þ ΛmΔt
X

m

i¼1

ðhðTi; λÞ − hSðTi; λÞÞ2: ð33Þ

This bound identifies contributions from two sources. The

first term in Eq. (33) describes how well the empirical

interpolant (i.e., the basis and empirical nodes) represents

hðt; λÞ. The expected exponential decay of the greedy error
σm withm, along with a slowly growing Lebesgue constant

Λm, results in this term being very small. The term Λmσm
corresponds exactly to the curve labeled “EIM bound” in

Fig. 6. The second term in Eq. (33) is related to the quality

of the fit. Incidentally, the fitting step has the dominant

source of error in the surrogate model compared to the first

two steps of generating the reduced basis and building the

empirical interpolant (see also the discussion in Sec. III C).

V. COST AND SPEEDUP FOR SURROGATE

MODEL PREDICTIONS

Next we discuss the cost (in terms of operation counts) to

evaluate a surrogate model. We also present the large

speedups that can be achieved when evaluating a surrogate

model for our nominal EOB example compared to

generating a fiducial waveform using the EOB solver as

implemented in the LIGOAnalysis Library (LAL) software

[54], which we refer to as the EOB-LAL code.

The complete surrogate model is given in Eq. (30),

where them coefficients BiðtÞ in Eq. (19) and the 2m fitting

functions fAiðλÞgmi¼1 and fϕiðλÞgmi¼1 are assembled offline

as described in Secs. III A, III B, and III C. In order to

evaluate the surrogate model for some parameter λ0, we

only need to evaluate each of those 2m fitting functions at

λ0, recover the m complex values fAiðλ0Þe−iϕiðλ0Þgmi¼1, and

finally perform the summation in Eq. (30). Each BiðtÞ is a
complex-valued time series with L samples. Therefore, the

overall operation count to evaluate the surrogate model at

each λ0 is ð2m − 1ÞL plus the cost to evaluate the fitting

functions.

Figure 10 shows timing results for the nominal EOB test

casewithm ¼ 10 and a surrogate error (31) uniformly below

10−7 for all mass ratios between 1 and 2. The top panel

confirms that the cost of evaluating the surrogate model is

linear in the number of samples L, as discussed above.

Depending on the sampling rate, the speedup in evalu-

ating the surrogate model compared to generating an EOB

waveform with the EOB-LAL code is between 2 and

almost 4 orders of magnitude. For a sampling rate of

211 ¼ 2;048 Hz, which is a typical rate used in the S5 and

S6 searches for gravitational waves by the LIGO-VIRGO-

GEO600 Collaboration [27,55], the speedup is ≈2; 300, as
shown in the bottom panel of Fig. 10. This is about 3 orders

of magnitude faster than the EOB-LAL code.

The speedups indicated here are not an artifact of studying

waveforms from binaries with nearly equal masses.

FIG. 10. Top panel: Average time to generate a single fiducial

EOB waveform from a standard EOB code (circles) and through

evaluation of its surrogate (crosses). Here, we show results for the

nominal example when using polynomial least squares fits for the

amplitudes and phases. Bottom panel: The speedup, defined as

the ratio of waveform generation times for EOB-LAL code to the

surrogate model.
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Repeating these experiments for waveforms withmass ratios

from 9 to 10 (chosen so that the typical duration ≈11;000M
and number of waveform cycles ≈80 are comparable to

our nominal EOB example), we find that only m ¼ 15

reduced basis waveforms are needed to span the space with

σm ¼ 10−11. The resulting surrogatemodel has an error from

Eq. (31) of≲8 × 10−9, with a corresponding speedup in the

online stage of about 5,000 at a sampling rate of 2,048 Hz.

Again, the speedup is about 3 orders of magnitude.

As already mentioned in Sec. IV, the fitting step for

building the surrogate potentially introduces the largest

errors in the surrogate model. For the EOB example, these

largest errors are still small (see Fig. 9) and suggest that one

does not need to include all 19 basis waveforms or

empirical times in order to yield a sufficiently accurate

approximation. The top panel of Fig. 11 shows the

surrogate error in Eq. (31), maximized over 1,000 ran-

domly selected waveforms, as a function of the number of

selected RB waveforms m. After m ¼ 7, there is little to be

gained by including more basis waveforms because the

surrogate error is roughly constant until m ¼ 19, while

from the bottom panel of Fig. 11, its evaluation time

continues to grow with m. The dash-dotted line in the top

panel shows the expected error computed by averaging the

surrogate’s error bound (33) over q. Taking the average

(maximum) of Eq. (33) over q, we are guaranteed surrogate
errors of better than 10−5 (5 × 10−5), which is sufficient for

many GW applications. The actual errors, which might be

inaccessible for some fiducial waveform models, are better

than 10−7 (cf. Fig. 9 and the solid curve in the top panel

of Fig. 11).

VI. ASTROPHYSICAL SURROGATES

For pedagogical considerations, we have primarily

focused on the (2,2) mode of nonspinning EOB waveforms

in the range q ∈ ½1; 2� and about 12;000M in duration. In

this section, we build surrogate models for a variety of

astrophysical sources relevant for detection templates and

parameter estimation with gravitational wave detectors.

