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Figure 1: Multiple deformable models simulation: This sequence shows the positions of the objects at three time instances in a simulation.
The environment initially consists of 10 deforming objects represented using 5.5K triangles. As the simulation proceeds, the objects break
into 25 sub-objects. Our algorithm is able to perform collision and separation distance computations, including self-collisions, among
dynamically generated objects within 120 ms on a high-end PC.

Abstract

We present novel algorithms to perform collision and distance
queries among multiple deformable models in dynamic environ-
ments. These include inter-object queries between different objects
as well as intra-object queries. We describe a unified approach to
compute these queries based on N-body distance computation and
use properties of the 2ndorder discrete Voronoi diagram to perform
N-body culling. Our algorithms involve no preprocessing and also
work well on models with changing topologies. We can perform
all proximity queries among complex deformable models consisting
of thousands of triangles in a fraction of a second on a high-end
PC. Moreover, our Voronoi-based culling algorithm can improve
the performance of separation distance and penetration queries by
an order of magnitude.

CR Categories: I.3.5 [Computing Methodologies]: Compu-
tational Geometry and Object Modeling—Geometric algorithms;
I.3.7 [Computing Methodologies]: Three-Dimensional Graphics
and Realism—Animation, virtual reality

Keywords: Deformable collisions, self-collisions, penetration
computation, distance fields, N-body queries

1 Introduction

We address the problem of geometric proximity query computa-
tion among multiple deformable models for interactive applica-

tions. The set of proximity queries includes collision detection, sep-
aration distance and penetration depth computation. These queries
are performed among different objects (i.e. inter-object queries) or
within the same object (i.e. self-collision or intra-object queries).

Interactive simulation systems with deforming objects are used in
many diverse applications, including surgical simulation, robotics,
computer games, computer animation, haptics and bioinformatics.
The three main components of such systems are dynamic simula-
tion, collision detection and contact response. Different proximity
queries are needed to perform each of these components. For exam-
ple, penetration depth (PD) computation is often used to compute
contact forces in penalty-based methods [Heidelberger et al. 2004;
Kim et al. 2002]. Separation distances are useful in computing the
repulsive forces or estimating the time of contact between moving
objects in a discretized simulation [Baraff and Witkin 2001; Kim
et al. 2002]. Robust simulations of cloth dynamics may require
penetration depth computation [Baraff et al. 2003] or continuous
collision detection [Bridson et al. 2002].

The problem of fast and reliable geometric proximity queries has
been extensively studied. Despite the vast literature, real-time prox-
imity queries remain one of the major bottlenecks for interactive
deformable simulation [Teschner et al. 2005; Mueller et al. 2005].
Many existing methods are based on hierarchical representations
and work well for rigid models. Several efficient collision detection
algorithms have been proposed for deformable models, but they do
not compute separation or penetration distances. One of the chal-
lenges in the area is to perform fast N-body proximity queries in
scenes composed of multiple deforming objects.

1.1 Main Results

We present novel algorithms for fast proximity computation among
multiple deformable models. Our approach involves no preprocess-
ing and is applicable to all triangulated models undergoing non-
rigid motion. In order to perform different proximity queries in



complex environments, we present three key results:

N-body distance query: We introduce a unified approach to per-
form different proximity queries using N-body distance computa-
tion: given a set P of primitives, for each primitive pi we com-
pute the closest primitive in P \ {pi}. We also present efficient
algorithms for continuous collision detection and local penetration
depth computation based on the N-body distance query.

Voronoi-based culling: We use properties of Voronoi diagrams to
perform the N-body distance query efficiently. The closest prim-
itive to any primitive (pi) is one of the Voronoi neighbors of pi.
Therefore, the Voronoi diagram of primitives is an efficient data
structure to perform N-body distance culling. We use the 2ndorder
Voronoi diagram because it provides information about two clos-
est primitives at each point in space and results in a higher culling
efficiency.

