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Abstract A new algorithm is proposed to project, exactly and in finite time, a vector

of arbitrary size onto a simplex or an ℓ1-norm ball. It can be viewed as a Gauss-

Seidel-like variant of Michelot’s variable fixing algorithm; that is, the threshold used

to fix the variables is updated after each element is read, instead of waiting for a

full reading pass over the list of non-fixed elements. This algorithm is empirically

demonstrated to be faster than existing methods.
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1 Introduction

The projection of a vector onto the simplex or the ℓ1 ball appears in imaging prob-

lems, such as segmentation [15] and multispectral unmixing [2], in portfolio opti-

mization [5], and in many applications of statistics, operations research and machine

learning [7,20,3,18,19]. Given an integer N ≥ 1, a sequence (vector) y = (yn)
N
n=1 ∈

R
N and a real a > 0, we aim at computing

P∆ (y) := argmin
x∈∆

‖x− y‖ (1)

or

PB(y) := argmin
x∈B

‖x− y‖, (2)

where the norm is the Euclidean norm, the simplex ∆ ⊂ R
N is defined as the set of

sequences whose elements are nonnegative and sum up to a (for a = 1, ∆ is called

the unit, or canonical, or standard, or probability simplex):

∆ :=
{

(x1, . . . ,xN) ∈R
N
∣

∣ ∑N
n=1 xn = a

and xn ≥ 0, ∀n = 1, . . . ,N
}

(3)
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2 Laurent Condat

and the ℓ1 ball, a.k.a. cross-polytope, B ⊂ R
N is defined as

B :=
{

(x1, . . . ,xN) ∈ R
N
∣

∣ ∑N
n=1 |xn| ≤ a

}

.

These two projections are well defined and unique, since ∆ and B are closed and

convex sets. In this paper, we focus on algorithms to perform these projections exactly

and in finite time. In Sect. 2, we review the methods of the literature. In Sect. 3, we

propose a new algorithm and we show in Sect. 4 that it is faster than the existing

methods.

2 Review of prior work

We first recall a well known property, which allows to project onto the ℓ1 ball, as soon

as one can project onto the simplex:

Proposition 2.1 (see, e.g., [7, Lemma 3])

PB(y) =

{

y, if ∑N
n=1 |yn| ≤ a,

(

sgn(y1)x1, . . . ,sgn(yN)xN

)

, else,
(4)

where x = P∆ (|y|), |y| = (|y1|, . . . , |yN |), and sgn is the signum function: if t > 0,

sgn(t) = 1, if t < 0, sgn(t) =−1, and sgn(0) = 0.

Remark 2.1 Conversely to Proposition 2.1, one can project onto the simplex us-

ing projection onto the ℓ1 ball. Indeed, P∆ (y) = P∆ (y+ c), for every c ∈ R, and

P∆ (y) = PB(y) if the elements of y are nonnegative and ‖y‖1 ≥ a. Thus, whatever

y, we have P∆ (y) = PB(y− ymin+ a/N), where ymin is the smallest element of y.

So, by virtue of Proposition 2.1, we focus in the following on projecting onto the

simplex only, and we denote by

x := P∆ (y) (5)

the projected sequence. An important property of the projection P∆ , which can be

derived from the corresponding Karush-Kuhn-Tucker optimality conditions, is the

following:

Proposition 2.2 (see, e.g., [10]) There exists a unique τ ∈ R such that

xn = max{yn − τ,0}, ∀n = 1, . . . ,N. (6)

Therefore, the whole difficulty of the operation P∆ is to find the value of τ . Then,

the projection itself simply amounts to applying the thresholding operation (6). So,

we must find τ such that ∑N
n=1 max{yn − τ,0} = a. Only the largest elements of y,

which are larger than τ and are not set to zero during the projection, contribute to

this sum. So, if we knew the index set I = {n | xn > 0}, since ∑N
n=1 xn = ∑n∈I xn =

∑n∈I (yn − τ) = a, we would have τ = (∑n∈I yn − a)/|I |. Algorithm 1, given in
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Algorithm 1 (using sorting) [10]












1. Sort y into u: u1 ≥ ··· ≥ uN .
2. Set K := max

1≤k≤N
{k | (∑k

r=1 ur −a)/k < uk}.