Typically six or fewer digits of accuracy suffice for these

applications. We therefore build surrogates here with these

criteria in mind by considering less ambitious error require-

ments of ≈10−6 instead of ≈10−9. The surrogate models

presented here also have more cycles, cover larger mass

FIG. 11. Top panel: The greedy error in Eq. (9) computed for

1,000 randomly selected waveforms (dashed line) and the error

(31) of the resulting surrogate model (solid line) as a function of

the number of basis waveforms m. Because of the fitting errors

(see Sec. III C), the surrogate error is roughly constant after

m ¼ 7, implying little practical gain in using more than seven

basis waveforms. The dash-dotted line shows an averaged error

bound provided by the right side of Eq. (33). Bottom panel:

Average time to evaluate a surrogate waveform (at a sampling rate

of 2,048 Hz) as a function of m. As expected, there is only mild

growth with m.

TABLE I. Errors, evaluation times, and speedups of surrogate models for various intervals of mass ratios, durations in time (i.e.,

number of cycles), and spin-weighted spherical harmonic modes.

Case q interval Duration (M) Mode m L2 error Linf error Evaluation (sec) Speedup

1 (A) [1,2] 12,240 (2,2) 19 6 × 10−8 3 × 10−3 1 × 10−4 1,900

1 (B) [1,2] 12,240 (2,2) 10 3 × 10−7 4 × 10−3 1 × 10−4 2,300

2 [9,10] 11,103 (2,2) 15 1 × 10−7 2 × 10−3 1 × 10−4 5,000

3 [1,4] 12,240 (2,2) 25 2 × 10−7 2 × 10−3 1 × 10−4 1,800

4 [1,6] 12,240 (2,2) 25 7 × 10−8 3 × 10−3 1 × 10−4 1,900

5 [1,8] 12,240 (2,2) 35 6 × 10−8 3 × 10−3 2 × 10−4 1,700

6 [1,10] 12,240 (2,2) 40 6 × 10−8 2 × 10−3 2 × 10−4 1,700

7 [1,2] 80,750 (2,2) 30 7 × 10−7 2 × 10−2 5 × 10−4 1,000

8 (A) [1,2] 191,840 (2,2) 20 1 × 10−3 3 × 10−2 7 × 10−4 1,100

8 (B) [1,2] 191,840 (2,2) 35 1 × 10−6 2 × 10−2 1 × 10−3 750

9 [1,2] 12,240 (2,1) 15 8 × 10−7 1 × 10−2 1 × 10−4 2,100

10 [1,2] 12,240 (3,3) 15 5 × 10−6 3 × 10−2 1 × 10−4 2,300

11 [1,2] 12,240 (4,4) 15 2 × 10−5 4 × 10−2 1 × 10−4 2,100

12 [1,2] 12,240 (5,5) 15 1 × 10−5 5 × 10−2 1 × 10−4 2,200
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ratio intervals, and include higher spherical harmonics.

Surrogates built for these more challenging scenarios

continue to be both accurate and fast to evaluate. Most

importantly, we can apply exactly the same method

described earlier in Sec. III. Surrogates built in this section

are available at [56].

Table I provides a summary of the surrogate models

presented here, which we discuss in more detail below.

Surrogates 1 and 2 were discussed earlier in Sec. III, where

we show that the time-domain overlap error (i.e., the

mismatch) is one-half the L2 error measure we use in

Table I. Since our goal is to directly match the output of the

EOB-LAL code, we do not minimize over intrinsic or

extrinsic parameters to compute the error. Hence, both the

faithfulness and effectualness diagnostics [18] will be even

smaller than those implied by Table I.

A surrogate model needs to be computed only once for a

given set of specifications, and so we always strive to make

surrogates with the highest possible accuracy unless other-

wise indicated. By working to high accuracies, one has

guaranteed results equivalent to using the full underlying

model (in this case, EOB waveforms) without the need for

special case-by-case studies of systematic biases. For par-

ticular applications, reduced accuracy could be acceptable,

especially to the benefit of faster model evaluations.We shall

not pursue such application-specific optimizations here.

A. Larger mass ratios (cases 1–6)

The top panel in Fig. 12 shows that the number of

reduced basis waveforms needed to approximate larger

mass ratios accurately increases only mildly. In particular,

the number of basis functions to achieve 6 × 10−8 accu-

racies grows from 19 to 40 when qmin ¼ 1 and qmax is

raised from 2 to 10. Furthermore, surrogates built for the

intervals [9,10] and [1,2] use a total of 33 basis functions,

which is nearly the amount (40) needed for the entire [1,10]

range. This feature is typical of global approximation

methods (such as reduced basis and empirical interpolation)

since they tend to promote sparseness whenever the under-

lying model is sufficiently smooth.

B. Longer durations (cases 1, 7, and 8)

The bottom panel in Fig. 12 shows that the number of

RB functions needed to accurately cover waveforms with

longer durations (i.e., more cycles) also increases mildly.

