
Fast-prototyping Using the BTnode Platform

Jan Beutel∗

Swiss Federal Institute of Technology (ETH) Zurich

8092 Zurich, Switzerland

beutel@tik.ee.ethz.ch

Abstract

The BTnode platform is a versatile and flexible platform

for functional prototyping of ad hoc and sensor networks.

Based on an Atmel microcontroller, a Bluetooth radio and

a low-power ISM band radio it offers ample resources to

implement and test a broad range of algorithms and appli-

cations ranging from pure technology studies to complete

application demonstrators. Accompanying the hardware is

a suite of system software, application examples and tu-

torials as well as support for debugging, test, deployment

and validation of wireless sensor network applications. We

discuss aspects of system design, development and deploy-

ment based on our experience with real wireless sensor net-

work experiments. We further discuss our approach of a

deployment-support network that tries to close the gap be-

tween current proof-of-concept experiments to sustainable

real-world sensor network solutions.

1. Introduction

In their seminal articles, Estrin [4] and Kahn [9] pre-

sented a far-reaching vision of wireless sensor networks

(WSNs), where collections of tiny autonomous computers

would collaboratively and unobtrusively monitor a variety

of real-world phenomena with unprecedented quality and

scale, bringing substantial benefits to a variety of applica-

tion areas. Since then, numerous hardware platforms have

been developed, operating system abstractions have been

established, a large number of protocols and algorithms

for networking, communication, and information process-

ing have been proposed, and various fundamental capabili-

ties and limitations of these sensor networks have been ex-

amined. Based on these ingredients, prototypical applica-

tions, e.g. [8, 14, 15], have been developed, some of which

∗ The work presented here was supported by the National Competence
Center in Research on Mobile Information and Communication Sys-
tems (NCCR-MICS), a center supported by the Swiss National Sci-
ence Foundation under grant number 5005-67322.

consist of more than 100 sensor nodes. Such networks are

formed from a set of small sensor devices, the nodes, that

are deployed in an ad hoc fashion and cooperate in sens-

ing a physical phenomenon.

Initially, these demo applications form a proof-of-

concept of the visions and suggest the basic feasibility

and applicability of this novel platform class of tiny, wire-

less embedded systems to real applications. On the other

hand, these experiments have revealed the complexity of

cross-layer design on extremely resource constrained de-

vices with their tight coupling of application, nodes and the

environment. However, taking a closer look at the devel-

opment process of such prototypical applications reveals

that putting such a running sensor network in place is cur-

rently an art. Reports from implementations such as Great

Duck Island (GDI) [16] or the macroscope in the red-

woods [17] document in an impressive way the differ-

ence between the rather clean and easy world of simulations

and theoretical studies opposed to the outdoors deploy-

ment case with many sources for errors, failures and imper-

fections found in the real world. While GDI suffered from

random node failures and the need for additional hard-

ware deployments for calibration and monitoring of the

wireless sensor network, the redwood forest deployment re-

ported on being only able to retrieve 40% of the sensor

data in usable form due to many influences on the sys-

tem and various sources of error.

Nevertheless, such experiments are valuable sources of

experience and necessary to validate concepts that cannot

be accounted for in models and simulations where access

to and interaction with the environment is limited. In order

to close the gap between current proof-of-concept and real-

world sensor networks, this artwork has to be replaced with

an efficient, coordinated design and development process

to be able to achieve industry-grade quality in applications.

The BTnode platform [3] has been specifically designed for

functional prototyping of wireless networking applications

at different layers: Initially both ubiquitous computing sce-

narios characterized by interaction with human users and

ad hoc and sensor networking experiments characterized by

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



Figure 1. The BTnode rev3 uses a four layer
PCB with all components mounted on the top
and a 2xAA battery case underneath.

large amounts of devices and self-organization necessitated

design goals such as flexibility, easy of use, a steep learning

curve, accessibility, transparent debugging capability, visi-

bility and versatility.

