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Abstract 
 
   With development of fast modern computers, it has become possible to extend model predictive control (MPC) method to 
automotive engine control systems, which is traditionally applied to plants with dynamics slow enough to allow computations 
between samples. In this paper MPC based on an adaptive neural network model is attempted for air fuel ratio (AFR), in which 
the model is adapted on-line to cope with nonlinear dynamics and parameter uncertainties. A radial basis function (RBF) 
network is employed and the recursive least squares (RLS) algorithm is used for weight updating. Based on the adaptive model, 
a MPC strategy for controlling air-fuel ratio is realized to a nonlinear simulation of the engines. Finally, both single-variable and 
multi-variable optimizations algorithms are used to find the optimal solution of MPC problems and are compared in term of their 
control performance and time consumption. 
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1. Introduction 
 

Reducing pollutant emissions is an imperative and a continuous challenge for the automotive industry. For spark-ignition (SI) 
engines, maintaining the air/fuel ratio (AFR) at stoichiometric value (14.7) for both steady state and transient operation is the best 
solution to obtain the best balance between power output and fuel consumption. AFR can also influence the effect of emission 
control because its stoichiometric value ensures the maximum efficiency of three-way catalysts (TWC). Variations of greater than 
1% below 14.7 can result in significant increase of CO and HC emissions. An increase of more than 1% will produce more NOx up 
to 50% (Manzie et al, 2001; Manzie et al, 2002). However, the dynamics of air manifold and fuel injection of SI engines are very 
fast, severely nonlinear and constraints are imposed on the states and inputs (Balluchi et al, 2000; De Nicolao et al, 1996; Tan et al, 
2000; Vinsonneau et al, 2003). Therefore, they present a considerable problem to any control engineers.   

Many of the current production fuel injection controllers utilize feed-forward control based on a mass airflow sensor located 
upstream of the throttle plus a proportional integral (PI) type feedback control. The feed-forward control with look-up tables 
requires a laborious process of calibration and tuning. Furthermore, it is difficult to apply this method since it needs the output 
magnitude information that is not available in the A/F ratio control (Mooncheol et al, 1998). A variety of researches have been 
conducted during past decade on advanced control strategies on AFR. Onder and Geering made an LQR regulator to improve the 
air-fuel ratio control (Oder et al, 1993).    It obtained fairly good AFR when throttle angle ranging from  4o to 8o, but is impractical 
due to heavy computations resulting from the high order of linearized model. Choi and Hendrick made an attempt at developing an 
observer-based fuel injection control algorithm to improve AFR control by using sliding mode (Choi et al, 1998). This analytic 
design method is in good agreement with the binary nature of the oxygen sensor signal. However, the controller is effective only 
when the throttle change is not rapid, since the controller depends mainly on feedback sensor information (Mooncheol et al, 1998). 
Manzie implemented a model predictive control (MPC) scheme for maintaining the air-fuel ratio, the RBF network was used as an 
observer of the air system and a linear predictive control algorithm was realized by using the active set method to solve quadratic 
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programs. However, it is only effective for a small region around a specific operating point due to the highly nonlinear dynamics 
of both air intake and fuel injection. Therefore, the next generation of model based engine control on AFR should achieve a good 
level of accuracy within a wide range of engine operating conditions, with a limited computational demand.   

A nonlinear MPC control scheme for air-fuel ratio based on a RBF model is presented in this paper. The RBF network is on-line 
adapted to model engine parameter uncertainties and severe nonlinear dynamics in different operating regions. Based on the 
multiple-step-ahead prediction of the air fuel ratio, an optimal control is obtained to maintain the stoichiometric value when engine 
speed and load change. In the next section of this paper, two types of nonlinear optimization algorithms are implemented to 
generate the optimal control signals of fuel injection according to the inputs from the RBF neural network model: (1) Secant 
Method and (2) Reduced Hessian Method. In both case 1 and 2, satisfactory AFR control results are obtained by using MPC 
scheme. Finally, the comparisons between two algorithms are presented according to the performance and time cost. 