For the longest, most accurate surrogate, 8B, the evaluation

time is as large as 10−3 seconds, which is an order of

magnitude larger than the shorter, but otherwise equivalent,

case in surrogate 1. However, the EOB-LAL code also runs

slower. Thus, the overall speedup is found to be about 750.

The lower accuracies required for gravitational wave

detection templates (as opposed to the higher accuracy

standards for parameter estimation) imply that the speedup

can be improved to about 1,100 (see case 8A).

C. Higher harmonics (cases 1 and 9–12)

Gravitational waveforms have multiple spin-weighted

spherical harmonic modes. Surrogate models must accom-

modate these multimode functions in order to maximize

their usefulness. One direct approach is to build a surrogate

for each mode separately using exactly the same steps

described earlier in Sec. III. The resulting multimode

surrogate model is then defined by the set of single-mode

surrogates. Some q ¼ 1 modes are identically zero, and

while the reduced basis can exactly approximate zero

modes, they slightly complicate the treatment of parametric

fits (e.g., the phase is undefined): We construct fits on an

open interval q ∈ ð1; 2�. Our surrogates are thus defined on
this open interval with q ¼ 1 modes given by zero. To

assess the error of each multimode surrogate model, we

continue to draw 1,000 randomwaveform samples from the

closed interval [1,2].

As a demonstration, we have built surrogate models for

the (2,1), (2,2), (3,3), (4,4), and (5,5) modes in the same

physical and parametric ranges used for the nominal EOB

example problem (surrogate 1) considered throughout this

paper. These five modes exhaust the currently known ones

provided by the EOB model. Compared to the (2,2) mode,

surrogates built for these higher harmonics are more

sensitive to peak alignment (see Appendix E), which

translates into larger surrogate errors. These errors are still

small and, furthermore, higher harmonics typically have

less contribution to the overall gravitational wave strain

measurement.

Another way to build multimode surrogate models,

which we do not pursue in this paper, starts by integrating

FIG. 12. Top panel: The greedy error in Eq. (9) computed for

waveforms of fixed duration and mass ratios in ½1; qmax� with
qmax ¼ 2, 4, 6, 8, and 10. The curves correspond to cases 1, 3, 4,

5, and 6 from Table I. Bottom panel: Greedy error for mass ratios

in [1,2] with different durations in time and thus numbers of

cycles. The curves correspond to cases 1, 7, and 8 from Table I.
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the complex scalar product in Eq. (2) over the angles ðθ;ϕÞ
on the two-sphere. The orthonormality of the spin-weighted

spherical harmonics implies a sum over the scalar product

in Eq. (2) for each mode,

hhð·;λ1Þ;hð·;λ2Þi¼
Z

S2
dΩ

Z

tmax

tmin

dth�ðt;θ;ϕ;λ1Þhðt;θ;ϕ;λ2Þ

¼
X

l;m

Z

tmax

tmin

dth�
lmðt;λ1Þhlmðt;λ2Þ; ð34Þ

which is used to define a single norm in the greedy error in

Eq. (9). When the RB-greedy algorithm is performed using

the scalar product in Eq. (34), all modes contribute to

selecting the relevant parameters in the space.

We will not cover all possible variations for multimode

waveforms here since the choices made are largely depen-

dent upon the specific application and waveform model

studied. This is typical in problems that require learning

from data, such as this one.

D. Building costs

Ignoring training set generation, the surrogates listed in

Table I typically took between 5 and 20 minutes to build.

However, we have found the main cost, both in terms of

computational and memory requirements, to be in creating

the training set. These costs are significantly greater than

what might be expected from any particular surrogate’s

properties (e.g., sampling rate and duration). As discussed

further in Appendix E, the error of an EOB surrogate is

dominated by the error in resolving and localizing the

waveform’s peak. Consequently, we must generate training

data that have well-resolved waveform peaks. For example,

the EOB-LAL code was called using a sampling rate

of 220 Hz to generate the training set data for cases 1

through 6 in Table I. Surrogate 6 was trained on 2001 EOB

waveforms, which took nearly 8 hours to generate.

Waveform generation times quoted throughout this paper,

for both the EOB-LAL code and surrogate evaluations, do

not depend on these settings in any way whatsoever.

For longer waveforms, such as cases 7 and 8, we were

unable to maintain these high sampling rates. A single

waveform cannot be produced (on a personal computer)

because of the larger memory overhead. In lieu of using

higher memory nodes, we instead decreased the sampling

rate to 218 Hz to make the problem more manageable. As a

result, the pointwise (maximum) waveform errors increase

but remain acceptably small in many cases. Given the high

cost of sampling pursued here, alternatives, such as wave-

form hybridization [18], can be used at the expense of

additional (systematic) errors.

VII. CONCLUDING REMARKS AND OUTLOOK

We introduced a solution to the problem of quickly and

accurately generating predictions for a given family of

gravitational waveforms. The solution constructs a surro-

gate for this fiducial set of waveforms in three offline steps.