2. The BTnode Platform

The BTnode is an versatile, lightweight, autonomous

wireless communication and computing platform based

on a Bluetooth radio and a microcontroller. The BTn-

ode rev3 [1] features an additional low-power radio,

generic IO peripherals and switchable power conver-

sion and distribution systems. The low-power radio is the

same as on the Berkeley Mica2 Motes [5], making the BTn-

ode rev3 a twin of both the Mica2 Mote and the older

BTnode rev2. Both radios can be operated simultane-

ously or be independently powered off completely when

not in use, considerably reducing the idle power con-

sumption of the device. Being the only dual-radio plat-

form for sensor networks available today, the BTnode

rev3 is ideally suited for versatile and flexible func-

tional prototyping of a broad range of applications with

the tradeoff possibility of the two radios and the flexibil-

ity offered by ample memory resources (see Figure 2).

The dual-radio approach provides opportunities to cre-

ate tiered architectures with high-bandwidth nodes bridg-

ing ultra-low-power devices like the Berkeley Motes to

Bluetooth-enabled gateway appliances [5], or to investi-

gate duty-cycled multi-front-end devices with wake-up

radios [13] or bandwidth-power-latency trade-offs.

2.1. BTnode rev3 Features at a Glance

• Microcontroller – Atmel ATmega 128L (8 MHz @ 8

MIPS)

• Memories – 64 + 180 Kbyte SRAM, 128 Kbyte

FLASH ROM, 4 Kbyte EEPROM

GPIO Analog Serial IO

System

Bluetooth LEDs

SRAM
Radio

Low-power

Power Supply

Microcontroller

ATmega128L

Figure 2. The BTnode rev3 is based on
two wireless communication systems, an At-
mel microcontroller computational core and
generic IO peripherals.

Ethernut Nut/OS core

BTnode 

RTC UART I2C GPIO Analog

...Bluetooth
Stack

Application
Threads

Drivers

Hardware

Thread 1 Thread 2 Thread iThread 3

Terminal

Thread
Scheduler

Figure 3. The BTnut operating system
provides cooperative multi-threading with
POSIX-like C interfaces.

• Bluetooth subsystem – Zeevo ZV4002, supporting

AFH/SFH scatternets with max. 4 piconets/7 slaves,

Bluetooth v1.2 compatible

• Low-power radio – Chipcon CC1000 operating in

ISM band 433-915 MHz

• External interfaces – ISP, UART, SPI, I2C, GPIO,

ADC, Timer, 4 LEDs

• Dual power supply – 2xAA cells with step up con-

verter or DC input 3.6-5.0 V

2.2. BTnut: Lightweight Software Support

Based on the requirements outlined in the introduction,

the software support for the BTnodes is designed for func-

tionality and versatility across different applications and

catering to the needs of different developers. Therefore,

simple and intuitive programming without the need for spe-

cial development tools, languages or compilers are of pri-

mary importance.

The C-based BTnut system software is built on top of

a threaded OS core for embedded systems, the Opensource

Ethernut Nut/OS (see Figure 3). The basic support of this



Figure 4. The BTnut OS tracer allows to
track critical real-time issues (interrupts and
thread switches shown here) on a target de-

vice without minimal interference.

OS core are primitives for scheduling multiple threads, ba-

sic memory management, events, synchronization, stream-

ing IO and device drivers that allows an extremely fast

jump-start, even on complex applications.

Compared to the popular TinyOS operating system [6],

the BTnut system software does not require to install and

learn new languages and tools (nesC) but uses plain C based

programming and is based on standard operating systems

concepts that are familiar to most developers. In combina-

tion with a developer kit and accompanying tutorial as well

as community support through a Wiki based project web

page and an archived mailing list this ensures a quick jump-

start and accelerated learning curve.

2.3. Debugging with Event Traces

Event traces are a versatile and uncomplicated way to

debugging and profile applications at different levels of ab-

straction. A separate library can be included to a BTnut ap-

plication under investigation. It allows to detect and log ar-

bitrary events, e.g. interrupts, context switches, critical sec-

tions, application context etc. All events are simply time-

stamped and recorded in an internal buffer from where they

are retrieved for offline analysis (see Figure 4). This strat-

egy allows maximum transparency for profiling and tracing

while only minimally altering the timing behavior of an ap-

plication and so allows to debug complex, interactive appli-

cations between multiple communicating nodes.

