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The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain

simulations. There is an intense research effort to overcome the computational cost of this approach. Significant

aeroelastic effects driven bynonlinear aerodynamics include the transonicflutter dip and limit-cycle oscillations. The

paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle

responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the

calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes

twomethods forfinding stability boundaries and then anapproach to reducing the full-order system to twodegrees of

freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and

third Jacobians and the solution of sparse linear systems.Results for theAGARDwing, a supercritical transport type

of wing, and the limit-cycle response of the Goland wing are given.

Nomenclature

A = Jacobian matrix of R with respect to w
B, C = second and third Jacobian operators
h = (scalar) increment for finite differences
F = quadratic and higher terms in R
G = Taylor coefficients of the residual restricted to the

critical eigenspace
H = Taylor coefficients of the residual restricted to the

noncritical eigenspace
f = convective flux discretization
kij = coefficients in center manifold expansion of y
P = right eigenvector of A, P1 � iP2

Q = left eigenvector of A, Q1 � iQ2

qs = constant scaling vector for the augmented system
R = residual vector
v = vector for the matrix-free product
w = vector of unknowns
y = part of w in the noncritical eigenspace
z = part of w in the critical eigenspace
�t = time step
�i = sequence of eigenvalues in the inverse power method
� = bifurcation parameter (dynamic pressure)
! = frequency of critical eigenvalue or shift for the

inverse power method

Subscripts

A = augmented system
f = fluid model
s = structural model
w, � = indicating differentiation with respect to w or �
0 = equilibrium solution
i, j = flux interface i, j

l = left interpolated value at an interface
r = right interpolated value at an interface

Superscripts

n = time level
�P, �Q, �z = complex conjugate
�w, �� = difference from equilibrium solution

I. Introduction

L IMIT-CYCLE oscillations (LCOs) have become one central
focus in aircraft aeroelasticity. A major reason for this is the

widely reported LCO experienced (and tolerated) on the F-16 in
certain store configurations [1]. The source of the LCO is still a
matter of conjecture, with nonlinear aerodynamics and structural
dynamics being considered [2]. Predating the first report of an LCO
on the F-16 was the residual pitch oscillation for the B2 bomber ,
which was attributed to an interaction between the wing-bending
mode, a shock movement on the upper surface, and the control
system. It seems likely that LCOs have arisen (but have not been
reported in the open literature) on other high-performance aircraft.

LCOs can be tolerated (as illustrated by the F-16 example) if the
amplitude is sufficiently low. Detrimental effects may accrue to the
pilot and the airframe, but the onset of LCO does not necessarily
threaten the integrity of the airframe as linear flutter would. It has
been suggested that future aircraft may even tolerate regions of LCO
in return for gains in performance.

To tolerate or eliminate LCOs requires reliable analysis tools to
provide physical insight into mechanisms and requires quantitative
predictions. If nonlinear aerodynamics is involved, then a general-
purpose tool should exploit computational fluid dynamics (CFD).
CFD simulations of aeroelastic behavior in the time domain have
reached an impressive level of maturity. Farhat et al. [4] did
fundamental work on the numerical methods underpinning such a
simulation. Melville [5] used high-fidelity CFD to reproduce LCO
behavior for the F-16. A similarly impressive effort was undertaken
at the National Aerospace Laboratory/NLR [6]. With this type of
capability available, it is perhaps disappointing thatmore insight was
not gained into the F-16 LCO phenomenon through simulation.

Although time-domain simulations are a powerful and general
tool for analysis, they suffer from one practical disadvantage:
namely, computational cost. For an analysis of an engineering
problem, it is likely that a parametric search and sensitivity analysis
will be required. If thismust be done carrying the cost of time-domain
simulations, then the overall cost is likely to be prohibitive.
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This has stimulated an active research area in reduced-order
modeling. The aim is to retain the predictive capability of full CFD
aerodynamics, but with reduced computational cost. Two broad
classes of method have appeared: namely, data-driven models and
methods that work with the system residual. For data-driven models,
a number of forced-motion CFD calculations are computed. The
aerodynamic response is then processed to provide a low-order
model. Examples include proper orthogonal decomposition [7,8] and
a Volterra series [9]. The disadvantages of these approaches is the
lack of a general robust parameterization of the model and their
inability to predict any physics that is not included in the training
data. This class of method has met with some success.

Methods that work with the residual are preferred in the current
paper. The general philosophy is to augment the coupled system
residual with additional information about the system behavior that
allows a reduction in the computational cost. The advantage of doing
this is that the predictive capability of the full-order system is
retained. The disadvantage is the added technical complication of
manipulating the system. The harmonic balance method [2] is being
exploited for F-16 LCO.

The research effort that is advanced in the current paper is based on
the initial work of [10] to exploit Hopf-bifurcation theory to allow
behavior to be determined from the eigenspectrum of the system
Jacobian matrix. Various techniques were developed to make this
approach robust for airfoil problems [11] and then to allow the exten-
sion of the approach to three-dimensional problems [12]. A reduced-
order model for damping was developed in this framework [13].

The current paper represents the final step in the basic method
development within this research effort. Application to large-scale
problems would be the next logical step. Terms are added to the
damping model to allow the prediction of LCOs. To facilitate the
derivation of the model coefficients, advances in the calculation of
the first, second, and third Jacobian matrices and in the linear solver
were required and are described.

The paper continues with an overview of the approach to
computing reduced models for LCO prediction. The methods are
considered, followed by a description of the Jacobian and linear
solver algorithms used. Results are then presented for the AGARD,
MDO, and Goland wings, with conclusions drawn on computational
cost. Finally, overall conclusions and future work are described.