Fast and conservative computations using discrete Voronoi dia-
grams: The exact computation of continuous 3D Voronoi diagrams
for general triangulated models is a hard problem. Instead, we com-
pute discrete Voronoi diagrams on a uniform grid using graphics
hardware. We exploit properties of the 2ndorder Voronoi diagram
to derive distance error bounds that take into account discretization
and sampling errors in discrete Voronoi diagrams. We use the dis-
tance bounds to efficiently compute the closest primitive at object-
space precision i.e. IEEE 64-bit floating point accuracy.

We have implemented our algorithms on a desktop PC with a high-
end CPU and GPU. We demonstrate the effectiveness of our algo-
rithms for different proximity queries in several scenarios: N-body
deformable simulation with tens or hundreds of deforming objects
and cloth simulation with many thousands of triangles. The perfor-
mance of our algorithms varies between 100−800 msec, depending
on the complexity of the scene and the relative configuration of the
primitives. As compared to prior methods, our algorithm offers the
following advantages:

• Direct applicability to multiple breaking objects or models
with changing topologies;

• Improved culling efficiency and significant reduction in the
number of false positives;

• Up to an order of magnitude faster runtime performance over
prior techniques for separation distance and local penetration
depth computation between multiple, dynamically deforming
objects;

• Interactive self-proximity query computation on complex de-
formable models.

1.2 Organization

The rest of the paper is organized as follows. We briefly survey pre-
vious work on proximity queries in Section 2. Section 3 describes
the N-body distance query that is used to perform different prox-
imity queries. We present our Voronoi-based distance culling al-
gorithm in Section 4 and use this algorithm to perform inter-object
and intra-object queries in Section 5. Section 6 describes our im-
plementation and highlights the performance of our algorithms. We
analyze our algorithms and compare their performance with prior
methods in Section 7.

2 Related Work

The problems of collision detection and distance computation are
well studied in the literature. We refer the readers to recent surveys
[Ericson 2004; Lin and Manocha 2004; Teschner et al. 2005]. In

Figure 2: Cloth simulation: The cloth mesh is composed of 15K
triangles and has a high number of triangles in close proximity.
As the simulation progresses, the cloth wraps around the sphere
and the simulation generates many complex folds. Our algorithm
is able to perform continuous self-collision detection among all the
triangles within 800 msec.

this section, we briefly discuss some of the prior algorithms for
deformable models.

2.1 N-body algorithms

Many N-body culling algorithms that reduce the number of pair-
wise tests have been proposed. These include algorithms based on
spatial grids and octrees [Ericson 2004], and 3D sorting based on
tight fitting axis-aligned bounding boxes [Cohen et al. 1995]. More
recently, GPU-based algorithms [Govindaraju et al. 2003; Govin-
daraju et al. 2005] use occlusion queries to compute potentially
colliding sets of overlapping objects. Most of these algorithms have
been limited to N-body collision detection and their culling perfor-
mance varies based on the relative configuration of the objects.

2.2 Bounding volume hierarchies

Bounding volume (BV) hierarchies are widely used for collision
detection and separation distance computation. Most proximity
computation algorithms for deformable models use hierarchies of
spheres or use axis-aligned bounding boxes (AABBs) [Agarwal
et al. 2004; van den Bergen 1997; Larsson and Akenine-Möller
2001; James and Pai 2004]. However, these hierarchies may not
be able to perform significant culling in close proximity configura-
tions or for self-proximity queries. Thus, they can result in a high
number of false positives.

2.3 Deformable model collision detection

Many specialized algorithms have been proposed to perform col-
lision queries on deformable models. These include GPU-based
algorithms [Knott and Pai 2003; Govindaraju et al. 2005] for inter-
object or intra-object collisions. Other methods for self-collisions
are based on the “curvature test” [Volino and Thalmann 2000] and
these can be combined with BV hierarchies. Teschner et al. [2003]
use spatial hashing techniques to check for inter-object collisions
and self-collisions. All of these algorithms perform only collision
queries.