In the first step, a reduced basis is generated that spans the

space of waveforms in the given range of parameters. In the

second step, an application-specific (i.e., empirical) inter-

polant is constructed using only these m reduced basis

waveforms. The empirical interpolation method selects a

corresponding set of m times that are used to build the

interpolant, but it requires knowing the fiducial waveform

at any parameter value at those times in order to evaluate

the interpolant. In the third step, we complete the offline

part by implementing a fit for the parametric dependence of

the waveform’s phase and amplitude at each empirical time.

In this way, the value of the fiducial waveform at each

empirical time can be estimated and then fed into the

empirical interpolant. The result of these three offline

stages is an accurate surrogate model (30) for the under-

lying family of waveforms that is cheap to evaluate for any

parameter value in the considered range.

Surrogate models offer a new and complementary

approach to other modeling endeavors. Indeed, our goal is

to clone the input-output functionality of an existing wave-

formgeneration code, therebypermitting fast evaluations for

any task of interest. Consequently, we have intentionally

worked in a detector-independent context, to very high

accuracies, and without regard for the systematic errors of

the underlyingwaveform family. To ensure the surrogate can

beused in place of anunderlyingmodel (without introducing

bias), it is best to be as accurate as possible. However, for

particular applications, onemaywish to sacrifice accuracy to

the benefit of even faster surrogate model evaluations.

The standard paradigm for fast online evaluation of new

solutions within reduced order modeling frameworks (see,

e.g., Ref. [57] for a review) is to numerically solve a small

problem that is essentially a projection of the original

problem onto the basis built in the offline stage. Nonlinear

terms or nonaffinely parametrized problems can be dealt

with using the EIM [58]. This approach has some advan-

tages. For example, for many problems of interest, rigorous

error bounds can be guaranteed for the resulting output,

which is often referred to as a certified approach.

In this paper, we deviated from this standard course and

sought a different and more heuristic one for two major

reasons specific to gravitational waveforms. First, the

complexity of projecting the full nonlinear Einstein equa-

tions onto a basis to obtain a certified approach is highly

nontrivial. Second, our goal has been to develop a

nonintrusive approach that does not resort to manipulating,

in any way, the original equations or codes that generate the

fiducial waveform model. Of course, such equations have

to be used to generate the fiducial waveforms in the offline

stage in order to build the reduced basis to start the

construction of the surrogate model. However, the approach

introduced in this paper does not intrude upon or require

editing of those codes.
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In order to demonstrate the basic ideas and methods in

this paper, we have focused on surrogate models for single-

mode, nonspinning black hole binary EOB waveforms

[59]. For mass ratios in [1,2], we find that evaluating the

surrogate is 3 orders of magnitude faster than generating

EOB waveforms in the standard way. However, the con-

struction of the surrogate model is not limited to such a

short range of mass ratios, to nonspinning binaries, or to

single-mode waveforms. We demonstrated this in Sec. VI

by building surrogates for astrophysically motivated prob-

lems relevant for template bank generation and parameter

estimation studies with gravitational wave detectors.

Surrogates built in Sec. VI, as well as others, are available

at [56]. Regarding the range of mass ratios (or other

parameters), depending on the application and the target

accuracy, a partitioning of the parameter space might

provide faster online queries. This issue is familiar when

solving differential equations in which one may choose to

use a single domain or utilize a domain decomposition,

as with a spectral or hp-element approach (see, e.g.,

Refs. [60,61]). Similar tools for parameter space subdomain

decomposition, known as hp-greedy algorithms, have been

employed as an adaptive sampling strategy for large prob-

lems (see Refs. [62–65] for further details).

A preliminary cost-benefit analysis of domain decom-

position is provided by Table I, which summarizes all

surrogates considered in this paper. Taking the 19 basis

functions for the [1,2] range (surrogate 1 in Table I) as

indicative of the reduced basis size needed for each

successive integer range of mass ratios up to q ¼ 10, a

naive scaling with a domain decomposition approach

would suggest ≈19 × 9 ¼ 171 basis elements. Compare

this number to the 40 elements needed for the whole range

[1,10]. While the latter gives fewer basis functions for

representing EOB waveforms across the whole [1,10]

range, the cost to evaluate surrogate models increases with

m. For example, if one were interested in only waveforms

with q from 9 to 10, then surrogate 2 in Table I would be

preferable in terms of speedup since m ¼ 15, not 40. Such

optimizations are application specific and, as such, were

not pursued in this paper.

Finally, the method presented in this paper for building a

surrogate model can be applied to other waveform

families, including precessing inspiral waveforms and

multimode inspiral-merger-ringdown waveforms such as

those from NR simulations of binary black hole coales-

cences. We anticipate extremely large speedup factors for

predicting a NR waveform with a surrogate model com-

pared to solving the Einstein equations for the same

parameters because the cost of evaluating the surrogate

is independent of the offline costs required to build it.