Formulation of Methods

Overview

The strategy to be adopted is first described. All of the methods
rely on theCFDand structural residuals, and so the formulation of the
time-domain solver is first described. Then, either the inverse power
method or the direct bifurcation solver are used to explore the system
stability and to find the bifurcation point. As part of this calculation,
the critical eigenvalue and eigenvector are computed. Finally, the full
system is projected onto the critical eigenvector to obtain a two-
degree-of-freedom system that can predict the postcritical response.
The aim is to implement all of these steps so that a complete analysis
can be performed at an equivalent cost of a small number of steady-
state coupled-system solutions. More details on each step are now
given.

Coupled Fluid-Structure Time-Domain Solver

The starting point for this work is a time-domain code that was
applied to a variety of problems, up to and including the aeroelastic
behavior of a jet fighter [14,15]. The current work develops the
methods for the Euler equations, and these are formulated in
conservative form on time-varying curvilinear coordinates. The
main features of theCFD solver are described in [16]. A fully implicit
steady solution of the Euler equations is obtained by advancing the
solution forward in time by solving the discrete nonlinear system of
equations:

wn�1
f � wn

f

�t
�Rf

�

wn�1
f

�

(1)

The term on the right-hand side, called the residual,‡ is the
discretization of the convective terms, given here by Osher’s
approximate Riemann solver [17], MUSCL interpolation [18], and
Van Albada’s limiter. Equation (1) is a nonlinear system of algebraic
equations that is solved by an implicit method [16], the main features
of which are an approximate linearization to reduce the size and
condition number of the linear system and the use of a preconditioned
Krylov subspace method to calculate the updates. The steady-state
solver is applied to unsteady problems within a pseudo-time-
stepping iteration [19].

The wing deflections are defined at a set of points by a sum of
modes derived from afinite elementmodel (FEM)multiplied by their
coordinates. The equations for the modal coordinates involve forces
that are derived from the CFD solution. For a dynamic calculation,
the structural and fluid equations are sequenced in pseudotime,
resulting in a properly sequenced solution in real time. The
aerodynamic forces are calculated at face centers on the
aerodynamic-surface grid. The problem of communicating these
forces to the structural grid is complicated in the common situation
that these grids are not defined on the same surface. This problem,
and the influence it can have on the aeroelastic response, was
considered in [20,21], in which a method was developed, called the
constant volume tetrahedron (CVT) transformation. This method
uses a combination of projection of fluid points onto the structural
grid, transformation of the projected point, and recovery of the out-
of-plane component to obtain a cheap but effective relation between
deformations on the structural and fluid grids.

The geometries of interest deform during the motion. This means
that the aerodynamicmeshmust be deformed. This is achieved using
transfinite interpolation (TFI) of displacements within the blocks
containing the wing. More elaborate treatments that move blocks to
maintain grid orthogonality are possible [22] but are not necessary
here, because only small wing deflections are encountered and the
blocks in the mesh can be extended well away from the wing. The
wing surface deflections, obtained from the transformation of those
calculated on the structural grid, are interpolated to the volume-grid
points using a TFI blending function [23]. The grid speeds can be
obtained by differentiating the TFI equation to obtain their explicit
dependence on the values of the modal velocities.

Direct Solution of Stability Boundary

The semidiscrete form of the coupled CFD-FEM system is

dw

dt
�R�w; �� (2)

where

w � �wf;ws�T (3)

is a vector containing the fluid unknowns wf and the structural
unknowns ws, and

R � �Rf;Rs�T (4)

is a vector containing the fluid residualRf and the structural residual
Rs. The residual also depends on a parameter� that is independent of
w. An equilibrium of this system w0��� satisfies R�w0; �� � 0.

Dynamic systems theory gives criteria for an equilibrium to be
stable [24]. In particular, all eigenvalues of the Jacobian matrix of
Eq. (2), given byA� @R=@w, must have a negative real part. AHopf
bifurcation with respect to the parameter � occurs in the stability of
the equilibrium at values of �, such that A�w0; �� has an eigenvalue
�i! that crosses the imaginary axis. Denoting the corresponding
eigenvector by P� P1 � iP2, a critical value of � is one at which
there is an eigenpair �i! and P, such that

AP� i!P (5)

‡The sign of the residual is opposite of convention in CFD, but this is to
provide a system of ordinary differential equations that follows the
convention of dynamic systems theory.
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This equation can be written in terms of real and imaginary parts as
AP1 � !P2 � 0 and AP2 � !P1 � 0. A unique eigenvector is
chosen by scaling against a constant real vector qs to produce a fixed
complex value, taken to be 0� 1i. This yields two additional scalar
equations: qT

sP1 � 0 and qT
sP2 � 1� 0.

A bifurcation point can be calculated directly by solving the
system of equations

R A�wA� � 0 (6)

where

R A �

R

AP1 � !P2

AP2 � !P1

qT
sP1

qT
sP2 � 1

2

6

6

6

4

3

7

7

7

5

(7)

andwA � �w;P1;P2; �; !�T . If there are n components inw, thenwA

has 3n� 2 components, as does RA, and hence Eq. (6) is closed.
Newton’s method can be used to solve this type of problem. A

sequence of approximationswn
A to a solution is generated by solving

the linear system

@RA

@wA

�wA ��Rn
A (8)

where�wA � wn�1
A � wn

A. The Jacobianmatrix on the left-hand side
of Eq. (8) is given in expanded form as

@RA

@wA

�

A 0 0 R� 0

�AP1�w A I! �AP1�� P2

�AP2�w �I! A �AP2�� �P1

0 qT
s 0 0 0

0 0 qT
s 0 0

2

6

6

6

6

4

3

7

7

7

7

5

(9)

A key simplification in Eq. (9) arises when the equilibrium is
independent of the bifurcation parameter. In this case, w can be
precalculated and the first row and column can be removed from the
matrix in the Newton iteration. This is important because it means
that the second Jacobian term does not need to be calculated.