2.4 Distance and penetration queries

Most prior distance and penetration computation algorithms are de-
signed for pairwise inter-object separation distance queries. These
include algorithms based on hierarchies of spheres [Quinlan 1994]



or rectangular swept spheres [Larsen et al. 2000] or different model
types [Johnson and Cohen 2004]. Techniques have been pro-
posed to update the hierarchies incrementally for deformable mod-
els [Sundaraj and Laugier 2000].

Distance Fields: 3D discrete distance fields can be efficiently com-
puted using graphics hardware [Fischer and Gotsman 2005; Sigg
et al. 2003; Sud et al. 2004; Sud et al. 2006a]. The discrete dis-
tance fields can be used to perform inter-object proximity queries
between deformable models at image-space resolution [Hoff et al.
2002; Sud et al. 2006a].

Penetration Depth Computation: Efficient penetration depth
computation algorithms have been proposed for rigid polyhedral
models [Kim et al. 2002], but they involve considerable preprocess-
ing. Many approximate PD computation algorithms for deformable
models are based on GPU-based computations [Hoff et al. 2002;
Redon and Lin 2006], precomputed distance fields [Fisher and Lin
2001] or spatial hashing [Heidelberger et al. 2004].

2.5 Voronoi diagrams

The Voronoi diagram is regarded as a powerful proximity data
structure in computational geometry [Okabe et al. 1992]. In re-
lation to 3D proximity queries, external Voronoi regions have been
used to perform collision and distance queries between rigid objects
that can be represented as the union of convex polytopes [Lin and
Canny 1991; Ehmann and Lin 2001; Mirtich 1998; Kawachi and
Suzuki 2000]. These algorithms have been implemented within dif-
ferent proximity query packages such as I-COLLIDE, V-CLIP and
SWIFT++. However, it is difficult to extend these algorithms to
general non-convex or deformable models.

3 N-body Distance Query

Our goal is to perform both inter-object and intra-object queries.
The inter-object queries are performed among different objects.
The intra-objects queries are performed between the non-adjacent
features of an object. Two given features are classified as adjacent
if they share either a common edge or a vertex.

We make no assumptions about the motion of the objects and
these scenes may include breaking objects or models with chang-
ing topologies. In this section, we introduce the “N-body dis-
tance query” and use this formulation to perform different prox-
imity queries.

3.1 Notation and Terminology

We first describe the notation used in the paper. Given a simulation
environment consisting of n deforming objects, O1, O2, . . . , On,
we assume that each object has been triangulated and we use the
symbol f i to denote the boundary features such as the triangles. For
example, the boundary of Oi is represented as {f i

1, f
i
2, . . . , f

i
ni
},

where ni is the number of features in Oi. The position of these
features is updated during each step of the simulation.

N-body Distance Queries: Given m sites, P = {p1, p2, . . . , pm},
where the sites may correspond to the objects Oi or their features
f i

j , let d (pi, pj) denote the Euclidean distance between pi and pj .
The N-body distance query computes the closest site in P \{pi} to
each pi. A site, pk, is the closest site to pi, if d (pi, pk) ≤ d (pi, pl)
for every l 6= i, where k 6= i. Later, in Section 4 we present
Voronoi-based algorithms to perform the N-body distance query ef-
ficiently.

It is obvious that the N-body distance query can be used to perform
separation distance queries. We now present algorithms for efficient

Figure 3: N-body distance query: In this cloth mesh, we compute
the closest non-adjacent triangle for every triangle in the mesh. The
white arrows highlight the closest triangle to each triangle.

collision detection and penetration depth computation based on N-
body distance query.