Given that a single production-quality simulation for a

nonspinning equal-mass binary takes around 104–105

hours and predicting a single-mode waveform with a

NR-based surrogate model takes about 10−4 seconds (as

implied by Fig. 11), it follows that one may expect

speedup factors of about 1011 or more.
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APPENDIX A: THE REDUCED BASIS METHOD

We use a greedy algorithm to build a reduced basis (RB),

which accurately approximates any fiducial waveform

within the given parameter ranges (see, e.g., Ref. [39]).

The greedy algorithm, outlined in Algorithm 1, takes as

inputs a discretization of the parameter space T ≡ fλigMi¼1

(or the training space) and the associated waveforms, an

arbitrary parameterΛ1 ∈ T (or seed), and a threshold error ϵ

for a target representation accuracy (or greedy error). The

output consists of themRBwaveforms andm greedy points.

Algorithm 1: Greedy algorithm for reduced basis

1: Input: fλi; hð·; λiÞgMi¼1, ϵ

2: Set i ¼ 0 and define σ0 ¼ 1

3: Seed choice (arbitrary): Λ1 ∈ T , e1 ¼ hð·;Λ1Þ
4: RB ¼ fe1g
5: while σi ≥ ϵ do
6: i ¼ iþ 1

7: σi ¼ maxλ∈T ∥hð·; λÞ − Pihð·; λÞ∥2
8: Λiþ1 ¼ argmaxλ∈T ∥hð·; λÞ − Pihð·; λÞ∥2
9: eiþ1 ¼ hð·;Λiþ1Þ − Pihð·;Λiþ1Þ (Gram-Schmidt)

10: eiþ1 ¼ eiþ1=∥eiþ1∥ (normalization)

11: RB ¼ RB∪eiþ1

12: end while

13: Output: RBfeigmi¼1 and greedy points fΛigmi¼1

The naive implementation of the classical Gram-Schmidt

procedure can lead to a numerically ill-conditioned algo-

rithm. This is related to the fact that the Gramian matrix,

whichwould have to be inverted, can become nearly singular

[66]. To overcome this, we use an iterated Gram-Schmidt

algorithm or a QR decomposition in step 9. See Refs. [67,68]

for discussions about the conditioning and numerical stabil-

ity of different orthonormalization procedures.

As mentioned in Sec. III A, minimization over the

coefficients fcig in Eq. (8) is satisfied by orthogonal
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projection Pmhðt; λÞ of hðt; λÞ onto the span of the basis.

For example, for an orthonormal basis

∥hð·;λÞ−
X

m

i¼1

ciðλÞeið·Þ∥
2

¼∥hð·;λÞ∥2−
X

m

i¼1

jhhð·;λÞ;eið·Þij2

þ
X

m

i¼1

jhhð·;λÞ;eið·Þi−ciðλÞj2;

ðA1Þ

which takes its global minimum when

ciðλÞ ¼ hhð·; λÞ; eið·Þi: ðA2Þ
After applying the greedy algorithm to build a reduced

basis and find the greedy points, we check that the basis

accurately approximates the continuum space of wave-

forms for the given parameter range by verifying at a

randomly chosen set of test points.

APPENDIX B: THE EMPIRICAL

INTERPOLATION METHOD

The empirical interpolation method (EIM) provides a

sparse subset of empirical time (or frequency) nodes from

which it is possible to reconstruct the waveform at any other

time with very high accuracy using an application-specific

interpolant. The selection of the empirical time nodes and

the construction of the empirical interpolant proceeds using

a greedy algorithm, which is hierarchical and is applicable

to unstructured meshes in several dimensions.

Consider a basis feigmi¼1 (e.g., a RB) whose span

approximates the functions of interest. Let ftigLi¼1 denote

a set of L time samples and define the L-vector
~t ¼ ðt1; t2;…; tLÞ†. For compactness of notation, denote

other functions evaluated at these time samples as vectors

so that, for example, ~hðλÞ ≔ hð~t; λÞ and ~ei ≔ eið~tÞ.
Given an input of m evaluated basis functions f~eigmi¼1,

the output of the EIM algorithm is a set of m empirical

nodes

fTigmi¼1 ⊂ ftigLi¼1 ðB1Þ

selected as a subset of ftigLi¼1. The empirical interpolant is

constructed in step 5 of Algorithm 2. At the jth iteration,

the empirical interpolant is built from the first j basis

functions and nodes,

I j½h�ðt; λÞ ¼
X

j

i¼1

CiðλÞeiðtÞ; ðB2Þ

where the Ci coefficients are solutions to the j-point
interpolation problem

I j½h�ðTk; λÞ ¼ hðTk; λÞ ðB3Þ
for all λ and where k ¼ 1;…; j.