 
2.  SI Engine Dynamics 
 

Engine control system analysis and design based on engine simulation models are much more economical than using a real 
engine test bed in both industrial practice and scientific research. The developed control will then be evaluated on real test engine 
under realistic model-plant mismatch and noise provided the test engine is available. The engine model adopted in this paper is 
referred to as the mean value engine model (MVEM) developed by Hendricks (Cho et al, 1989), which is a widely used 
benchmark for engine modeling and control. The three distinct subsystems of this model are the fuel injection, manifold filling and 
the crankshaft speed dynamics and those systems are modeled independently. Since this MVEM can achieve a steady state 
accuracy of about ± 2% over the entire operating range of the engine, it is extremely useful for validation of control strategies 
using simulation. A full description of the MVEM can be found in (Hendricks, et al, 1990).  

2.1. Manifold Filling Dynamics 
The intake manifold filling dynamics are analyzed from the viewpoint of the air mass conservation inside the intake manifold. It 

includes two nonlinear differential equations, one for the manifold pressure and the other for the manifold temperature. The 
manifold pressure is mainly a function of the air mass flow past throttle plate, the air mass flow into the intake port, the exhaust 
gas re-circulation (EGR) mass flow, the EGR temperature and the manifold temperature. It is described as  
 

( )EGREGRaatiap
i

i TmTmTm
V
Rp &&&& ++−=
κ

                                                              (1) 

 
The manifold temperature dynamics are described by the following differential equation  
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In equation (1) and (2), the air mass flow dynamics in the intake manifold can be described as follows. The air mass flow past 

throttle plate atm&  is related with the throttle position and the manifold pressure. The air mass flow into the intake port apm&  is 
represented by a well-known speed-density equation:  
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and catat pumm ,,, 010 ,  are constants. Additionally, instead of directly model the volumetric efficiency iη , it is easier to generate 

the quantity ii p⋅η  which is called normalized air charge. The normalized air charge can be obtained by the steady state engine 
test and is approximated with the polynomial equation (8)  
 

)()( nypnsp iiiii +=⋅η                                                                  (8) 
 
where )(nsi  and )(nyi  are positive, weak functions of the crankshaft speed and ii sy <<   
 

2.2. Crankshaft Speed Dynamics 
The crankshaft speed is derived based on the conservation of the rotational energy on the crankshaft  
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Both the friction power fP  and the pumping power pP  are related with the manifold pressure ip  and the crankshaft speed n . 

The load power bP  is a function of the crankshaft speed n  only. The indicated efficiency iη  is a function of the manifold pressure 

ip , the crankshaft speed n  and the air fuel ratio λ .  

2.3. Fuel Injection Dynamics 
According to Hendrick’s identification experiments with SI engine, the fuel flow dynamics could be described as following 

equations (Hendricks, et al, 2000)  

( )fifff
f

ff mXmm &&&& +−=
τ
1

                                                                        (10) 

 
( ) fiffv mXm && −= 1                                                                        (11) 

 
fffvf mmm &&& +=                                                                       (12) 

 
where the model is based on keeping track of the fuel mass flow. The parameters in the model are the time constant for fuel 
evaporation, fτ , and the proportion fX  of the fuel which is deposited on the intake manifold, ffm& , or close to the intake valves, 

fvm& . These parameters are operating point dependent and thus the model is nonlinear in spite of its linear form, which could be 
approximately expressed in terms of the states of the model as  

56.0)15.006.0(2)825.0()68.1672.0(35.1),( ++×−+−×+−×= nipnnipfτ                                     (13) 
 

68.0055.0277.0),( +−−= nipnipX f                                                               (14) 
 

2.4. Air Fuel Ratio Measurement 
The expanded simulation model of SI engine is given in Figure 1   
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Figure 1. The engine simulation model 

The output of the intake manifold sub-model is the air mass flow into intake port apm& , and the output of the fuel injection sub-

model is the engine port fuel mass flow fm& , therefore, the AFR could be calculated using equation (15)  

f

ap

m
m
&

&
=λ                                                                                                             (15) 