3.2 Collision Detection

The collision query checks whether two objects intersect and re-
turns all pairs of overlapping features. We consider two kinds of
collision queries: discrete and continuous. The discrete collision
query is performed at a specific or discrete instance of the simula-
tion. The discrete collision detection query is a special case of the
N-body distance query, in which we check whether any d (pi, pk)
is zero. Eventually, we report all the intersecting sites.

In continuous collision detection (CCD), we interpolate the mo-
tion between features from two successive instances of the simula-
tion. The CCD query computes the first time of contact between
any two primitives within the time interval. The query is efficiently
performed by culling away primitive pairs whose swept volumes
do not overlap [Redon et al. 2004]. As a result, CCD computa-
tion reduces to a volumetric collision detection problem between
the swept volumes of the primitives. We use the N-body distance
query to check for volumetric overlaps among the primitives. We
first compute tight bounding prisms that enclose the swept volumes
of the primitives. Given a pair of primitives, we perform the volu-
metric overlap test using the signed distance function between the
bounding prisms of the primitives (see figure 4). The signed dis-
tance function of the bounding prisms represents the interior, and
exterior regions of the prisms. By convention, the signed distance
values in the interior of an object/prism are negative. Specifically,
for any two primitives pi, pj , we use the following properties of the
signed distance function to perform volumetric overlap culling:

• Perform elementary CCD tests between the primitives if there
exists a point such that the signed distances of the point to pi

and to pj are both ≤ 0.

• Do not perform elementary CCD tests between the primitives
if there exists no point whose signed distances to pi and pj

are both ≤ 0.

The above formulation corresponds to computing a distance query
between the two primitives using signed Euclidean distance func-
tions. Our approach can be directly extended to n primitives by
performing N-body distance queries using the 2ndorder Voronoi di-
agram of the n primitives.

3.3 Penetration Depth (PD) Computation

The PD query measures the extent of overlap between two inter-
secting objects. We assume Oi and Oj are orientable 2-manifolds
in the region of penetration. This guarantees that we have a well
defined ‘interior’ for each penetrating object. We define PD as the
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Figure 4: Continuous Collision Detection for two polygons O1

and O2: Two polygons, O1 and O2, move to positions Ô1 and Ô2

at time t+∆t. The volume swept by a pair of features is bounded by
the prisms, M1

a and M2

b , respectively. A conservative CCD check is
performed by volumetric collision detection between M 1

a and M2

b .
We compute the signed distance between the prisms, shown as dab.
Eventually, we use the N-body distance query to compute the signed
distance functions for all the prisms.

minimum translational distance needed to make the two objects dis-
joint [Dobkin et al. 1993]:

min{‖ T ‖| interior(Oi + T ) ∩ Oj = ∅},

where T is the translation vector computed by the algorithm. How-
ever, exact computation of PD between two polyhedral models
is a global problem and cannot be solved using any ‘divide-and-
conquer’ or localized approach [Kim et al. 2002]. Its worst com-
plexity can be as high as O(n3

i n
3

j ). As a result, we restrict ourselves
to computing an approximate local PD between deforming objects.

We compute the local PD between two objects Oi and Oj based
on the N-body distance query. The same approach can also be
used to compute self-penetrations. The local PD is computed
among all locally overlapping features. We use the N-body dis-
tance query described in Section 3.2 to compute the overlapping
features. Next, we use the orientation and connectivity information
among the overlapping features to compute all of the features of Oi

that are inside Oj and vice-versa. We denote these features as f i
a,

a = 1, . . . , k and f
j
b , b = 1, . . . , l (see figure 5).

Our PD algorithm proceeds in two stages. We first use a greedy
strategy to estimate the direction of the translation vector and then
compute the extent of penetration along that direction.

1. Penetration direction computation: We consider all overlap-
ping features and perform the N-body distance query among them.