3. Set τ := (∑K
k=1 uk −a)/K.

4. For n = 1, . . . ,N, set xn := max{yn − τ ,0}.

Algorithm 2 (using a heap) [20]






















1. Build a heap v from y.
2. For k = 1, . . . ,N, do










2.1. Set uk := v1 (largest element of the heap).
2.2. If (∑k

r=1 ur −a)/k ≥ uk , exit the loop.
2.3. Set K := k.
2.4. Remove v1 from v and re-heapify v.

3. Set τ := (∑K
k=1 uk −a)/K.

4. For n = 1, . . . ,N, set xn := max{yn − τ ,0}.

Algorithm 3 (using partitioning) [12].




































1. Set v := y, K := 0, S :=−a.
2. While v is not empty, do
























2.1. Choose a pivot ρ in the convex hull of v.
2.2. Construct the subsequences yhigh := (y ∈ v |

y > ρ), ylow := (y ∈ v | y < ρ), and set M
as the number of elements equal to ρ in v.

2.3. If (S+Mρ +∑y∈yhigh
y)/(K +M+ |yhigh|)

< ρ , set S := S+Mρ +∑y∈yhigh
y,

K := K +M+ |yhigh|, v := ylow.
2.4. Else, set v := yhigh.

3. Set τ := S/K.
4. For n = 1, . . . ,N, set xn := max{yn − τ ,0}.

Algorithm 4 (active set method of Michelot) [17].
















1. Set v := y, ρ := (∑N
n=1 yn −a)/N.

2. Do, while |v| changes,
⌊

2.1. Replace v by its subsequence (y ∈ v | y > ρ).
2.2. Set ρ := (∑y∈v y−a)/|v|.

3. Set τ := ρ , K = |v|.
4. For n = 1, . . . ,N, set xn := max{yn − τ ,0}.

Fig. 1 Several algorithms to project onto the simplex ∆ . The input data consists in N ≥ 1, y ∈ R
N , a > 0,

and the ouput is the sequence x=(xn)
N
n=1 =P∆ (y). Incidentally, the number K at the end of the algorithms

is the number of nonzero elements in x.

Fig. 1, which is based on sorting the elements of y in decreasing order, naturally

follows from these considerations. This algorithm is explicitly given in [10] and was

rediscovered many times later. Depending on the choice of the sorting algorithm, the

worst case complexity of Algorithm 1 is O(N2) or O(N logN) [1].

An improvement of Algorithm 1 was proposed in [20], by noticing that it is not

useful to sort y completely, since only its largest elements are involved in the determi-

nation of τ . Thus, a heap structure can be used: a heap v = (v1, . . . ,vN) is a partially

sorted sequence, such that its first element v1 is the largest and it is fast to re-arrange

(v2, . . . ,vN) into a heap, with complexity O(logN). The complexity of arranging the

elements of y into a heap is O(N). This yields Algorithm 2, given in Fig. 1, whose

complexity is O(N +K logN), where K = |I | is the number of nonzero elements in

the solution x.
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Another way of improving Algorithm 1 is based on the following observation: it

is generally considered that the fastest sorting algorithm is quicksort, which uses

partitioning with respect to an element called pivot [1]; the pivot is chosen, and the

sequence to sort is split into the two subsequences of elements smaller and larger than

the pivot, which are then sorted recursively. But we can notice that τ does not depend

on the ordering of the elements yn; it depends only on the sum of the largest elements.

Thus, many operations in quicksort are not useful for our aim and can be omitted.

Indeed, let us consider, at the first iteration of the algorithm, partitioning y with re-

spect to some pivot value ρ ∈ [ymin,ymax], where ymin and ymax are the minimum

and maximum elements of y: we define the subsequences ylow and yhigh of elements

of y smaller and larger than ρ , respectively, and we set S := ∑y∈yhigh
y− a. Then, if

S/|yhigh| ≥ ρ , we have τ ≥ ρ , so that we can discard the elements of ylow and continue

with yhigh to determine τ . On the other hand, if S/|yhigh| ≤ ρ , we have τ ≤ ρ . Thus, we

can discard the elements of yhigh, keeping only the values S and |yhigh| in memory, and

continue with ylow to determine τ such that ∑y∈ylow
max{y− τ,0}+ S−|yhigh|τ = 0.