2.4. In-situ Power Profiling

The switchable power supply on the BTnode rev3 (see

Figure 2 offers direct current access for in-situ profiling of

the power consumption of both the radio systems and the

microcontroller core under real-life operating conditions.

This can be used for detailed performance analysis and the

tuning of operating mode and parameters, e.g. of communi-

cation protocols [11] (see Figure 5).

0 100 200 300 400 500 600 700 800 900 1000
10

15

20

25

30

35

40

45

50

Slave sniff

Master sniff

Slave active

Master active

mA

samplesStandby

Figure 5. Detailed power profile of the Blue-
tooth radio at different operating modes.

3. State of the Art Platforms Compared

When comparing other state of the art platforms for sen-

sor networks (Crossbow Mica2 and Mica2Dot Motes [5],

Moteiv Tmote Sky [12] and Intel Imote [10]) a consider-

able bias towards specific niche application requirements

becomes apparent (see Figure 6). The investigation of the

properties of the radio systems used shows that there are

two different paradigms followed by the competitors plat-

forms; either a low-level ”modem-like” bit-stream oriented

radio (Chipcon CC1000) or a high-level, packet-oriented ra-

dio (Chipcon CC2420 or Bluetooth) is used. The features of

the system core reveal in part considerably high processing

capabilities and the ability to store complex programs while

there is an apparent lack of program memory (SRAM) and

thus a lack of flexibility for the application developer. Plat-

forms allowing for ≥128 Kbyte program sizes but only sup-

porting a few kilobytes of program memory are clearly lim-

ited in versatility and functionality not only during the de-

velopment but also in a production phase.

The BTnode rev3 (shown on the left in Figure 6) offers a

more balanced set of system resources with ample program

memory and draws the best of both worlds with the two ra-

dio systems either operating in a tradeoff according to the

performance requirements or simultaneously.

4. Next-Generation Deployment-Support for

Sensor Networks

Classic approaches to develop and deploy wireless sen-

sor networks use serial or ethernet cables for program

download, control and monitoring [18]. Although success-

ful in lab setups, this approach is limited due to scalabil-

ity issues and completely infeasible for deployment in the

field. Distributing firmware updates within a sensor net-

work [7] requires nodes to be equipped with buffering and



ImoteTmote SkyMica2DotMica2BTnode rev3

System Core

Radio Systems

Figure 6. The BTnode rev3 offers a balanced resource mix with ample memory resources and two
radio interfaces whereas competing platforms are more biased towards a specific application.

self-reprogramming support and often exhibit an excessive

burden on the network itself, with heavy traffic compared to

the average network operation and long latencies due to low

power duty-cycling.

4.1. Deployment-Support Network

The deployment-support network (DSN) (see Figure 7)

is a new methodology for the development, test, deploy-

ment, and validation of wireless sensor networks [2]. A

DSN is a robust, wireless cable replacement offering re-

liable and transparent connections to arbitrary sensor net-

work target devices. DSN nodes are battery powered nodes

that are temporarily attached to some or all target nodes in

a sensor network deployment under test. A target adapter

on the DSN node is responsible for target control, (re-) pro-

gramming and logging while a small monitor running on

the target sensor node is responsible to output events and

status information to the DSN node where it is logged and

timestamped. Examples of such logged context are packet

arrivals, sensor values as references for calibration, inter-

rupts on the target node or error codes for debugging. Com-

pared to traditional serial-cable approaches, this approach

results in enhanced scalability and flexibility with respect

to node location, density, and mobility. This makes the co-

ordinated deployment and monitoring of sensor networks

possible.

4.2. Sensor Network Maintenance Toolkit

In order to employ deployment-support network for the

development and deployment of a sensor network appli-

cation, the sensor network maintenance (SNM) toolkit has

been devised as a set of sophisticate services that can be eas-

ily adapted and customized according to the maintenance

and monitoring requirements. The SNM toolkit contains

services for:

• Target Control

• Remote Programming



WSN Target

Application

JAWS Application

 Topology Control

 Connection Management

 Data Transport

 Caching

 Node Management

Target Adapter
 Target Control

 Programming

 Logging

Monitor
 Threads/IRQs

 High level context

Codesize 100 kB

4 kB

2 kBWSN Target

Application

JAWS Application

 Topology Control

 Connection Management

 Data Transport

 Caching

 Node Management

Target Adapter
 Target Control

 Programming

 Logging

Monitor
 Threads/IRQs

 High level context

Codesize 100 kB

4 kB

2 kBWSN Target

Application

JAWS Application

 Topology Control

 Connection Management

 Data Transport

 Caching

 Node Management

Target Adapter
 Target Control

 Programming

 Logging

Monitor
 Threads/IRQs

 High level context

Codesize 100 kB

4 kB

2 kBWSN Target

Application

JAWS Application

 Topology Control

 Connection Management

 Data Transport

 Caching

 Node Management

Monitor
 Threads/IRQs

 High level context

Codesize 100 kB

2 kB

Target Adapter
 Target Control

 Programming

 Logging

4 kB

Deployment-Support NetworkDeveloper

Access

Target Sensor Network

Figure 7. A deployment-support network is temporarily attached to as experimental target net-
work and facilitates long-term surveillance and maintenance using the sensor network maintenance
toolkit. Developers can access the DSN resources using the Bluetooth backbone network.

• Generic DSN Access

• Remote Logging and Event Detection

• Long Term Logging and Data Analysis

The current reference implementation of a deployment-

support network is called JAWS and runs on 30 BTn-

ode rev3 devices in a permanent installation at ETH Zurich.

4.3. BTnode Platform Success

The BTnode platform has been successfully used for

both research and engineering education. To date, the hard-

ware has been used by 30+ research groups leading to many

successful student projects, courses and labs (e.g. a graduate

lab in embedded systems design with 120 participants) re-

search demos and publications (40+ scientific publications

at ETH Zurich alone). The BTnode rev3 has been made

commercially available through an industrial partner that is

responsible for the logistics, manufacturing and testing of

the hardware.

Due to it’s reliability and versatility the BTnode platform

has been especially popular in ubiquitous computing exper-

iments and long-term ad hoc networking deployments. Al-

though the early Bluetooth hardware has been arguably not

optimal in terms of power consumption, the available Blue-

tooth devices have matured considerably and have proven a

good and legitimate choice for the design goals of the BTn-

ode platform: (i) The high-level abstraction of the event-

based interface makes the radio easy to use with relaxed

real-time constraints when compared to a ”modem-like” bit-

stream interface on the CC1000 radio where the microcon-

troller is responsible both for the control-flow of the appli-

cation and the (low-level) protocol processing. (ii) When

transferring larger amounts of data in a duty-cycled fash-

ion, the increased throughput of the Bluetooth radio adds

favorably to the power-performance figures when regarded

from a system and application perspective. Moreover the

Bluetooth interface relieves the application developer from

many low-level implementation issues and offers reliable,

buffered link-layer data transfers with advanced features

such as error correction and authentication.

In retrospective, the BTnode platform is living up to the

initial design requirements and sets standards within the

wireless sensor network community in terms of function-

ality and a sound mix of resources that allow for timely de-

velopment, easy debugging and reliable function. In combi-

nation with the deployment-support network and the sensor

network maintenance toolkit it forms a powerful and effec-

tive suite of fast-prototyping and validation tools offering

full life-cycle support for sensor network applications.

Acknowledgments

I would like to acknowledge the invaluable hard work

and tireless debugging of the BTnode core team, it’s many

student contributors as well as Luca Negri (power profiling)

and Philipp Blum (event tracer) that have made the BTn-

ode platform into a success.

References

[1] J. Beutel, M. Dyer, M. Hinz, L. Meier, and M. Ringwald.

Next-generation prototyping of sensor networks. In Proc.

2nd ACM Conf. Embedded Networked Sensor Systems (Sen-

Sys 2004), pages 291–292. ACM Press, New York, Nov.

2004.



[2] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable

topology control for deployment-sensor networks. In Proc.

4th Int’l Conf. Information Processing in Sensor Networks

(IPSN ’05), pages 359–363. IEEE, Piscataway, NJ, Apr.

2005.

[3] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund,

and L. Thiele. Prototyping wireless sensor network applica-

tions with BTnodes. In Proc. 1st European Workshop on Sen-

sor Networks (EWSN 2004), volume 2920 of Lecture Notes

in Computer Science, pages 323–338. Springer, Berlin, Jan.