For each feature, f i
a, we compute the closest feature among f

j
b ’s

and represent the closest feature pairs as (f i
a, f

j
a). Similarly, we

compute the closest feature pairs (f j
b , f i

b). Given these k + l clos-
est feature pairs, we compute the distances between them and use
the pair that represents the maximal distance. We use the direction
of the maximal distance feature pair as the direction of T .

2. Penetration depth computation: Given the direction of T , we
compute its magnitude by projecting all of the overlapping features
onto T . The maximal width of the projected features along T gives
us the value for penetration depth.

We note that T is the locally optimal direction if the overlapping
features of the objects are connected and convex. Therefore, T can
be a good estimate for the penetration direction when the intersect-
ing region is convex and has a small width.
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Figure 5: Local PD Computation for two polygons Oi and Oj :
Dotted arrows represent direction vectors showing the separation
distance between pairs of overlapping features of O1 and O2. The
maximum separation distance is shown by a thick black arrow and
is the local penetration direction T.

4 Voronoi-based Culling for Proximity
Queries

In this section we present our Voronoi-based culling algorithm to
perform the N-body distance query. We first give an overview of
2ndorder Voronoi diagrams and show how they can be used for prox-
imity computations. Next, we describe our N-body distance culling
algorithm based on discrete Voronoi diagrams.

4.1 2nd Order Voronoi diagrams

We first introduce some of the terminology related to Voronoi dia-
grams. Two sites are independent if there does not exist a path of
edges on a triangle mesh connecting them. Given a set of sites P
in domain D, and a subset T of P , with |T | = k, the k-th order
Voronoi region is the set of points closer to all sites in T than to any
other site:

Vk(T |P) = {q ∈ D | d (q, pi) ≤ d (q, pj) ∀ pi ∈ T , pj ∈ P\T }.

The k-th order Voronoi diagram is a partition of D into k-th order
Voronoi regions:

VDk(P) =
⋃

pi∈P

Vk(T ,P) , |T | = k.

The standard Voronoi diagram is the same as VD1(P). We

are specifically interested in the 1st and 2ndorder Voronoi dia-
grams, denoted as VD1(P) and VD2(P). A 1storder Voronoi re-

gion V1(pi|P) contains points closest to site pi, and the 2ndorder
Voronoi region V2({pi, pj}|P) contains points closest to two sites
pi and pj (see figure 6).

The 2nd order governor set of a point is the set of two closest sites.
For a point q ∈ D, let the two closest sites be {pi, pj}, i.e. q ∈
V2({pi, pj}|P). Then the 2nd order governor set of q is denoted

as G2(q|P) = {pi, pj}. For a site pi, the 2nd order governor set is
given as G2(pi|P) =

⋃
q∈pi

G2(q|P).

4.2 PNS Computation Using 2nd Order Voronoi Di-

agrams

We use the 2ndorder Voronoi diagram to compute the potentially
neighboring set (PNS) for each site. The PNS of a site p, denoted
PNS(p|P), is a subset of P such that a site in PNS(p|P) is closer
to p than any site in P\PNS(p|P). To perform the N-body distance

query, we compute a tight PNS for each site. The 2ndorder Voronoi
diagram provides the two closest sites for each point in space. At a
point that lies on a given site, p, the closest site is trivially p, thus p
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Figure 6: The 1st and 2ndorder Voronoi diagrams of 9 polygons
(denoted as Oi) in a plane. (a) The 1storder Voronoi diagram:
Each color represents the set of points closest to one of the polygon.
In this case, O1 has 8 1storder Voronoi neighbors. The PNS of O1 is
all the objects which share a Voronoi edge, i.e. all other 8 objects.
(b) The 2ndorder Voronoi diagram: Each color represents a region
with same two closest objects. O1 is contained completely inside
two 2ndorder Voronoi regions. Therefore, PNS of O1 = {O2, O3}.