This yields Algorithm 3, given in Fig. 1. We refer to the review paper [12] for refer-

ences and discussions about this class of algorithms, which was popularized recently

by the highly cited paper of Duchi et al. [7]. Before discussing the choice of the pivot,

we highlight a major drawback of the algorithm given in [7], whose only difference

with Algorithm 3 is that, at step 2.4., the elements of v equal to the pivot, except one,

are left in v instead of being discarded. The pivot is chosen at random in v. The worst

case expected complexity (averaged over all choices of the pivot) of this algorithm

is not O(N) as claimed in [7], but O(N2). Indeed, expected linear time is guaran-

teed only if the elements of y are distinct. Since projection onto a simplex is often

one operation among others in an iterative algorithm converging to a fixed point, and

since sparsity of the solution is often a desirable property, it is likely that, in prac-

tice, the projection algorithm is fed with sequences in the simplex or close to it, thus

containing many elements at zero. For instance, when applying the algorithm of [7]

to y = (0, . . . ,0,1), the complexity is O(N2): the algorithm iterates over sequences

of size N, N − 1, and so on until 1 is picked as pivot. This issue is corrected with

our Algorithm 3, which has O(N) expected complexity when the pivot is chosen at

random in v, thanks to our careful handling of the elements equal to the pivot.

Now, concerning the choice of the pivot, this is the same much-discussed problem

as for the sorting algorithm quicksort and the selection algorithm quickselect,

which are based on partitioning as well [1]. The choice depends on whether one

is ready to make use of a random number generator and accept a fluctuating run-

ning time. It also depends on whether one is ready to accept the worst case O(N2),
which may come randomly with low probability or may be deliberately triggered by

someone having knowledge of the implementation and feeding the algorithm with a

contrived sequence y, creating a security risk. Choosing the pivot at random in the

list v gives expected complexity O(N), with some variance, but worst case complex-

ity O(N2). If the pivot is the median of v, the complexity becomes O(N), which is

optimal, but a linear time median finding routine, typically based on the median of

medians [4], is cumbersome to implement and slow. According to [12], a good com-

promise, which we adopt in Sect. 4, is to take the median of v as pivot, but to find it
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using the efficient algorithm of [11], whose expected complexity (not worst case) in

terms of comparisons is 3N/2+ o(N).

A different algorithm, of the variable-fixing type [13,18,19], has been proposed

by Michelot [17]. It is reproduced1 as Algorithm 4 in Fig. 1. It can be viewed as

a version of Algorithm 3, where the pivot ρ would alway be known to be a lower

bound of τ , so that the step 2.4. is always executed. Indeed, for every subsequence

v of y, by setting ρ = (∑y∈v−a)/|v|, we have a = ∑y∈v(y − ρ) ≤ ∑y∈v max{y −

ρ ,0}≤∑N
n=1 max{yn−ρ ,0}. Therefore, ρ ≤ τ . Consequently, if y ≤ ρ , we know that

max{y−τ,0}= 0 and we can discard the element y, which does not contribute to the

determination of τ . By alternating between the calculation of ρ = (∑y∈v y− a)/|v|
and the update of the sequence v by discarding its elements smaller or equal to ρ , the

algorithm enters a steady state after a finite number of iterations (consisting of steps

2.1. and 2.2.), with ρ = τ . Algorithm 4 has several advantages: it is deterministic,

very simple to implement, and independent of the ordering of the elements in y.

Its complexity is observed linear in practice [13]. Yet, its worst case complexity is

O(N2); this corresponds to the case where only one element is discarded from v at

step 2.1. of every iteration. Examples of such pathological sequences can be easily

constructed; one example is given in [6, end of Section 3].