Another consideration for applying this approach is that a good
initial condition is required (in particular, a good guess for the
eigenvector). To deal with nonsymmetric systems and to allow the
calculation of an initial guess, a second method, the inverse power
method, is useful. This is described next.

The full details on the implementation of the direct method were
developed in [11,12].

Shifted Inverse Power Method

The power method [25] is an algorithm for calculating the
dominant eigenvalue–eigenvector pair of any given diagonalizable
matrix A. Its extension to the shifted inverse power method is
practical for finding any eigenvalue, provided that a good initial
approximation to the eigenvalue is known. Assume that the n 	 n
matrix A has distinct eigenvalues �1; �2; . . . ; �n and consider the
eigenvalue �j. Then a constant! can be chosen so that 1=��j � !� is

the dominant eigenvalue of �A � !I��1. The method can be
formulated to involve an iteration on the matrix

A I!

�I! A

� �

(10)

which is identical to the core part of Eq. (9).
The Hopf-bifurcation calculation can proceed as follows. First,

linear aeroelastic theory can be used to calculate the bifurcation value
and frequency at a subsonic Mach number. This frequency can be
used in the inverse powermethod as a shift to allow the calculation of
the eigenvector. These values can then be used as a starting solution
for the Newton iterations. Once oneMach number is converged, this
solution can be used as an initial guess for the next Mach number. In
this way, a stability boundary can be traced out.

A second way of applying the inverse power method is to use it to
trace the behavior of an aeroelastic eigenvalue as the bifurcation
value is changed. In a manner similar to linear methods, for each
structural mode, the structural frequency is used as a shift and the
corresponding aeroelastic eigenvalue is calculated. This can then be
used as a shift at the next parameter value, and so on. The damping of
each mode can be traced.

Model Reduction for LCO Calculation

Finally, the response of the system after bifurcation may be
required, particularly if it is a limit-cycle oscillation (LCO). Consider
the nonlinear system of Eq. (2). We assume that the Jacobian matrix
A has a complex conjugate pair of eigenvalues �1;2 ��i! on the
imaginary axis, with the rest having negative imaginary parts. LetQ
and P be the left and right eigenvectors of A. Then

AP� i!P; A �P��i! �P

and

ATQ��i!Q; AT �Q� i! �Q

These can be normalized so that hP;Qi � 1, where

hP;Qi �
X

n

i�1

�PiQi

It is possible to decompose any w 2 <n as

w � zQ� �z �Q�y

where z 2 C1, zQ� �z �Q is in the space corresponding to the critical
eigenvalue, and y is in the space spanned by all of the noncritical
eigenvalues. Equation (2) then takes the form

�

z� hP;wi
y� w � hP;wiQ � h �P;wi �Q

because hP; �Qi � 0 and hence

�

_z� i!z� hP; F�zQ� �z �Q�y; ���
_y� Ay� F�zQ� �z �Q�y; ��� � hP; F�zQ� �z �Q�y; ���iQ � hP; F�zQ� �z �Q�y; ���i �Q

where R�w; �� �R�w0; �� � A �w� F� �w; ��.
This system is (n� 2)-dimensional but we have two constraints on y. The system is Taylor-expanded in z, �z, and y to give the following

approximation:

�

_z� i!z� 1
2
G20z

2 �G11z�z� 1
2
G02 �z

2 � 1
2
G21z

2 �z� hG10; yiz� hG01; yi�z�G0� �G1�z . . .

_y� Ay� 1
2
H20z

2 �H11z�z� 1
2
H02 �z

2 � . . .
(11)
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whereG20,G11,G02,G21 2 C1 andG01,G10,Hij 2 Cn involve inner
products of the second and third Jacobian operators and for which a
compact form is given later. The termsG0� � hP;R� ��i and G1� �
A� �� arise from an expansion of the residual in � and provide the
reduced model with a parametrization in �. All of the scalars and
vectors are functions of R or inner products of P, R, and its
derivatives, and this makes the manipulation of the system feasible,
even for systems of large dimension.

The center manifold theory says that y varies, at most,
quadratically with z in the vicinity of the bifurcation, which can then
be expressed as

y� k�z; �z� � 1
2
k20z

2 � k11z�z� 1
2
k02 �z

2 �Ojzj3

with the constraint hP; kiji � 0. The vectors kij can be found by
substituting this form into the y part of Eq. (11) and equating
coefficients, which leads to the linear equations

8

>

<

>

:

�2i!I � A�k20 �H20

�Ak11 �H11

��2i!I � A�k02 �H02

(12)

Now write the restricted equation as

_�z� i!z� 1
2
G20z

2 �G11z�z� 1
2
G02 �z

2 � 1
2
�G21 � 2hG10; k11i

� hG01; k20i�z2 �z�G0� �G1�z . . .

If we write the quadratic and higher part ofR [which is F�w; ��, in
terms of functions B�x; y� and C�x; y; z�; a definition and how they
are evaluated by finite differences follows], then

F�x� � 1
2
B�x; x� � 1

6
C�x; x; x� �Okxk4

and it follows that

hG10; yi � hP; B�Q; y�i; hG01; yi � hP; B� �Q; y�i

and hence the restricted equation is in the form

_�z� i!z� 1
2
G20z

2 �G11z�z� 1
2
G02 �z

2

� 1
2
�G21 � 2hP; B�Q; A�1H11�i

� hP; B� �Q; �2i!I � A��1H20�i�z2 �z�G0� �G1�z

where

G20 � hP; B�Q;Q�i G11 � hP; B�Q; �Q�i

G02 � hP; B� �Q; �Q�i G21 � hP; C�q; q; �Q�i
(13)

and

�

H20 � B�Q;Q� � hP; B�Q;Q�iQ � h �P; B�Q;Q�i �Q
H11 � B�Q; �Q� � hP; B�Q; �Q�iQ � h �P; B�Q; �Q�i �Q

This is a two-degree-of-freedom system for the response of the
full-order system in the critical mode, and because it contains terms
that are cubic in z, it should be able to predict limit-cycle behavior
after the bifurcation. The reducedmodel is calculated once and for all
after the critical eigenvector, eigenvalue, and equilibrium are known.
The model is parametrized through the Taylor expansion in the
bifurcation parameter, and so it can be used to explore the behavior of
the full system in the vicinity of the bifurcation. The main work in
forming themodel is in thematrix-vector products against the second
and third Jacobians, and this will be discussed later. The linear
systems that need to be solved to compute the coefficients in the
center manifold reduction are solved in the same manner as for the
inverse power method, as discussed next.