Let us define a discrete norm

∥h∥d ¼ Δt
X

L

i¼1

h�ðtiÞhðtiÞ; ðB4Þ

Algorithm 2: The empirical interpolation method

1: Input: f~eigmi¼1, ftigLi¼1

2: i ¼ argmaxj~e1j (argmax returns the index of its argument’s

maximum absolute value)

3: Set T1 ¼ ti
4: for j ¼ 2 → m do
5: Build I j−1½ej�ð~tÞ from (B2) and (B3)

6: ~r ¼ I j−1½ej�ð~tÞ − ~ej
7: i ¼ argmaxj~rj
8: Tj ¼ ti
9: end for

10: Output: EIM nodes fTigmi¼1 and interpolant Im

for L equally spaced time samples. The empirical

interpolant’s error is then directly related to the greedy

error (9) through [51]

∥h − Im½h�∥2d ¼ ∥ðI − ImÞðh − PmhÞ∥2d
≤ ∥ðI − ImÞ∥2d∥h − Pmh∥

2
d

¼ ∥Im∥
2
d∥h − Pmh∥

2
d

≤ Λmσm; ðB5Þ

where the first equality follows from Im½Pmh� ¼ Pmh, I is
the identity matrix, ∥ðI − ImÞ∥2d ¼ ∥Im∥

2
d holds whenever

the operator norm is induced by the vector norm (as is the

case here—see Refs. [69,70]), and

Λm ¼ ∥Im∥
2
d ¼ max

∥h∥d¼1
∥Im½h�∥2d ðB6Þ

is a computable Lebesgue-like quantity that generally

changes slowly with m. For problems with smooth

dependence with respect to parameter variations, we can

expect an exponential decay of σm withm and, from the left

side of Eq. (20), of the EIM’s error.

In practice, Λm is computed from the matrix representa-

tion of B from Eq. (19),

B ¼ EV−1; ðB7Þ

where each column of E ¼ ½~e1;…; ~em� is an evaluated

reduced basis function and V is the interpolation matrix

defined in Eq. (16). The matrix operator B, as written

above, acts on an m-vector hð~T; λÞ whose components are

evaluations of h at the empirical nodes.
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APPENDIX C: DETAILS OF POLYNOMIAL

LEAST SQUARES

When performing a least squares fit, we must select the

degree nLS of each of the 2m least squares polynomials,

balancing accuracy and stability of the resulting fit. For

each fit, there are m greedy data points, so nLS < m. A

small value of nLS would result in a low-accuracy fit,

while too large of a value can exhibit Runge’s phenome-

non [71]. Furthermore, a large value of nLS can fit

(numerical) noise, thereby leading to low-quality fits (this

is sometimes called overfitting [72]). Reference [73]

provides a computable expression for the largest nLS that

avoids this phenomenon and gives an error estimate for the

resulting fit.

For our nominal EOB example, we proceed in a

straightforward way. We construct m separate fits (using

only the greedy data) for all degrees 0 ≤ nLS < m, and we

select the one that minimizes the sum of the squared

residuals relative to the training set data. This additional

offline work guarantees, in a simple way, that each

polynomial fit has the optimal degree. Figure 13 shows

the results for our EOB test problem. We see that for

empirical times in the early inspiral, the optimal polynomial

degrees are relatively large and decrease until merger and

ringdown. This is a consequence of noisy data stemming

from discrete uncertainties in locating the amplitude peak

(see Appendix E for further details).

APPENDIX D: SURROGATE ERROR ESTIMATES

In this appendix we derive the error bound shown in

Eq. (33) for the surrogate model. We differentiate between

the surrogate waveform model hSðt; λÞ, whose computation

requires an estimate for the waveform at each empirical

node Ti, from the empirical interpolant Im½h�ðt; λÞ, whose
computation assumes the exact (fiducial) values ~h. For any
λ, we have

∥Im½h� − hS∥
2
d ¼ ∥Im½h − hS�∥2d
≤ Λm∥hð~TÞ − hSð~TÞ∥2d

¼ ΛmΔt
X

m

i¼1

½hðTiÞ − hSðTiÞ�2; ðD1Þ

with Λm being the same constant defined in Eq. (B6). The

first equality follows from Im½hS�ð~TÞ ¼ hSð~TÞ. The second
line follows from the empirical interpolant’s matrix repre-

sentation (B7). The error in approximating an underlying

model hðt; λÞ by the surrogate hSðt; λÞ is, for any λ,

∥hS − h∥2d ≤ ∥hS − Im½h�∥2d þ ∥Im½h� − h∥2d

≤ ΛmΔt
X

m

i¼1

½hðTiÞ − hSðTiÞ�2 þ Λmσm; ðD2Þ

which follows from the error bounds (D1) and (B5) [or

(20)], as well as the triangle inequality. Notice that Λm and

σm are computable quantities, as are the differences

hðTiÞ − hSðTiÞ, which are only due to least-square fitting

errors.

APPENDIX E: ON GENERATING THE FIDUCIAL

EOB WAVEFORM FAMILY

In this paper, we demonstrated how to build a surrogate

using an EOB model of nonspinning binary black hole

coalescence waveforms. Here, we discuss some of the

technical details regarding how these EOB waveforms were

generated.