In practice, time delay of injection systems should also be considered. Manzie’s research (2001; 2002) has shown there are three 
causes of time delay for injection systems: the two engine cycle delay between the injection fuel and the expulsion from the 
exhaust valves, the propagation delay for the exhaust gases to reach the oxygen sensor and the sensor output delay. It has been 
found that the engine speed has more influence on these delays than the manifold pressure. Therefore, the following equation can 
be used to represent the delays of injection systems 

n
td

π10045.0 +=                                                                                             (16) 

 
3. Adaptive Neural Network Model 

 
The advantage of using adaptive neural network is that it can track the time-varying properties of the process to provide efficient 

information to the controller, under circumstances where the process parameters are changing (Khin, et al, 2001). Radial basis 
function networks (RBFN) with Gaussian transfer function are chosen in this application as it has been shown that RBFN could 
map a nonlinear function arbitrarily well, and possess the best approximation property (Girosi, et al, 1999). The K-means 
algorithm is used for center selection and ρ -nearest neighbor heuristic method used to determine the width σ  for each hidden 
node in the RBFN.  

3.1. RBF Network Structure 
The RBFN, as shown in Figure 2, consists of three layers: input layer, hidden layer and output layer.   
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Figure 2. RBFN structure 
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• ix  the ith node in the input layer, i = 0, 1, ...n  

• ih  the output of the ith node in the hidden layer, i = 1, 2, ...q.  

• ic  the ith centre in the hidden layer, where n
i Rc ∈ , i = 1, 2, ..., q.  

• iy  the output of the ith node in the output layer, i = 1, 2 , ..., p.  

• jiw ,  the weight linking the jth node in the hidden layer to the ith node in the output layer, i = 1, 2, ..., p. and j = 
1,2, ..., q.  

 
In mathematical terms, we have following equations to describe the RBFN.  

( ) ( )khWky ⋅=                                                                                                                                (19) 
 

( ) ( )[ ]kzfkh =                                                                             (20) 
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where i = 1, 2, ..., q. and ( )⋅f  is the nonlinear activation function in hidden layer. The Gaussian-basis function is given by  
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where σ  is a positive scalar called a width, which is a distance scaling parameter to determine over what distance in the input 
space the unit will have a significant output.  
 

3.1.1. K-means Algorithm 
The K-means algorithm is based on minimization of a performance index, which is defined as the sum of the squared distance 

from all data points in cluster domains to their corresponding cluster centers.  
  
Procedure:  

• Choose K initial cluster centers ( )11c , ( )12c , …, ( )1Kc , where K is equivalent to q  

• At the ith iteration step, distribute the sample { }x  into ( )iS j  among the q  cluster domains. ( )iS j  denotes the 

set of samples whose cluster is ( )ic j   

( )iSx j∈  if ( ) ( )icxicx ij −<−                                               (23) 

• where j = 1, 2, ..., K,  and i = 1, 2, ..., K, ji ≠   
• Update the cluster centers.  
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• where jN  is the number of elements in ( )iS j .  

• Repeat step 2 to step 3 until ( ) )(1 icic jj =+ .  
3.1.2. ρ -Nearest Neighbors Method 

Once the unit centers are established, the width σ  of each unit can be determined through ρ -nearest neighbor heuristic, where 
σ  for each hidden node are set the average distance from the centre to the ρ  nearest centers.  
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where i = 1, 2, ..., q, jc  are the ρ -nearest neighbors of ic . For nonlinear function approximation ρ  depends on the problem and 
requires to be experimented.  

3.2. Recursive Least Squares (RLS) Algorithm 
Generally, the training algorithms for RBFN are least squares (LS) and recursive least squares (RLS) method. However, the LS 

algorithm is used only for off-line learning. To deal with the ageing effect on engine control, RLS algorithm is adopted in this 
application for online learning. The algorithm of RLS could be summarized as follows (Tian et al, 2001):  
 

( ) ( ) ( )
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khkPkg T 1
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−+
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=
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                                                                                                (26) 

 
( ) ( ) ( ) ( ) ( )[ ]111 −−−= − kPkhkgkPkP Tμ                                                                               (27) 

 
( ) ( ) ( ) ( ) ( ) ( )( )khkwkykgkwkw T 11 −−+−=                                                                       (28) 

where ( )kw  and ( )kh  represent the RBF network weights and activation function outputs at iteration k , P  and g  are middle 
terms. μ  here is called forgetting factor ranging from 0 to 1. The parameters g , w  and P are updated orderly at each sampling 

time with the change of the activation function output ( )kh . 