Linear Solver

A crucial task in the three algorithms described earlier is the
solution of a large sparse linear system. Eisenstat et al. [26]
developed a generalized conjugate gradient method, called the
generalized conjugate residual (GCR) algorithm. The crucial factor
for the efficiency of such a method is the preconditioning used. This
is described in the current section. Note that the Jacobian matrix
consists of 5 	 5 blocks and that these are considered as the basic
matrix element in the current section.

Consider a general sparse matrix A for which the elements are aij

(i, j� 1; . . . ; n). A general incomplete factorization computes a
sparse lower triangular matrix L and a sparse upper triangular matrix
U so that the residual matrix LU � A satisfies certain constraints,
such as having entries in a prescribed pattern. A common constraint
consists of taking the zero pattern of theLU factors to be precisely the
zero pattern of A. However, the accuracy of the ILU�0� incomplete
factorization may be insufficient to provide an adequate rate of
convergence.

More accurate block incomplete LU (BILU) factorizations that
allow extra terms to be filled into the factorization are often more
efficient as well as more robust. Consider updating the aij element in
full Gaussian elimination (GE). The inner loop contains the equation

aij � aij � aikakj (14)

If levij is the current level of element aij, then the new level is defined
to be

lev ij �min�levij; levik � levkj � 1� (15)

The initial level of fill-in for an element aij of a sparse matrixA is 0 if
aij ≠ 0 and is1 otherwise. Each time the element is modified in the
GE process, its level of fill-in is updated by Eq. (15). Observe that the
level of fill-in of an element will never increase during the elimina-
tion. Thus, if aij ≠ 0 in the original matrix A, then the element will
have a level of fill-in equal to zero throughout the elimination
process. The preceding gives a systematic algorithm for discarding
elements. Hence, ILU�k� contains all of the fill-in elements for
which the level of fill-in does not exceed k.

The current work used both the real and complex variable versions
of the GCR and BILU algorithms. The complex version can be used
for the inverse power method and has the advantage that the terms in
the coefficient matrix arising from the shift are concentrated on the
(complex) diagonal and are not scattered to the top right and bottom
left blocks, as in the real variable case. This is advantageous in terms
of concentrating fill-in where it is required. For the AGARD wing
test case computed later, it was observed that the number of nonzero
blocks in theBILU factorizationwhen using complex rather than real
variables reduced by a factor of 0.44, 0.37, and 0.32 when using 1, 2,
and 3 levels of fill-in. The increase in the number of terms in the real
preconditioner did not translate into a significant reduction in the
number of iterations to convergence. The complex formulation is
therefore used with the inverse power and center manifold methods,
with the real formulation used for the direct solver. In all cases, the
performance of the linear solver was observed to be good, with fully
converged solutions obtained in no more than 100–200 iterations,
and normally much less.

Calculation of First, Second, and Third Jacobians

Analytical Terms for the First Jacobian

The calculation of the first Jacobian A is most conveniently done
by partitioning the matrix as

A�
@Rf

@wf

@Rf

@ws

@Rs

@wf

@Rs

@ws

" #

� Aff Afs

Asf Ass

� �

(16)

The block Aff describes the influence of the fluid unknowns on the
fluid residual and has by far the largest number of nonzeros when a
modal structuralmodel is used. The treatment of this term is crucial to
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the efficiency of the scheme and is discussed later. The meaning and
calculation of the other terms is described in detail in [12].

In previous work, the analytical calculation of Aff had only been
made for a first-order spatial discretization. This prevented quadratic
convergence from being obtained from the direct solver, did not
allow the inverse power method to be used for the case when a
second-order spatial schemewas used andwould not allow the use of
the centermanifold expression for y. It is therefore important that this
limitation is removed, and this is described later.

The residual for one cell in the grid is built up from fluxes.
Following the usual approach for Riemann solvers,

f i;j � fi;j�wl;wr�

where wl � wl�wi�2;j;wi�1;j;wi;j;wi�1;j� and wr � wr�wi�1;j;wi;j;
wi�1;j;wi�2;j�. Here, fi;j is computed using Osher’s [17]
approximate Riemann solver. The left and right states are computed
from the cell values using MUSCL interpolation. For the cell
interface we are considering, there are four contributions to the
Jacobian matrix, arising from

@fi;j

@wi�2;j
;

@fi;j

@wi�1;j
;

@fi;j

@wi;j

;
@fi;j

@wi�1;j

Now, for the approximate Jacobian that can be used to drive
convergence of the Newton iterations, the following approximations
were made:

@fi;j

@wi�2;j

 0;

@fi;j

@wi�1;j



@fi;j

@wl

;
@fi;j

@wi;j



@fi;j

@wr

@fi;j

@wi�1;j


 0

These approximations are exact for a first-order spatial discretization
where wl � wi�1;j and wr � wi;j. The calculation of the terms

@fi;j

@wl

and

@fi;j

@wr

is nontrivial but was coded, tested, and used in the CFD solver [16].
These are exploited to calculate the exact Jacobian terms for the
second-order spatial discretization by using the chain rule