The specific version of the model that we used is from

Ref. [26] and implemented in the routine EOBNRv2 as part

of the publicly available LIGO Analysis Library (LAL)

suite [74]. Other versions and models are equally appli-

cable (e.g., Ref. [28]). In its simplest description, the code

takes as input a starting frequency fmin and the mass

components m1 and m2. From initial conditions, deter-

mined through post-Newtonian expressions, the EOB

differential equations are solved to give the system’s orbital

evolution until merger, which is defined to be the time at

which the orbital frequency begins to decrease. From the

compact binary system’s orbit, a gravitational wave is

generated up to the time of merger, after which quasinormal

modes are attached.

Our nominal EOB example uses a training space of mass

ratios q ∈ ½1; 2�. We sampled this parameter range with 501

equally spaced points, solving the original model at each q
using the aforementioned code. We checked that this

number of training set samples was dense enough to reach

the convergent regime for building a faithful reduced basis

representation.

We generated the EOB waveforms with fmin ¼ 9 Hz and

m1 þm2 ¼ 80M⊙, which corresponds to roughly 65–70

waveform cycles before merger in the (2,2) mode. We

FIG. 13. The optimal degree of each polynomial from a least

squares fit at each empirical time. Out of a possible maximum of

nLS ¼ 19, polynomial degrees between 9 and 14 are most often

selected during the inspiral phase. The degree of the first fit for

the phase is zero because the initial phases are chosen to vanish

for all mass ratios.
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avoided generating short waveforms (where the initial

radial separation is less than 20M) because the ODE initial

data could become less accurate. The waveform’s coales-

cence phase was determined implicitly through initial data

instead of specifying a particular value [75]. The relevant

(2,2) modes h22þ ðtÞ and h22× ðtÞ, as opposed to their spin-

weighted values, comprised the training set.

Waveforms generated by EOBNRv2 are automatically

aligned at fmin and thus have lengths that depend on their

mass ratio. A typical example is shown in the top panel of

Fig. 14. We have found that, when applied to a set of

waveforms with varying lengths, the greedy error (9) has a

very slow decay rate, as indicated by the bottom panel

of Fig. 14.

To overcome this, we shift each waveform in time so that

their peak amplitudes are aligned. We first align all wave-

forms in the training set in this way and then “chop off” the

beginning portions so that all waveforms have a length

(from start to peak amplitude) equal to that of the shortest

waveform (here, q ¼ 1). Next, we adjust each waveform’s

phase (23) to initially be zero. The benefits of waveform

alignment are evident from the curve in Fig. 3, which

should be compared with the pre-alignment case shown in

the bottom panel of Fig. 14. For example, to achieve a

greedy error of 10−7, one needs ≈7 (400) with (without)

peak alignment.

Aligning the waveforms in the manner discussed above

is expected to depend smoothly on the mass ratio q since

the time of maximum amplitude, measured from the start of

an orbital evolution with a fixed fmin, is expected to depend

smoothly on q. In practice, waveforms are only known at

time intervals Δt so that each waveform’s peak time is

determined within Δt. Consequently, aligning discrete

waveforms introduces some degree of “nonsmoothness.”

We initially found the surrogate’s error to be dominated by

this effect. To overcome this difficulty, we generated each

waveform on a temporal grid of spacing Δtfine, which

allowed the time of maximum amplitude to be resolved

within Δtfine. Next, we downsampled each waveform to a

sampling rate of interest, say 2,048 Hz, such that the peak

was located on the downsampled grid. Once a down-

sampled waveform is generated, neither building nor

evaluating the surrogate carries a cost that depends on

Δtfine in any way. Such observations are not unique to

surrogate modeling. Indeed, other applications that align

waveforms, especially those that need (or expect) some

degree of smoothness with parametric dependence, will

encounter similar issues. Figure 15 shows how the surro-

gate error in Eq. (31) for our EOB example changes with

the grid spacing Δtfine. In this paper, the smooth parameter

dependence and the aligning of the waveforms at the peak

amplitude combine to give fast convergence of the surro-

gate model to the fiducial one.

APPENDIX F: OTHER APPROACHES FOR

WAVEFORM PREDICTION

In this paper, we provided a three-step solution for

quickly and accurately predicting gravitational waveforms

within any given physical model. Here, we discuss a

few other approaches that we could have used instead,

which include (i) interpolating the projection coefficients

fciðλÞgmi¼1, defined from Eq. (10), in λ, (ii) interpolating

the (complex) waveforms fhðTi; λÞgmi¼1 at each empirical

FIG. 14. Top panel: EOB waveforms for q ¼ 1, 2 starting at the

same initial frequency but not aligned at the peak amplitudes.

Bottom panel: Not aligning the waveforms results in needing

more reduced basis elements to accurately span the space of

waveforms. Here, we see that nearly all 501 points in the training

space are selected, whereas only 19 points are required if the

waveforms are aligned at the peak amplitude (compare with

Fig. 3).