2004.

[4] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next

century challenges: Scalable coordination in sensor net-

works. In Proc. 5th ACM/IEEE Ann. Int’l Conf. Mobile

Computing and Networking (MobiCom ’99), pages 263–270.

ACM Press, New York, Aug. 1999.

[5] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. Wire-

less sensor networks: The platforms enabling wireless sensor

networks. Communications of the ACM, 47(6):41–46, June

2004.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and

K. Pister. System architecture directions for networked sen-

sors. In Proc. 9th Int’l Conf. Architectural Support Pro-

gramming Languages and Operating Systems (ASPLOS-IX),

pages 93–104. ACM Press, New York, Nov. 2000.

[7] J. Hui and D. Culler. The dynamic behavior of a data dissem-

ination protocol for network programming at scale. In Proc.

2nd ACM Conf. Embedded Networked Sensor Systems (Sen-

Sys 2004), pages 81–94. ACM Press, New York, Nov. 2004.

[8] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and

D. Rubenstein. Energy-efficient computing for wildlife

tracking: Design tradeoffs and early experiences with Ze-

braNet. In Proc. 10th Int’l Conf. Architectural Support Pro-

gramming Languages and Operating Systems (ASPLOS-X),

pages 96–107. ACM Press, New York, Oct. 2002.

[9] J. Kahn, R. Katz, and K. Pister. Next century challenges:

Mobile networking for smart dust. In Proc. 5th ACM/IEEE

Ann. Int’l Conf. Mobile Computing and Networking (Mo-

biCom ’99), pages 271–278. ACM Press, New York, Aug.

1999.

[10] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel.

The Intel mote platform: A Bluetooth-based sensor network

for industrial monitoring. In Proc. 4th Int’l Conf. Informa-

tion Processing in Sensor Networks (IPSN ’05), pages 437–

442. IEEE, Piscataway, NJ, Apr. 2005.

[11] L. Negri, J. Beutel, and M. Dyer. The power consumption of

Bluetooth scatternets. In Proc. IEEE Consumer Communi-

cations and Networking Conference (CCNC 2006), page to

appear. IEEE, Piscataway, NJ, Jan. 2006.

[12] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling

ultra-low power wireless research. In Proc. 4th Int’l Conf. In-

formation Processing in Sensor Networks (IPSN ’05), pages

364–369. IEEE, Piscataway, NJ, Apr. 2005.

[13] E. Shih, P. Bahl, and M. Sinclair. Wake on wireless: An event

driven energy saving strategy for battery operated devices. In

Proc. 6th ACM/IEEE Ann. Int’l Conf. Mobile Computing and

Networking (MobiCom 2001), pages 160–171. ACM Press,

New York, Sept. 2002.

[14] G. Simon, G. Balogh, G. Pap, M. Maróti, B. Kusy, J. Sallai,

Á. Lédeczi, A. Nádas, and K. Frampton. Sensor network-

based countersniper system. In Proc. 2nd ACM Conf. Em-

bedded Networked Sensor Systems (SenSys 2004), pages 1–

12. ACM Press, New York, Nov. 2004.

[15] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton,

A. Mainwaring, and D. Estrin. Habitat monitoring with sen-

sor networks. Communications of the ACM, 47(6):34–40,

June 2004.

[16] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler.

Lessons from a sensor network expedition. In Proc. 1st Eu-

ropean Workshop on Sensor Networks (EWSN 2004), volume

2920 of Lecture Notes in Computer Science, pages 307–322.

Springer, Berlin, Jan. 2004.

[17] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,

K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and

W. Hong. A macroscope in the redwoods. In Proc. 3rd ACM

Conf. Embedded Networked Sensor Systems (SenSys 2005),

pages 51–63. ACM Press, New York, 2005.

[18] G. Werner-Allen, P. Swieskowski, and M. Welsh. Mote-

Lab: A wireless sensor network testbed. In Proc. 4th Int’l

Conf. Information Processing in Sensor Networks (IPSN

’05), pages 483–488. IEEE, Piscataway, NJ, Apr. 2005.