3.3. Data Collection 
In engine data collection, the training data must be representative of typical plant behavior in order to analyze the performance 

of different adaptive engine models in practical driving conditions. This means that input and output signals should adequately 
cover the region in which the system is going to be controlled (Jesus, et al, 2001). A set of random amplitude signal (RAS) 
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combining short pulse width (transient state) and long pulse width (steady state) was designed for throttle angle and fuel injection, 
therefore the RBFN model after trained would produce adequate transient and steady state performance.   
 

Throttle angle was bounded between 20 and 40 degree and the range of fuel injection is from 0.0014 to 0.0079(kg/s), the sample 
time is set to be 0.1s. The excitation signal is shown in Figure 3 partially, consisting of two parts. The length of square waves is set 
0.3s in the first part and 1.5s in the second part. A set of 3000 data samples of AFR obtained was divided into two groups. The first 
1500 data samples were used for training RBFN model and the rest would be remained for model validation. 

  
Figure 3. Training Data with Mixed Pulse Width 

3.4. Engine Modeling 
Given the expanded engine model as shown Figure 1 in Section 2, the RBFN engine model has three inputs, fuel injection rate 

fim , throttle angle θ  and air-fuel ratio y , and one output that is air-fuel ratio. Different orders of network inputs and different 
number of hidden layer nodes have been used in training experiments and the second-order structure with 12 hidden nodes is 
chosen after experiments as shown in Figure 4, which gives the minimum prediction error. The centers c  and the width σ  in 
hidden layer nodes of the RBFN were determined using K-means algorithm and ρ -nearest neighborhood heuristic respectively 
and ρ  here is set to 3. RLS algorithm was used for training the neural network and the corresponding parameters were set as 
follows:  

• 99.0=μ   

• ( ) 2
161022.20 ×

− ××=
hnUw   

• ( )
hh nnIP ×××= 41010   

where I  is the identity matrix and U  stands for a matrix whose components are ones.   

 
Figure 4. RBFN Structure 
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All input and output data of the RBFN have been scaled to the range of (0,1) before they are used for training and validation. 
The linear scale is used as follows: 
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uu
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yy
ykykys −

−
=                                    (29) 

where minu , maxu  are the minimum, maximum input among the data set while su  is the scaled input. The same is for the output. 
The training data set with 1500 samples are used to train the RBF network model. Then, the test data set is applied to the trained 
model and the model predicts results for 1300~1=k  are displayed in Figure 5 

  
Figure 5. Illustration of AFR Validation Data 

From the simulation result in Figure 5, we can see the good match between the real engine data and the RBFN output during the 
model validation phase, the AFR in the figure is normalized value and the mean absolute error (MAE) is 0.0265.  
 
4. MPC of Air Fuel Ratio 
 

4.1. Control System Structure 

 
Figure 6. Configuration of model predictive control on AFR  
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The idea of model predictive control with neural network has been introduced in details by Draeger (1995). The strategy is 
shown in Fig. 6. The obtained adaptive RBF neural network is used to predict the engine output for 2N  steps ahead. The nonlinear 
optimizer minimizes the errors between the set point and the engine output by using the cost function,     

( ) [ ] [ ]∑ ∑
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+=

+

=

−−+−=
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22 )1()()(ˆ)(
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u

imimiyimspkJ &&ξ                                                        (30) 

 
Here, 1N  and 2N  define the prediction horizon. ξ  is a control weighting factor which penalizes excessive movement of the 

control input, the fuel injection fim& . uN is the control horizon. Then the remaining main problem of MPC is to solve the nonlinear 

optimization problem, i.e. in each sample period, calculate a series of optimal )1(,),2(),( 2 −++ Nkmkmkm fififi &L&& , from 

which the neural network model generates outputs to minimize ( )kJ  in (30). Finally the first control variable )(km fi&  is used to 
control the process and this procedure is repeated in the next sample period. 
 