@fi;j

@wi�2;j
�

@fi;j

@wl

@wl

@wi�2;j

@fi;j

@wi�1;j
�

@fi;j

@wl

@wl

@wi�1;j
�

@fi;j

@wr

@wr

@wi�1;j

@fi;j

@wi;j

�
@fi;j

@wl

@wl

@wi;j

�
@fi;j

@wr

@wr

@wi;j

@fi;j

@wi�1;j

�
@fi;j

@wr

@wr

@wi�1;j

Some care must be taken at boundaries for which halo cells are
used to simplify implementation. The halo values are functions of the
internal values wb1 � wb1�w1;w2� and wb2 � wb2�w1;w2� with the
exact relationship depending on the type of boundary. Applying the
chain rule,

@fb

@w1

� @fb

@wl

@wl

@w1

� @fb

@wr

@wr

@w1

� @fb

@wl

@wl

@wb1

@wb1

@w1

� @fb

@wr

@wr

@wb1

@wb1

@w1

� @fb

@wl

@wl

@wb2

@wb2

@w1

and

@fb

@w2

� @fb

@wl

@wl

@w2

� @fb

@wr

@wr

@w2

� @fb

@wl

@wl

@wb1

@wb1

@w2

� @fb

@wl

@wl

@wb2

@wb2

@w2

The dependence of the halo values on the interior values also leads to
similar extra terms from the adjacent interfaces to the boundary.

The Jacobians of the second-order spatial scheme were tested by
forming matrix-vector products against random vectors and
comparing with the results from a matrix-free product.

Second and Third Jacobians

The high-order Jacobians required in the model reduction are
represented by the bilinear and trilinear functionals

B�x; y� �
X

n

j;k�1

@2R��; !�
@�j�k

�

�

�

�

��x0

xjyk; i� 1; 2; . . . ; n (17)

and

C�x; y; z� �
X

n

j;k;l�1

@3R��; !�
@�j�k�l

�

�

�

�

��x0

xjykzl; i� 1; 2; . . . ; n (18)

It is possible to calculate all of the contributions to Eqs. (17) and (18)
without having to resort to complex arithmetic, or to calculating all
the second and third partial derivatives analytically.

Denoting

Q �Q1 � iQ2; Q 2 Cn Q1;Q2 2 Rn

then the following identities can be derived

B�Q;Q� � B�Q1;Q1� � B�Q2;Q2� � 2iB�Q1;Q2�
B�Q; �Q� � B�Q1;Q1� � B�Q2;Q2�
C�Q;Q; �Q� � C�Q1;Q1;Q1� � C�Q1;Q2;Q2�
� iC�Q1;Q1;Q2� � iC�Q2;Q2;Q2� (19)

Further, the following identities can be derived:

B�v� w; v� w� � B�v; v� � 2B�v; w� � B�w;w�
B�v � w; v � w� � B�v; v� � 2B�v; w� � B�w;w�

so that B�v;w� can be expressed as

B�v; w� � 1
4
�B�v� w; v� w� � B�v � w; v � w��

A similar set of identities hold for C

C�v� w; v� w; v� w� � C�v; v; v� � 3C�v; v; w�
� 3C�v; w;w� � C�w;w;w�

C�v � w; v � w; v � w� � C�v; v; v� � 3C�v; v; w� � 3C�v;w; w�
� C�w;w;w�

and hence C�v; v; w� can be expressed as

C�v; v; w� � 1
6
�C�v� w; v� w; v� w� � C�v � w; v � w; v � w�

� 2C�w;w;w��

By the use of directional derivatives, it is then possible to evaluate
the bilinear and trilinear functionsB�x; y� andC�x; y; z� on any set of
coinciding real vectors. These derivatives can be approximated using
finite differences

B�v; v� � 1

h2
�R�w0 � hv; �0� �R�w0 � hv; �0�� �O�h3� (20)

and

C�v; v; v� � 1

8h3
��R3 � 8R2 � 13R1 � 13R�1 � 8R�2 �R�3�

�O�h4� (21)

where h is small and Rl �R�w0 � lhv; �0�.
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For a first-order Jacobian-vector product,

Jv
R�w� h1v; �0� �R�w�; �0

h1

for some step size h1. In finite precision, due to rounding errors, we
compute R�w; �0� � ��w� instead of R�w; �0�. Assuming that the
rounding error is less that �� for all w,

Jv �R�w� h1v; �0� � ��w� h1v� �R�w; �0� � ��w�
h1

�O�h1 � ��=h1�

The error is minimized when

h1 �
���

��
p kwk2

kvk2

For the third Jacobian, even in the best case in which the
components wi and vi are of similar magnitude, the corresponding

expression for the optimal step size is h3 

���

��5
p

. For a standard
double-precision number, there are 53 bits in the mantissa that leads
to �� 1=253 
 1:11 	 1016. Hence, h3 � 0:0006 and, at best, six
significant figures can be obtained. However, in general, the answer
is less accurate.

One way to increase the accuracy is to increase the number of bits
in the mantissa. This can be achieved by using double-double or
quad-double arithmetic for the residual evaluation. A high-precision
version of algebraic and transcendental functions is also required, in
this case, because of the contributions of such functions in Osher’s
flux function. The QD§ library was used to obtain this functionality.
This library allows extension of existing code to double-double
precision and quad-double precision without major recoding, by
using operator overloading.

The convergence of the reduced model coefficients under h
refinement for the Goland wing example at Mach 0.92 is
demonstrated in Table 1. We would expect these coefficients to
behave as follows. First, for large values of h, there would be
significant inaccuracy due to truncation error. At small values of h,
we would see inaccuracy due to rounding error. The latter effect
would be more significant for the coefficient that includes a third
Jacobian product and less significant using quad-double arithmetic.
For a usable method, we need to obtain consistent results over a
significant range ofh. The table conforms to all of these expectations,
and a reliable set of coefficients for the reduced model is obtained.