Yet another way to look at the problem is to view the search of τ as a root finding

problem [16,9]. Let us define the function f : ρ 7→ ∑N
n=1 max{yn−ρ ,0}−a. We look

for τ such that f (τ) = 0, so τ is a root of f . f has the following properties: it is

convex; it is piecewise linear with breakpoints at the yn; it is strictly decreasing on

(−∞,ymax] and f (ρ) =−a for every ρ ∈ [ymax,+∞). So, for any ρ ∈R, if f (ρ)< 0,

then ρ > τ and if f (ρ) > 0, then ρ < τ . Moreover, f (ymin − a/N) ≥ 0, f (ymax −
a/N)≤ 0 and f (ymax − a)≥ 0, so that τ ∈ [max{ymax − a,ymin− a/N},ymax − a/N].
Thus, Algorithm 3 may be interpreted as a bracketing method and Algorithm 4 as a

Newton method [6, Proposition 1] to find the root τ . The method of [16] combines

features from the bisection method and the secant method. However, the proof of [16]

that the bisection method has complexity O(N) is not valid: for a fixed, arbitrarily

small, value δ > 0, the number of elements yn in an interval of size δ bracketing

τ may be as large as N, so that the number of bisection steps, each of complexity

O(N), may be arbitrarily large. Finally, we note that projection onto the simplex is

a particular case of the more general continuous quadratic knapsack problem; most

methods proposed to solve this problem are based on the principles discussed in this

section [12,13] and we refer to the survey papers [18,19] for a complete annotated

list of references.

3 Proposed algorithm

Using the principles seen in the previous section, we are in position to explain the

proposed algorithm, given in Fig. 2, which can be viewed as a Gauss–Seidel-like

1 Actually, Algorithm 4 is an improvement of Michelot’s algorithm, with the test “>” instead of “≥” at

step 2.1. This modification has been proposed in [13, Sect. 5.7]. Algorithm 4 is also the same algorithm as

in [9].
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Proposed Algorithm


















































1. Set v := (y1), ṽ as an empty list, ρ := y1 −a.

2. For n = 2, . . . ,N, do












If yn > ρ ,








2.1. Set ρ := ρ +(yn −ρ)/(|v|+1).
2.2. If ρ > yn −a, add yn to v.

2.3. Else, add v to ṽ, set v := (yn), ρ :=yn−a.

3. If ṽ is not empty, for every element y of ṽ, do
⌊

3.1. If y>ρ , add y to v and set ρ :=ρ+(y−ρ)/|v|.
4. Do, while |v| changes,








For every element y of v, do
⌊

4.1. If y ≤ ρ , remove y from v and set

ρ := ρ +(ρ − y)/|v|.
5. Set τ := ρ , K = |v|.
6. For n = 1, . . . ,N, set xn := max{yn − τ ,0}.

Fig. 2 Proposed algorithm to project onto the simplex ∆ . The input data consists in N ≥ 1, y ∈ R
N , a > 0,

and the ouput is the sequence x = (xn)
N
n=1 =P∆ (y). Incidentally, the number K at the end of the algorithm

is the number of nonzero elements in x.

variation of Algorithm 4. Indeed, the lower bound ρ of τ can be updated not only

after a complete scan of the sequence v, but after every element of v is read. Let us

first describe a simplified version of the algorithm, without the step 3. and with the

steps 2.1., 2.2. and 2.3. replaced by “2.1. Add yn to v and set ρ := ρ +(yn −ρ)/|v|.”

The algorithm starts with the first pass (steps 1. and 2.), which does not assume

any knowledge about y. Let us consider that we are currently reading the element

yn, for some 2 ≤ n ≤ N and that we have already read the previous elements yr,

r = 1, . . . ,n− 1. We have a subsequence v of (yr)
n−1
r=1 of all the elements potentially

larger than τ and we maintain the variable ρ = (∑y∈v y−a)/|v|. We know that ρ ≤ τ .

Hence, if yn ≤ ρ , then yn ≤ τ . So, we can ignore this element and we do nothing. In

the other case yn > ρ , we add yn to v, since yn is potentially larger than τ , and ρ is

assigned the new value of (∑y∈v y− a)/|v|, which is strictly larger than previously.

Then we continue the pass with the next element yn+1. The pass is initialized with

v = (y1) and ρ = y1 − a.

At the beginning of all the subsequent passes (step 4.), we have the subsequence

v of all the elements of y potentially larger than τ . The difference with the beginning

of the first pass is that we have calculated the value ρ = (∑y∈v y−a)/|v|; we will use

it to remove elements from v sequentially. Let us consider that we are reading the

element y ∈ v. If y > ρ , we do nothing. Else, y ≤ τ , so we remove this element from

v. Consequently, ρ is assigned the new value of (∑y∈v y− a)/|v|, which is strictly

larger than previously. Then we continue the pass with the next element of v.