4.2. Single-Dimensional Optimization Approach 
As second-order RBFN structure was chosen to achieve the minimum prediction error in engine modeling, the optimization 

problem involved in the paper is multi-dimensional and constrained. That is, we are going to find the future 
input )1(,),2(),( 2 −++ Nkmkmkm fififi &L&& that can minimize ( )kJ  such that the predicted outputs 

( ) ( ) ( )2ˆ,,1ˆ,ˆ Nkykyky ++ L  coincides with the modified set-point input ( )kmspi , ( )1+kmspi , ( )2,, Nkmspi +L , here 
the fuel injection rate is bounded within the region from 0.0014 to 0.0079(kg/s). Sequential Quadratic Programming (SQP) can be 
used to acquire the accurate solution, which is perhaps one of the best methods of optimization, would be shown in next section. 
However, the multi-dimensional optimization always requires heavy computation, especially when constraints exist.  
 

Practical applications often place emphasis on computation speed on the premise that all the performance requirements are met. 
Therefore, we chose the simplest structure in this paper and assumed that the input fim&  will remain constant over the prediction 

horizon: )1(,)2()( 2 −+=+= Nkmkmkm fififi &L&& , in this case， there is only one parameter ( )km fi&  that we are going to 
find. The optimization problem to be solved is reduced as one-dimensional. Secant Method is chosen to find the solution of this 
nonlinear programming (NLP) problem and our experiments show that it is more efficient and reliable in this application if 
compared with the other interpolation methods. 
4.2.1. Problem Formulation 

The general nonlinear programming problem could be defined as,  

)(min xJ
nRx∈
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0)(

0)(
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=
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xc
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where RRJ n →: is the objective function, mn

eq RRc →: and pn
in RRc →: are constraint functions. All of these functions are 

smooth. Only inequality constraint applied in our case, as fuel injection rate is bounded within a region. 
 

The Secant Method is to find the improved design vector 1+iX  from the current design vector iX  using the formula 

iiii SXX ∗
+ += ζ1                                       (33) 

where iS  is the know search direction and ∗
iζ  is the optimal step length found by solving the one-dimensional minimization 

problem as  
( )[ ]iiii SXJ

i

ζζ
ζ

+=∗ min                                        (34) 

Here the objective function J is to be evaluated at any trial step length 0t  as  
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Similarly, the derivative of the function J with respect to ζ  corresponding to the trial step length 0t  is to be found as  

0
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t
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=
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4.2.2. Secant Method 

The necessary condition for ( )ζJ  to have a minimum of ∗ζ  is that ( ) 0=′ ∗ζJ . The Secant Method seeks to find the root of 
this equation (Rao 1996). The equation is given with the form as follows, 

( ) ( ) 0)( =−+′=′ ii sJJ ζζζζ                               (37) 

where s is the slope of the line connecting the two points ( )( )AJA ′,  and ( )( )BJB ′, , where A and B denote two different 

approximations to the correct solution, ∗ζ . The slope s can be expressed as  
( ) ( )

AB
AJBJs

−
′−′

=                                (38) 

Equation 37 approximates the function ( )∗′ ζJ  between A and B as a linear equation and the solution of equation 37 gives the 

new approximation to the root of ( )∗′ ζJ  as  

( ) ( )
( ) ( )AJBJ

ABAJA
s

J i
ii ′−′

−′
−=

′
−=+

)(
1

ζ
ζζ                             (39) 

The iteration process given in equation 39 is  known as the Secant Method. See Figure 7. 

 
Figure 7. Iterative process of Secant Method  

 
4.2.3. Simulation Result Using Secant Method 

In the simulation, the set-point of the system is set to be the constant stoichiometric value 14.7. The throttle angle θ  is set as 
disturbance, a change from o25  to o30  with 0.5% uncertainty as shown in Figure 8. This is to evaluate the tracking performance 
and the robustness to throttle angle change of the designed system.  
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Figure 8. Throttle angle pattern in simulations  

 
The AFR is to be controlled between the %1±  bounds of the stoichiometric value(14.7). Choosing the sampling time to be 

0.1s. The parameters of nonlinear optimization were chosen as 11 =N , 62 =N , 1=ξ , 0=uN , then the MPC of SI engines 
can be considered as a sub-problem of NLP problems.  
 