Results

Test Cases and Grids

The intention of the current work is to demonstrate the potential of
the methods described earlier. For large-scale calculations, a parallel
version of the solver is required and this will be discussed in the
conclusions. Test cases are therefore required here that are
representative of large-scale problems that are targeted, but that can
be calculated on a single processor. Three caseswere selected and the
reasons for each are summarized in the current section.

The AGARD wing is a standard case that is used to benchmark
most CFD aeroelastic methods presented in the literature. The case is
relatively benign in that it does not feature strong nonlinearity, but
many previous computational results are available to add to
experimental data. A previous study [12] looked at this case in detail
using the direct method, but with the Newton iterations driven by the
Jacobian matrix of the first-order spatial scheme. Features of this
previous work were the detailed grid-refinement study and related
investigations of structural damping, together with an evaluation
against published computational results. Grid-converged solutions
were presented for the first time in the literature. In the current work,
results using the inverse power method and the direct method are
obtained using the Jacobian of the second-order spatial scheme. The
grid used has 17,900 points (89,000 degrees of freedom) and is
comparable to the coarse grid in the previous study. A topology is
used that clusters points toward the wing tip that is the most critical
area in an aeroelastic calculation of this case. The flutter speed

Table 1 Convergence of reduced-order model coefficient real parts under h refinementa

Precision h G20 G02 G21 k11 k20

d-d 10�2 1:15941e � 03 3:81780e � 04 �6:31471e � 01 �8:57054e � 04 �8:74648e � 04
d-d 10�4 3:83222e � 04 3:04452e � 03 5:28431e� 00 �1:69352e � 03 �1:24885e � 04
d-d 10�6 1:19108e � 03 4:41072e � 04 �1:50604e � 03 �8:36232e � 04 �8:67600e � 04
d-d 10�8 1:19108e � 03 4:41072e � 04 �1:91813e � 03 �8:36232e � 04 �8:67600e � 04
d-d 10�10 1:19108e � 03 4:41070e � 04 3:67596e� 02 �8:36229e � 04 �8:67599e � 04
d-d 10�12 1:12010e � 03 4:57337e � 04 �2:37683e� 08 �8:66090e � 04 �8:97841e � 04
q-d 10�2 1:07216e � 03 4:67501e � 04 �5:96457e � 01 �8:09330e � 04 �8:49737e � 04
q-d 10�4 3:83222e � 04 3:04452e � 03 5:28431e� 00 �1:69352e � 03 �1:24885e � 04
q-d 10�6 1:19108e � 03 4:41072e � 04 �1:50604e � 03 �8:36232e � 04 �8:67600e � 04
q-d 10�8 1:19108e � 03 4:41072e � 04 �1:50604e � 03 �8:36232e � 04 �8:67600e � 04
q-d 10�10 1:19108e � 03 4:41072e � 04 �1:50604e � 03 �8:36232e � 04 �8:67600e � 04
q-d 10�12 1:19108e � 03 4:41072e � 04 �1:50604e � 03 �8:36232e � 04 �8:67600e � 04
q-d 10�14 1:19108e � 03 4:41072e � 04 �1:50604e � 03 �8:36232e � 04 �8:67600e � 04
q-d 10�16 1:19108e � 03 4:41072e � 04 �1:50604e � 03 �8:36232e � 04 �8:67600e � 04
q-d 10�18 1:19108e � 03 4:41072e � 04 �1:52353e � 03 �8:36232e � 04 �8:67600e � 04

aThe behavior of the real and imaginary parts not shown is identical. Note that all columns include second Jacobian-vector products, except the column for G21, which contains a third
Jacobian-vector product. The abbreviations d-d and q-d stand for double-double and quad-double, respectively.

Fig. 1 Structural modes for the Goland wing.

§Available online at crd.lbl.gov/~dhbailey/mpdist/index.html [retrieved
28 February 2006].
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computed on the coarse grid differs by about 4% compared with the
grid-converged value.

The MDO wing is a commercial transport wing with a span of
36 m, designed to fly in the transonic regime [27,28]. The profile is a
thick supercritical section. The structure is modeled as a wing box
running down the central portion of the wing. The structural model
consists of eight modes between 0.88 and 14.97 Hz. This case has a
nonsymmetric section and so the static solution is dependent on the
dynamic pressure, in contrast to the AGARD and Goland cases. The

inverse power method is used next to map out the behavior of the
eigenspectrum with and without the effect of the static deflection.
The grid has 22,000 points (110,000 degrees of freedom) and was
derived by extracting points from a finer grid that has 600,000 points.
Steady calculations on both grids confirmed that the aerostatic
solution and the flow topology obtained, which at Mach 0.85 is an
upward bending and nose-down twisting at the wing tip and a strong
shock toward the trailing edge that is weakened by the deflection, are
similar on both grids, although the coarse-grid solution has a more
diffuse suction peak and shock. This case was felt to be a good first
test for the inverse power method.

Finally, the most important test case in the current work is the
Goland wing. The heavy version of the Goland wing is used to
investigate the prediction of LCO behavior. The Goland wing has a
chord of 1.8288 m and a span of 6.096 m. It is a rectangular
cantilevered wing with a 4% thick parabolic section. The structural
model follows the description given in [29]. The case used here has a
tip store in the structural model, but not in the aerodynamic model.
Four modes were extracted at frequencies (in hertz) of 1.72 (first
bending), 3.05 (first torsion), 9.18 (second bending), and 11.10
(second torsion). These modes are shown in Fig. 1.

An interesting feature of this test case is the appearance of a region
of limit-cycle oscillation at a reduced value of dynamic pressure (a
“bucket”) at a freestream Mach number of 0.92. This was shown
using the Euler equations [30] and the transonic small disturbance
equations [29]. The influence of the tip store was examined in [31]
and the effect of including the store aerodynamics in [32].

Following the experience gained with generating grids for the
AGARD wing, a grid with 27,000 points (135,000 degrees of

Fig. 2 Convergence of flutter speed index for the AGARD wing at
Mach 0.97.