The proof of correctness of this algorithm is straightforward. At the end of every

pass, either at least one element has been removed from v, or v and ρ remain the same

as after the previous pass. In the latter case, the elements of y which are not present

in v are smaller than ρ and the elements in v (which are the |v| largest elements of

y) are larger than ρ , so that a = ∑y∈v(y− ρ) = ∑N
n=1 max{yn − ρ ,0}. Thus, from

Proposition 2, ρ = τ .

The first pass of the proposed algorithm, as given in Fig. 2, contains a refinement

with respect to the algorithm just described. Every pass aims at calculating the best
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Table 1 Complexity of the algorithms to project onto the simplex, with respect to the length N of the data

and number K of nonzero elements in the solution. For Algorithm 1, quicksort and a random pivot are

assumed. For Algorithm 3 with the median pivot, a median finding routine with worst case complexity

O(N) (and not O(N2) like in the implementation evaluated in Section 4) is assumed.

worst case expected observed

complexity complexity in practice

Algorithm 1 O(N2) O(N logN) O(N log N)
Algorithm 2 O(N+KlogN) — O(N+KlogN)

Alg. 3, random pivot O(N2) O(N) O(N)
Alg. 3, median pivot O(N) — O(N)

Algorithm 4 O(N2) — O(N)
Proposed Algorithm O(N2) — O(N)

possible lower bound ρ of τ . And for every n, yn − a ≤ τ . So, when reading yn, if

yn − a is larger than the current value of ρ , we set ρ := yn − a. But then a cleanup

pass (step 3.) is necessary after the first pass, to restore the invariant properties that

ρ = (∑y∈v y− a)/|v| and that v contains all the elements of y larger than ρ .

We end this section with a few comments on the complexity of the proposed al-

gorithm. It is always faster than Algorithm 4, since after every pass, more elements

of v are removed. Contrary to Algorithm 4, its complexity depends on the ordering

of the elements in y. In the most favorable case where y is sorted in decreasing order,

the complexity is O(N), since at the end of the first pass, which behaves like step 2.

of Algorithm 1, we have ρ = τ . The complexity is also O(N) if y is sorted in increas-

ing order, since ρ = τ after the second pass. However, the worst case complexity is

O(N2); like for Algorithm 4, an adversary sequence can be easily constructed.

4 Comparison of the algorithms

The complexity of the algorithms is summarized in Tab. 1. In Tab. 2, for one example,

the number of elements not yet characterized as active or inactive is shown, after

every pass of the iterative algorithms. This demonstrates the efficiency of the selection

process of the proposed algorithm.

All the algorithms were implemented in C and quite optimized. Attention was

paid to the numerical robustness as well, with all the averaged quantities like (∑y∈v y−
a)/|v| computed using the Welford–Knuth running mean algorithm [14]. The code

is freely available on the website of the author. Note that we implemented the algo-

rithms to maximize the execution speed, without taking care of the memory usage.

For instance, we implemented Algorithm 3 with two auxiliary buffers of size N, to

store the elements lower and greater than the pivot. Using only one buffer of size

N would be possible, performing partitioning using swaps to put the elements lower

and greater than the pivot in the first and second part of the buffer, respectively (see

the description of Program 6 in [1] for details). This would slow down the algorithm,

however. The proposed algorithm only requires one memory buffer of size N to store

the sequence v, which is updated in place. As a parenthesis, we remark that one could

easily modify Algorithm 4 and the proposed algorithm, so that they do not require any

auxiliary memory buffer, except the one to store y, replaced by x in place at the end
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Table 2 Number |v| of elements in the sequence v after every pass of the algorithms, for one example with

N = 106 . y has i.i.d. Gaussian random elements of mean 1/N and std. dev. 0.1.