We get a tighter PNS with 2ndorder Voronoi diagram.

is ignored in PNS(p|P). We use the 2ndorder Voronoi diagram and

the 2ndorder governor set to compute a tight PNS. Then we have the
following property (illustrated in figure 6):
Lemma 1 (PNS Computation). Given a set of independent sites
P , the PNS of a site pi is given by PNS(pi|P) ⊇ G2(pi|P). The
closest site(s) to pi is (are) contained in PNS(pi|P).

Lemma 1 provides a culling scheme to compute the closest sites
for a given set of sites. In addition to a tighter culling scheme, the
2ndorder Voronoi diagram also provides tight bounds on the separa-
tion distance, and we use them to perform conservative PNS com-
putation using discrete Voronoi diagrams in Section 4.4.

N-body distance query: We use the 2ndorder Voronoi diagram to
perform the N-body query. Given n independent sites P , we com-
pute VD2(P) and the 2ndorder governor set of each site pi. This
computation gives PNS(pi|P) for each site. We perform pairwise
distance computations between pi and each site in PNS(pi|P) to
compute the closest site to pi. A key issue is defining an appropri-
ate set of sites for inter-object and intra-object queries. More details
are given in Section 5.

4.3 Discrete Voronoi Diagram Computation

In the previous subsection, we showed that the PNS for each site
can be efficiently computed based on the 2ndorder Voronoi diagram.
However, exact computation of the Voronoi diagram of triangulated
models is a hard problem due to its algebraic and combinatorial
complexity. In this section, we introduce discrete approximations of
Voronoi diagrams and compute them efficiently using the graphics
hardware.

Given a finite set of point samples D̃ in domain D, and a set of sites
P , the k-th order discrete Voronoi diagram (DVD) is a partition of
the point samples onto discrete k-th order Voronoi regions, and is

denoted as ṼD
k
(P). For a set T of k sites, the k-th order discrete

Voronoi region is a finite set of points which are closest to all sites
in T than to any other site. The 1st and 2ndorder discrete Voronoi
regions are obtained by using k = 1 and k = 2, and denoted by

Ṽ1(pi|P) and Ṽ2({pi, pj}|P), respectively.

GPU-based DVD Computation: The discrete Voronoi diagram
for a triangulated model can be efficiently computed along a uni-

form 3D grid D̃ using depth-buffered graphics hardware [Sud et al.

Figure 7: Cloth simulation: The cloth is modeled using 12.5K
triangles. Our proximity computation algorithm is able to perform
the N-body distance query at object-space precision within 400 −
600 ms.

2006a; Sigg et al. 2003]. The 3D domain is discretized into a set
of 2D slices, and a discrete 2D distance field is computed for each
slice by rasterizing the distance functions of the primitives. Specifi-
cally, we rasterize the distance functions corresponding to each ver-
tex, edge and triangular face of the object. The distance values are
stored in the depth buffer and the closest site identifier is computed
in the color buffer. Together, these two buffers provide us with the
discrete 1storder Voronoi diagram and we read it back to the CPU.

In addition to the 1storder Voronoi diagram of triangulated models,
we compute the 2ndorder Voronoi diagram along the points that be-
long to a site. We first rasterize all the sites in P into a uniform
grid. Each triangle is clipped to the volume between two 2D slices
and is scan converted using graphics hardware [Hoff et al. 2002].
The distance computations to a site pi are performed on grid points

belonging to P \ {pi}. We compute ṼD
2

(P) in the color buffer of
the graphics hardware. The depth buffer stores the distance values
to the second closest site. We read back the color and depth buffers
from the GPU to the CPU and use them to compute the PNS. How-
ever, each site pi is sampled (rasterized) at a finite set of points Q
on the uniform grid. Finally, we compute the 2ndorder governor sets

for all points in Q using ṼD
2

(P).

The ṼD
2

(P) computed using graphics hardware is not accurate
and can have errors due to under-sampling [Hoff et al. 2002; Sud
et al. 2006a]. We first list the sources of under-sampling errors and
present our approach to compute a conservative PNS in Section 4.4.