FIG. 15. The dependence of the error (31) when using the

surrogate to model an EOB waveform (with q ¼ 1.068 from

Fig. 9) as a function of the resolution (i.e., time steps) of the peak

amplitude. The trend is linear in Δt=M. The resolution leads to an

uncertainty in estimating the peak amplitudes and thus in aligning

the waveforms. This is the dominant source of error in the

surrogate model that translates directly into errors in the fits of the

last offline step for building the surrogate.
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time, and (iii) fitting the amplitudes and phases at all times.

The first approach is an alternative to the empirical

interpolation in step 2 and the fitting in step 3, the second

approach is an alternative to the fitting in step 3 (Sec. III C),

and the third approach is an alternative to empirical

interpolation in step 2 (Sec. III B). We consider these

in turn.

The first alternative is to build an interpolating (e.g.,

Chebyshev) grid in λ for each ciðλÞ. This approach was

carried out in Refs. [33,35,36] for inspirals (in the sta-

tionary phase approximation in the frequency domain) and

phenomenological waveforms for large chirp masses [76].

Problems with such an approach include the following:

(i) waveforms from binaries with many GW cycles require

increasingly dense interpolation grids [36], (ii) the number

of grid points scales exponentially with the number of

parameter dimensions, (iii) standard grid-based interpola-

tion is not hierarchical and dictates sampling locations at

predetermined points that are not tailored to the waveform

family of interest, and (iv) grids that are essential to

resolving one projection coefficient may not be useful

for resolving another projection coefficient. Finally, the

projection coefficients can be poorly behaved as functions

of λ because they stem from nontrivial overlaps between

waveforms and the basis. This is confirmed using our

nominal EOB example, as shown in Fig. 16, where some of

the coefficients become noisy, and also in Ref. [36].

Furthermore, using only the m greedy points, which com-

prise an unstructured and undersampled grid for this prob-

lem, exacerbates many of the aforementioned problems.

The second alternative is to interpolate in λ the complex

waveforms at each empirical time. This approach has the

same problems as interpolating the projection coefficients

discussed above. Figure 17 shows the structure of the

waveforms as a function of mass ratio at several empirical

times in our nominal EOB example.

The third alternative is to perform fits for the waveform

amplitude and phase at all time samples instead of the ones

dictated by the EIM. It is instructive to compare the

operation counts for the online evaluation between this

all-times fitting alternative and our EIM-based method. If

cfit is the operation count of the fitting functions at each

time, taken to be constant for simplicity, then the dominant

operation count is 2cfitL for the all-times fitting and

2mðLþ cfitÞ using EIM and fitting at each empirical time.

Therefore, making the reasonable assumption that m ≪ L,
the EIM-based approach is more efficient whenever

cfit ≳m: ðF1Þ

In one parameter dimension, the standard way of evalu-

ating a polynomial fit of degree n is through Horner’s

algorithm [77], which has an optimal operation count of 2n.
It would then seem to follow from Eq. (F1) that the online

evaluation cost of the EIM-based approach is comparable to

fitting at all L times. However, operation counts can be

misleading as they do not take into consideration other

aspects of an algorithm’s implementation that are also

relevant for the total execution time. We conducted numeri-

cal experiments with our nominal EOB example and found

that, for our particular implementation, fitting at all

L ≈ 10;000 samples is between 20 and 1,000 times slower.

FIG. 16. The curves depict a variety of projection coefficients

ciðqÞ along with the greedy data as a function of mass ratio for

our EOB example case introduced in Sec. III. Only a represen-

tative few curves are shown. The top panel shows the kind of

structure that the coefficients have, thereby preventing accurate

global (polynomial) fits without additional data points. The

bottom panel shows the transition in the behavior of these

functions with mass ratio from smooth to noisy.

FIG. 17. The curves depict the values of the real parts of the

waveforms along with the greedy data as a function of the mass

ratio for our EOB example case. Only curves at a few represen-

tative empirical times are shown. While there is less structure here

than in the coefficients shown in Fig. 16, the majority of functions

still require additional sampling to be accurately resolved by

global polynomial fits.
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These timing experiments depend sensitively on both the

number of surrogate basis or nodes as well as using

“vectorized” for-loops. Therefore, the actual online evalu-

ation cost in the examples considered in this paper are

consistently an order ofmagnitude ormore faster thanwhat a

naive operation count would suggest.

The operation count for evaluating polynomials grows

with the dimensionality. While the most efficient scheme

for evaluating multivariate polynomials is not presently

known [78], it is an active area of research. In general,

Eq. (F1) is easily met by surrogate models in higher

parameter dimensions, and we expect the EIM-based

surrogate approach to be more efficient than one based

on fitting at all output times. In addition, the cost to

construct L separate fits in higher parameter dimensions

could make this offline step prohibitively expensive.

The three aforementioned cases represent a few of many

possible surrogate modeling techniques. For example,

while this paper was under publication review, surrogate

models for aligned-spin EOB waveforms were built in

Ref. [79] using a different parametric prediction scheme:

The projection coefficients defined by an amplitude and

phase basis, as opposed to a waveform basis, were

interpolated using multivariate splines. In practice, a wide

variety of surrogates may be possible using different

strategies such as Gaussian process-based prediction or

polynomial chaos models.
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