Pass Algorithm 3 Algorithm 3 Algorithm 4 Proposed

number random pivot median pivot Algorithm

1 575147 499999 499787 8145

2 85926 249999 212149 1622

3 15811 124999 85994 359

4 2049 62499 33840 107

5 2013 31249 13189 56

6 997 15624 5123 53

7 709 7811 1993 53

8 435 3905 785

9 26 1952 306

10 14 975 133

11 12 487 71

12 7 243 55

13 5 121 53

14 2 60 53

15 0 30

16 15

17 7

18 3

19 1

20 0

of the algorithm; this would require reading the entire sequence y at every pass of the

algorithm.

When implementing projection onto the ℓ1 ball, according to Proposition 2.1, the

naive approach consists in doing a first pass to compute |y| and to decide whether y

is inside the ℓ1 ball. With the proposed algorithm, this pass can be fused with its first

pass (steps 1. and 2.), replacing yn by |yn| everywhere. Then, after step 2., a simple

test is performed: if ρ ≤ 0, y is inside the ℓ1 ball, so the algorithm sets x = y and

terminates. Else, y is outside the ℓ1 ball and the algorithm continues with step 3.; the

signs of the yn are applied to the xn at step 6.

The code was run on a Apple Macbook Pro laptop under OS 10.9.4 with a 2.3Ghz

Intel Core i7 CPU and 8Go RAM. The computation times for projecting onto the sim-

plex, reported in Tab. 3, show that the proposed algorithm performs globally the best,

except in the particular case, of limited practical interest, where y is maximally sparse

and exactly on the simplex. In Tab. 4, for projection onto the ℓ1 ball, the proposed al-

gorithm is compared to the improved bisection algorithm (IBIS) of Liu and Ye [16];

we used the C code of the authors (function eplb of their package SLEP), available

online at http://www.public.asu.edu/∼jye02/Software/SLEP/. As a result,

the proposed algorithm is more than twice faster than IBIS for large N.

5 Concluding remarks

We have provided a synthetic overview of the available algorithms to project onto

the simplex or the ℓ1 ball and we have proposed a new and faster algorithm. In some

practical applications, the vector to project is of small length N and the projection
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Table 3 Computation times in seconds for projecting y onto the unit simplex (a = 1), averaged over 102

(for N = 106) and 104 (for N = 103 and N = 20) realizations (the number in parentheses is the std. dev.).

Experiments 1 and 2 correspond to the yn being i.i.d. random Gaussian numbers of mean a/N and std.

dev. 1 and 10−3, respectively. Experiment 3 corresponds to the yn being i.i.d. random Gaussian numbers of

mean 0 and std. dev. 10−3, except one element at a random position, which is a random Gaussian number

of mean a and std. dev. 10−3. Experiment 4 corresponds to the yn being 0, except one element equal to a at

a random position. So, y is not on the simplex for Experiments 1–3 and is on the simplex for Experiment 4.

In all cases, the best time is in bold.

Experiment 1

N=106 (K≈6) N=103 (K≈4) N=20 (K≈3)

Algorithm 1 1.1e-1 (8e-4) 7.4e-5 (5e-6) 1.4e-6 (6e-7)

Algorithm 2 1.1e-2 (6e-4) 9.1e-6 (1e-6) 6.6e-7 (7e-7)

Alg. of Duchi et al. 1.0e-2 (5e-3) 1.1e-5 (6e-6) 8.8e-7 (8e-7)

Alg. 3, random pivot 1.0e-2 (5e-3) 1.1e-5 (6e-6) 9.5e-7 (7e-7)

Alg. 3, median pivot 2.1e-2 (4e-4) 2.7e-5 (3e-6) 9.9e-7 (7e-7)

Algorithm 4 1.8e-2 (7e-4) 1.8e-5 (6e-6) 8.2e-7 (7e-7)

Proposed Algorithm 1.8e-3 (2e-5) 1.8e-6 (7e-7) 5.5e-7 (7e-7)

Experiment 2

N=106 (K≈3282) N=103 (K≈816) N=20 (K≈20)

Algorithm 1 1.1e-1 (1e0) 8.0e-5 (5e-6) 1.6e-6 (7e-7)

Algorithm 2 1.2e-2 (9e-5) 5.6e-5 (4e0) 9.7e-7 (7e-7)

Alg. of Duchi et al. 1.3e-2 (7e-3) 1.6e-5 (5e-6) 7.7e-7 (7e-7)