1. Discretization of Sites: The grid Q only consists of a finite
number of points. The point on a site corresponding to the mini-
mum separation distance may not get sampled on the grid. As a
result, we may not compute the correct separation distance.

2. Discretization of the Voronoi Diagram: The Voronoi region of
the closest site may not get sampled on the uniform grid. Therefore,

ṼD
2

(P) may return an incorrect closest site.

3. GPU Precision: Current GPUs support 32-bit floating point pre-
cision for distance computation, and 24-bit fixed point precision for
distance comparisons on depth buffer. These can lead to precision
errors in the distance values.

4.4 Conservative PNS Computation using Dis-
tance Bounds

We present an approach to compute a conservative PNS using
bounds on the distance values computed using GPUs. First we de-
fine an approximate separation distance, which is computed using
the discrete Voronoi diagram as described above. The accuracy in



the approximation is given by the image-resolution used for sec-
ond order Voronoi computation. Given a discrete Voronoi diagram

ṼD
2

(P) and a finite set of points Q on a site pi, the approximate

separation distance of pi, denoted S̃D(pi), is the minimum of the

distance values from ṼD
2

(P) for all points in Q. We now present
our approach to compute the bounds on the exact separation dis-

tance SD(pi) from the approximate separation distance S̃D(pi).

SDSD
~

SDSD+
~

O
1

O
2

O
1

O
2

PNS

(a) (b)

Figure 8: Conservative PNS using discrete Voronoi diagram:
Given 2 objects O1 and O2. (a) O1 is sampled at a finite set of
points. The closest points on O2 are shown using dotted vectors.

SD is the exact separation distance SD(O1), S̃D is the approxi-

mate separation distance S̃D(O1). δ is the distance between 2 ad-

jacent samples. (b) S̃D + δ is the bounded separation distance for
O1. First we compute the features on O1 that are within distance

S̃D+δ to O2. For these features of O1, we compute features of O2

that are within a distance S̃D + δ. These features of O2 constitute
the PNS of O1.

Our exact distance computation algorithm exploits the fact that Eu-
clidean distance field is a continuous scalar field. Moreover, the
change in distance to the closest site between two adjacent points
on the uniform grid is bounded by the distance between the two
points. We use this property to compute a bound on separation
distances between two sites computed using the discrete Voronoi
diagram. Let δ1 be the diagonal length of a cell in the uniform

grid D̃, and δ2 be the error due to limited GPU precision (typically

δ2 ≪ δ1). Let δ = δ1
2

+ δ2 represent the total error in discrete
Voronoi diagram computation.
Lemma 2 (Distance Bound using DVD). Given the approximate

separation distance, S̃D(pi), the exact separation distance SD(pi)

is bounded by S̃D(pi) − δ ≤ SD(pi) ≤ S̃D(pi) + δ.

Lemma 2 gives tight lower and upper bounds on the exact separa-
tion distance for a site. These bounds are used to cull objects or
features and compute a PNS. Thus, we are able to address the last
two issues of under-sampling on a discrete grid. In order to ad-
dress the first issue, we use the idea of growing a site by taking
its Minkowski sum with a pixel [Govindaraju et al. 2005]. When
we rasterize the Minkowski sum, we ensure that every point on a
site gets sampled. In Section 5, we use these queries to perform
accurate inter-object and intra-object queries.

5 Proximity Queries using Discrete
Voronoi Diagrams

In this section, we present our overall approach to compute inter-
object and intra-object queries. Our algorithm proceeds in three
stages, as shown in figure 9. We first use an AABB based culling
approach to compute a very conservative PNS for each object.
Next, we present algorithms to perform inter-object or intra-object
proximity queries using Voronoi-based culling. Finally, we perform
exact tests between the triangle primitives in the conservative PNS.