Fig. 3 Tracking of eigenvalues for the AGARD wing at Mach 0.97;

each line corresponds to one aeroelastic mode and the symbols are

consistent between the graphs for the real and imaginary parts.

Fig. 4 Tracking of eigenvalues for the MDO wing with no initial
aerostatic solution atMach 0.85; each line corresponds to one aeroelastic

mode and the symbols are consistent between the graphs for the real and

imaginary parts.
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freedom) was generated using a block topology that concentrates
points in the tip region. This grid reproduces the behavior previously
reported in the literature: namely, a rising flutter speed around Mach
0.9, a significant bucket with LCO behavior about M� 0:92, and
then a rise in flutter speed at the right-hand end of the bucket of
around 0.94. The values at which these different behaviors happen is
similar in the current work, and it is concluded that the current grid
for the Goland wing represents a proper test for the methods
presented.

AGARD Wing

In [12], the prediction of the flutter boundary by the direct method,
using the Jacobian of the first-order scheme to drive the
(approximate) Newton method, was compared with time-domain
predictions, which were in perfect agreement. A detailed grid-
refinement study was undertaken and the first grid-converged
solutions were published. The issue of the influence of structural
damping on the solution in the dip at Mach 0.97 was considered in
detail. Finally, comparison with other published results, including
measurements, was made. None of these issues are repeated in the
current paper.

The behavior of the direct method when using the full Newton’s
method and the inverse power method are considered. These
investigations are made possible by the availability of the Jacobian
matrix of the second-order spatial scheme. The grid used is discussed
in the previous section. The four important modes from the structural
model, which is of the plate variety, were retained.

The convergence of the flutter speed index at Mach 0.97 is shown
in Fig. 2. Rapid convergence is obtained through quadratic
convergence of Newton’s method, with the critical value being

obtained in three iterations. The inverse power method was used to
trace out the values of the aeroelastic eigenvalues, which are
associated with the structural modes, as a function of dynamic
pressure. The real and imaginary parts are shown in Fig. 3. The
critical dynamic pressure, which is when the real part of an
eigenvalue goes positive, agrees with the value from the direct
calculation.

In [13], a simpler version of the reduced model described earlier
was developed. In essence, this model completely neglected the
influence of the noncritical part of the eigenspace and was designed
to calculate damping only. The current approach, which is more
general, should reduce to this model below the bifurcation point. The
cases from the previous paper were recomputed and this was
confirmed.

MDO Wing

This case introduces a new issue compared with the AGARD and
Goland cases in that the wing has a significant static deflection. This
makes the inverse power method preferable to calculate the flutter
point, because this method can naturally take into account the static
deformation. The real and imaginary parts of the eigenvalues of the
aeroelastic system are plotted in Fig. 4, inwhich no static deflection is
allowed (that is the equilibrium solution is taken about the rigid
wing). The dynamic pressure at which the second mode becomes
undamped is 28; 594 kg=�ms2�. The equivalent plot when a static
deflection is allowed looks very similar, except that the crossing of
the second mode happens at 58; 097 kg=�ms2�; that is, the effect of
the static deflection is to increase the critical dynamic pressure. The
reason for this is clear from Fig. 5, in which, as would be expected,
the influence of the aerostatic deflection is to bend the wing up and

Fig. 5 Surface pressure distribution and tip airfoil section for rigid and static deformed positions of the MDO wing at Mach 0.85.
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twist it nose down at the wing tip, as shown in the figure. This
weakens the shock, which is likely to be stabilizing for the dynamic
behavior. What is important here is that this aerostatic effect is taken
into account naturally by the inverse power method, because the
Jacobian used is computed at the correct static solution for a given
dynamic pressure.

Goland Wing

The steps for a complete analysis of an LCO are now considered.
First, the inverse power method is used to investigate the behavior of

the structural modes under the influence of transonic aerodynamics.
Mach numbers of 0.90, 0.92, and 0.94 were investigated, these
values being chosen because of prior knowledge of the system
behavior. However, without prior knowledge of the aeroelastic
behavior, this Mach number range would have been quickly
identified by considering shock wave behavior for the steady-state
solutions. Starting with the structural frequency as a shift, the
eigenvalue in the aeroelastic system was computed for six values
within a range of dynamic pressure, chosen based on linear flutter
analysis. The results show that at Mach 0.90 and 0.94, the third and
fourth modes interact and the fourth mode eventually crosses the
imaginary axis. The behavior of the real part of the fourth mode is
shown in Fig. 6, in which it is also seen that the behavior of this mode
at Mach 0.92 is very similar. However, at Mach 0.92, the second
mode crosses the imaginary axis at a lower dynamic pressure, also
shown in Fig. 6, and it is this mode that results in a limit-cycle
oscillation.

Having gained some insight into the behavior of the
eigenspectrum, the direct method was then used to find the
bifurcation point at Mach 0.92. An estimate of the dynamic pressure,
frequency, and eigenvector was obtained from the inverse power
results. The convergence of the dynamic pressure is shown in Fig. 7
and again shows quadratic convergence.

Finally, the behavior of the limit-cycle oscillationwas investigated
using the reduced model. The model coefficients were formed using
the expressions described earlier, based on the critical eigenvectors,
the equilibrium solution and first, second, and third Jacobian-vector
products. Time-domain simulations were also run to provide a
comparison for the predictions of the reduced model. The time-
domain simulations used a reduced time step of 0.5, giving about 70
time steps per period of response, which provides time accuracy at a
low computational cost.
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First, the reduced model predictions are compared with the full
model for damped responses. The comparison of the response of the
first mode is shown in Fig. 8 at 80 and 95% of the critical dynamic
pressure. In both cases, the damped response is well predicted by the
reduced model.