Alg. 3, random pivot 1.3e-2 (6e-3) 1.6e-5 (4e-6) 8.2e-7 (7e-7)

Alg. 3, median pivot 2.1e-2 (8e-4) 2.5e-5 (2e-6) 1.0e-6 (7e-7)

Algorithm 4 1.8e-2 (2e-4) 3.2e-5 (3e-6) 6.3e-7 (7e-7)

Proposed Algorithm 3.7e-3 (5e-5) 1.5e-5 (1e-6) 6.1e-7 (7e-7)

Experiment 3

N=106 (K≈21) N=103 (K≈9) N=20 (K≈4)

Algorithm 1 1.1e-1 (2e-3) 7.4e-5 (5e-6) 1.4e-6 (6e-7)

Algorithm 2 1.1e-2 (3e-4) 9.6e-6 (1e-6) 7.0e-7 (7e-7)

Alg. of Duchi et al. 1.0e-2 (6e-3) 1.2e-5 (6e-6) 8.9e-7 (7e-7)

Alg. 3, random pivot 1.0e-2 (5e-3) 1.1e-5 (6e-6) 9.6e-7 (7e-7)

Alg. 3, median pivot 2.1e-2 (4e-4) 2.7e-5 (2e-6) 9.9e-7 (7e-7)

Algorithm 4 1.8e-2 (2e-4) 1.8e-5 (2e-6) 7.9e-7 (7e-7)

Proposed Algorithm 3.5e-3 (2e-4) 1.1e-5 (6e-6) 6.9e-7 (7e-7)

Experiment 4

N=106 (K=1) N=103 (K=1) N=20 (K=1)

Algorithm 1 2.9e-2 (5e-4) 1.8e-5 (2e-6) 8.8e-7 (7e-7)

Algorithm 2 3.1e-3 (2e-4) 2.1e-6 (8e-7) 5.5e-7 (6e-7)

Alg. of Duchi et al. 1.1e+2 (4e+2) (!) 2.1e-5 (2e-4) 1.0e-6 (9e-7)

Alg. 3, random pivot 2.8e-3 (1e-4) 2.4e-6 (7e-7) 5.2e-7 (6e-7)

Alg. 3, median pivot 1.4e-2 (5e-4) 1.3e-5 (2e-6) 8.0e-7 (7e-7)

Algorithm 4 1.6e-2 (2e-3) 1.8e-5 (1e-6) 7.6e-7 (7e-7)

Proposed Algorithm 7.4e-3 (3e-3) 6.9e-6 (3e-6) 6.3e-7 (7e-7)

is one operation among others, some of which with complexity O(N2), like dense

matrix-vector products; in such case, the cost of the projection is negligible and all the

projection algorithms are equally valid choices. By contrast, for large-scale problems

like learning or classification over large dictionaries and in imaging, N is of order 106

and more; in such case, all the operations have complexity O(N) or O(N logN) and a
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Table 4 Computation times in seconds for projecting y onto the unit ℓ1 ball (a = 1), averaged over 102

(for N = 106) and 104 (for N = 103 and N = 20) realizations (the number in parentheses is the std. dev.).

The yn are i.i.d. random Gaussian numbers of zero mean and std. dev. 0.1. y was always outside the ℓ1

ball. In all cases, the best time is in bold.

N=106 (K≈22) N=103 (K≈10) N=20 (K≈5)

Algorithm IBIS 1.3e-2 (5e-4) 1.6e-5 (1e-6) 9.8e-7 (7e-7)

Proposed Algorithm 6.7e-3 (1e-4) 1.0e-5 (1e-6) 7.7e-7 (7e-7)

50x speedup of the proposed algorithm with respect to the naive sort-based algorithm

does make a big difference.

We can note that the proposed algorithm can be used for matrix approximation

problems, by reasoning on their eigenvalues or singular values, e.g. to project a sym-

metric matrix onto the spectahedron, which is the set of positive semidefinite matrices

of unit trace and can be seen as a natural generalization of the unit simplex to sym-

metric matrices.

Future work will be focused on fast algorithms for optimization problems involv-

ing the simplex or the ℓ1 ball. This includes inverse imaging problems regularized by

a constraint on the total variation seminorm [8] and the computation of abundance

maps in multispectral unmixing [2].
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