)(min fi
Rx

mf
n

&
∈

 

subject to 
u

fifi
l

fi mmm &&& ≤≤  

where RRf n →: , 
l

fim& and 
u

fim& represent the lower bound and the upper bound of the control variable fim& . 
 

The system output under the developed MPC is displayed in Figure 9, together with the associated manipulated variable fim&  
displayed in Figure 10. The mean absolute error (MAE) of the AFR tracking is 0.4464. One can see that the air-to-fuel ratio is 
regulated within a %1±  neighborhood of stoichiometric. This performance is much better than that of PI controller (Wang, et al, 
2006) that is widely used in automotive industry.  
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Figure 9. MPC on AFR using Secant Method  
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Figure 10. Fuel injection using Secant Method 

 
The time cost in optimization in each sample period is shown in Figure 11. The mean time cost in one sample period is 0.0277 
seconds. Since the whole simulation was running in Matlab environment, we feel that the further reduction on time cost of 
optimization could be achieved if optimization algorithm is realized by C code in real application. 

 
Figure 11. Time cost on optimization using Secant Method  

4.3. Multi-Dimensional Optimization Approach 
The multi-dimensional approach for MPC was implemented using Reduced Hessian Method and is compared with Secant 

Method, in terms of the control performance and time consumptions on optimization. The Reduced Hessian Method is reviewed in 
the following. 

 
4.3.1. Reduced Hessian Method 

By applying SQP, the general nonlinear programming problem reduces to solving the following quadratic programming (QP) at 
each iteration. Find d that minimizes 

dxWddxg k
TT

k )(
2
1)( +       (40) 

subject to 

0)()(

0)()(
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=+

dxAxc

dxAxc
T

kinkin

T
keqkeq       (41) 

Here, g denotes the gradient of f, W denotes the Hessian Matrix (with respect to x) of the Lagrangian function 
)()(),( xcxfxL Tλλ += , )(xAeq  and )(xAin stand for the mn× and pn× matrices of constraint gradients, 
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Among different SQP methods, the reduced Hessian method is a newly developed algorithm for solving NLP problems subject 
to equality constraints ( 0)( =xceq ) (Biegler, et al, 1995; Biegler, et al, 2000). It has been shown that the method is robust and 
less expensive to implement (Hendricks, 2000). In order to illustrate how it can be implemented into MPC of SI engines, the basic 
idea of the reduced Hessian method is discussed in this section. In the following parts of this paper, c(x) and A(x) are used to 
represent )(xceq and )(xAeq respectively. 
 
4.3.2 The Search Direction 

Assuming 
0=k

T
k ZA                                  (42) 

 
then kZ  is a basis for the tangent space of the constraints. Now the solution d in equation (40) can be stated as  
 

zkYkk pZpYd +=                                 (43) 
 

where kZ  is a matrix spanning the null space of T
kA , kY  is a matrix spanning the range of kA , Yp  and zp  are vectors in mR  and 

mnR − , respectively. The problem of (43) becomes solving zkYk pZpY ,,, . By grouping the components of x into m basic or 

dependent variables and n-m non-basic or control variables, and TxA )( can be written as follows. 
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C(x) is assumed to be non-singular. Then defining 
 

⎥
⎥
⎦

⎤

⎢
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−

I
xNxCZ k
)()( 1
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xN
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⎥
⎦

⎤
⎢
⎣

⎡
=

0
I

Yk                                                                (46) 

 
According to (42), the following equation is obtained 

[ ] kk
T
kY cYAp

1−
−=                                                   (47) 

  
Substituting Yp  into (43) and then into (41) to compute the minimum value under the assumption that kk

T
k ZWZ  is positive 

definite, the solution is  
[ ]Ykk

T
kk

T
kkk

T
kz pYWZgZZWZp +−= −1)(                                     (48) 

 

kk
T
k ZWZ  is the reduced Hessian. In order to eliminate the computational work required to evaluate kW  and kk

T
k ZWZ , the BFGS 

algorithm is used to approximate the reduced Hessian kk
T
k ZWZ . As for the cross term Ykk

T
k pYWZ , there are two methods to deal 

with it. The first one is to omit it and the second one is to use a vector kw as its approximation by means of finite-difference 
approximation or quasi-Newton approximation (Broyden’s update).  
 