The comparison of the reduced and full nonlinear predictions of
the LCO response of the first and second structural modes at a value
of dynamic pressure that is 25% above the bifurcation value is shown
in Fig. 9. The two sets of results agreewell. The rise in amplitudewith
increasing dynamic pressure is shown in Fig. 10, and it is seen that the
reduced model predicts well the LCO amplitude for values of
dynamic pressure up to 40% above the bifurcation value in this case.

A set of visualizations of the wing location and the difference in
pressure from the equilibrium solution is compared in Fig. 11. The
wing motion is a combination of plunging and pitching toward the
tip, and the fluid response is dominated by changes of pressure
toward the leading edge and due to the shockmotion. The predictions
of the reduced-order model and the full system are very similar
qualitatively and quantitatively (note that these two sets of results are
plotted on the same scale, with the extreme values being�4% of the
freestream pressure).

Evaluation of Cost

The performance of the methods is assessed in the current section.
The benchmark adopted is the cost of a steady-state calculation,
because this is generally quite modest on modern computers, and
with modern algorithms, even for complex problems. The summary
of the cost for the different methods is given in Table 2.

It is noted that the steady solver used here has proved efficient on a
wide variety of CFD and aeroelastic test cases. To illustrate the
steady-state performance, all of the current test cases used 100
explicit time steps to start the calculation, followed by no more than
100 implicit time steps at a CFL number of 50 to drive the residual

down at least six orders of magnitude. The unsteady solver is
similarly considered efficient in the sense that the time step was
chosen for time-accuracy considerations only, resulting in around 70
time steps per cycle of response for the Goland wing.

First, the cost of the direct method for the AGARD wing using an
approximate Jacobian matrix was 1.87 times the steady-state cost. In
the current work, using the exact Jacobian, this cost has gone up to
4.16. The reason for this is the cost of the preconditioning, with two
levels of fill-in required to solve the linear systems effectively.
Hence, although quadratic convergence is obtained, reducing the
number of Newton steps, the overall cost has increased. To offset this
disadvantage, the inverse power method is now available and
performs very well, with the cost again dominated by the
preconditioning. However, the complex variable form of the
preconditioner is much more compact and requires less fill-in (and
hence cost).

Secondly, the cost of computing the LCOs of the Goland wing by
the full-order system is very significant. The full-system time
marching can take many hundreds of cycles to reach the limit cycle,
especially close to the bifurcation point. The computation using the
reducedmodel has several stages for which the cost is summarized in
Table 2. First, the inverse power method is used to map out the
behavior of the eigenvalues. This requires multiple applications of
the inverse power method with different shifts; for each of the four
structural modes, six dynamic pressures were computed, giving a
cost of 130 steady-state calculations. Itwas then quick to compute the
bifurcation point using the direct method and to generate the two-
degree-of-freedom model. Overall, the cost of generating the
reducedmodel is less than 170 steady-state calculations. If the critical
frequency is known in advance, then the inverse power part of the
calculation can be skipped, substantially reducing the computational
cost. Once the model is computed, it is parametrized, and so can be
used to replace multiple unsteady full-system calculations. The
reduction in computational cost, even when the inverse power

Fig. 9 Comparison between the full and reduced predictions of LCO at 125% of the critical dynamic pressure for the Goland wing at Mach 0.92;

symbols are from the simulation of the full system and lines are from the reduced model.
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calculation is required, is by two orders of magnitude when several
LCO calculations are required.

Conclusions

This paper has provided a formulation of three methods to allow
aeroelastic analysis based on CFD-generated aerodynamics. The
inverse power method and the direct method allow the investigation
of stability of the system without resorting to time-domain analysis.
If little is known about the instability onset, then the inverse power
method can be used to map out the behavior of the eigenvalues in the
regions likely to be of interest. This information can then be used to
set up a direct calculation of the flutter point, along with other
information such as the critical eigenvector and the frequency of the
instability. In turn, this information can then be used to compute a

two-degree-of-freedom model for the system dynamics around the
bifurcation point, including limit-cycle responses.

The key numerical techniques that facilitate these methods were
described. First, the ability to generate analytical first Jacobians of
the second-order spatial CFD discretization is crucial and was
described. This advance on previouswork opens up the possibility of
applying the inverse power method to compute the eigensystem
behavior. Secondly, the model reduction requires the formation of
matrix-vector products against the second and third Jacobians of the
system. This is achieved through the use of matrix-free products
using extended-order arithmetic. Finally, a Krylov-type method is
used to solve the sparse linear systems that are featured in all three
methods.

The methods were tested on three wing cases. The AGARD wing
provided continuity with previous work. The MDO wing exercised
the inverse power method and included the effect of a static
deflection, and the Goland wing case featured the computation of a
limit-cycle oscillation. All three cases were computed on relatively
coarse grids, but it was argued that in all three cases, the behavior is
representative for the test cases and provides a test for the methods.

Future work now includes the application of the methods to full
aircraft test cases on fine grids. A Jacobian matrix for a grid with 17
million grid pointswas successfully formed on a 48-processor cluster
with amemory of 48Gb. Themajor challenge of forming an effective
preconditioner for the parallel solution of linear systems is ongoing.
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Fig. 10 Growth of the LCO amplitude in the first and second modes at

Mach 0.92 for the Goland wing; filled squares are from the simulation of

the full system and the line is from the reduced model.

Fig. 11 Response at extremes of the wing at 1.35 times the critical value

of dynamic pressure using the reduced and full models. The undeflected
tip position of the wing is indicated by the blue line joining two dots at the

wing tip, and the surface contours shown are for change of pressure from

the equilibrium value. These results are for the Goland wing at Mach

0.92.

Table 2 Summary of the costs expressed inmultiples of the steady-state
solution

Case Steady IPM Root locus Direct Unsteady

AGARD 1 1.1 100 4.2 45
MDO 1 3.2 154 24.7 200
Goland 1 5.4 130 9.2 1000
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