4.3.3 Line Search and Stopping Criterion 
 
Before updating *x  by using kkkk dxx α+=+1 , kα  needs to be tested according to  
 

);(1.0)()( kkkkkkkkkk dxDxdx μμμ φαφαφ +≤+                                               (49) 
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where 1)( kkkkk cfx μφμ +=  and 1);( kkk
T
kkkk cdgdxD μφμ −= ( kμ  is chosen by users). If the above formula is not satisfied, 

a new kα  should be chosen as 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−+

−
= 1.0,

);()()(
);(5.0

max
2

kkkkkkkkkk

kkkk
k dxDxdx

dxD

μμμ

μ

φαφαφ
αφ

α                                    (50) 

 
If a solution of this optimization problem is denoted by *x , define *xxe kk −=  and { }1,max += kkk eeσ . If tolk ≤σ  (tol is 
defined by users.), the algorithm can be stopped.  
 
4.3.4. Simulation Result Using Reduced Hessian Method 

During the implementation of Reduced Hessian Method, the parameters of the nonlinear optimization were the same as one-
dimensional case. To solve the MPC optimization problem by reduced Hessian method, two slack variables 1x  and 2x  are 
introduced to convert the inequality constraint to become two equality constraints. Correspondingly, a quadratic penalty function 

2
2

2
1 xx + with a parameter sμ is added into the objective function J in (30). Then the MPC optimization problem becomes: Find a 

suitable control variable fim&  to minimize    
 

( )2
2

2
1 xxJf s +⋅+= μ                                  (51) 

 
subject to 

( ) 02
1 =−− xmm l

fifi &&                                           (52) 

( ) 02
2 =+− xmm u

fifi &&  

Here 
l

fim& and 
u

fim& are respectively 0.0014 kg/sec and 0.0079 kg/sec. After being scaled, the two bounds become 0 and 1. In 

order to reduce the influence of the slack variables 1x  and 2x  on the new objective function, the parameter sμ  is chosen to be 
1010− . To stop the optimization program at a suitable time, the tolerance tol is set be 710− .  

 
With the above modification and parameters setting, the simulation results are shown in Figure 12, 13, the tracking mean 

absolute error is 0.4465. The time cost in optimization is shown in Figure 14 for comparison with the performance of Secant 
Method.  
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Figure 12. MPC on AFR using Reduced Hessian Method 
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Figure 13. Fuel injection using Reduced Hessian Method  

  

 
Figure 14. Time cost on optimization using Reduced Hessian Method  

The simulation results show that Reduced Hessian Method has the similar tracking performance of Secant Method, however, its 
time consumption in optimization is much more than that of previous method.  In our experiment, the mean time cost in one 
sample period using this method is 0.0473 seconds that is nearly twice as many as that used by Secant Method. 
  
5.  Conclusion 
 

In this paper, Adaptive RBF model based MPC is applied to AFR control of automotive engines. The simulation results 
validated that the developed method can control the AFR to track the set-point value under disturbance of changing throttle angle. 
To meet the requirement for fast optimization in engine control, a one-dimensional optimization method, Secant Method, is 
implemented in the MPC and is compared with the multi-dimensional method, Reduced Hessian Method. Simulations show a 
much shorter optimization time using Secant Method and the achieved tracking control with similar performance to that in 
Reduced Hessian Method. In summary, the adaptive neural network model-based control on automotive engine with fast 
optimization algorithm has demonstrated attractive operating properties and merit further consideration for the advanced engine 
control. In future work, we plan to investigate the robustness of these control algorithms to handle the situations when there are 
engine faults, such as air leakage in intake manifold, oxygen sensor over-reading and under-reading, throttle sensor failure and etc. 
Finally, our control algorithms will be implemented in hardware-in-loop system to evaluate its performance in real time control.  
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