AABB Culling
Compute

Discrete

Distance Fields

Compute

Discrete Voronoi 

Diagram

Compute PNS 

(Object Level)

Compute PNS 

(Feature Level)

Exact Feature 

Tests

Voronoi Culling

Distance Bounds

Potential Nearest 

Features

N-Objects

Stage I
Stage II

Stage III

Figure 9: Overall algorithm: Our proximity computation al-
gorithm proceeds in three stages: AABB-based culling, Voronoi
culling and exact distance tests on the PNS.

5.1 Stage I: AABB Culling

In this stage we compute the AABBs of each object and perform the
N-body distance query between the AABBs, by computing over-
laps along the three axes. For example, we compute AABBi for Oi

and use that AABB to compute a conservative upper bound on the
separation distance of Oi. As a result, all AABBs whose distances
are more than this bound, do not belong to PNS(Oi). The projec-
tions of AABBs are sorted along each axis to compute a sequence
of intervals along each axis [Cohen et al. 1995]. If the projection
of AABBi does not overlap with any other interval, we compute
the closest AABB along that axis. Otherwise, we consider all other
AABBs that overlap with the projection of AABBi and use the one
with maximal overlap. This computation is repeated along the three
axes to compute the potentially closest AABB to AABBi. We com-
pute an upper bound to the separation distance for each Oi by com-
puting the maximal distance between the vertices of AABBi and its
closest AABB. For each object Oi, all objects that are at a distance
less than this conservative distance bound constitute a conservative
bound to an object level PNS of Oi.

5.2 Stage II: Voronoi-based Culling

We use the distance bound from AABB culling as an upper bound to
localize distance field computation. The distance computation for
object Oi is performed in a banded region around Oi. The width of
this band is the maximum distance between an object and its poten-
tial neighbors. For each object Oi, we compute the set of objects
Oj such that Oi belongs to PNS(Oj), and use the maximum sepa-
ration distance as a bound on the width of the banded region of Oi.
We use these bands to narrow the grid region for discrete Voronoi
diagram computation. Eventually, we use the discrete Voronoi di-
agram to compute a tighter PNS for inter-object and intra-object
proximity queries.

5.2.1 Inter-Object Proximity Queries

The set of sites is the set of objects P = {Oi, . . . , On}. Our al-
gorithm for inter-object proximity queries proceeds in two phases.
First we compute a tighter object level PNS for each object. Sec-
ondly, we perform PNS computations at feature level to compute a
set of potentially closest features between a pair of objects.

Object-level PNS computation: We compute ṼD
2

(P) using
GPUs. Next, we compute an upper bound on the separation dis-

tance of each object using Lemma 2. Let Du(Oi) = S̃D(Oi) + δ
denote the upper bound on the separation distance for Oi. The
PNS(Oi|P) of an object Oi is computed as a set of objects, whose
distance to Oi is less than Du(Oi). We expand the AABB of Oi



(a) (b) (c) (d)

Figure 10: Application of our proximity query algorithm to a
simulation with 10 objects: (a) Position of 10 deforming objects
- ’siggraph 06’ (with the bowl removed). (b)-(d) Stages in PNS
computation. The red wireframe represents conservative bound on
the separation distance between ‘r’ and other letters. This bound
is used to compute the PNS of ‘r’. (b) The object level PNS of
letter ‘r’ after stage I that uses AABB-based culling. (c) Object
level PNS computed using our 2nd order DVD based algorithm. (d)
Zoomed view of feature level PNS between ‘r’ and ‘g’. The exact
distance tests are performed between red triangles in ‘r’ and blue
triangles in ‘g’. Total number of pairs in feature level PNS=12K.
Total computation time is around 60 ms per frame.

by Du(Oi) along each axis and reduce the distance query to a col-
lision query between the expanded AABB of Oi and AABB of Oj .
The overlap tests are efficiently performed using the sorted intervals
computed in Stage I.

Feature-level PNS computation: Given a feature f i
k in object Oi,

our goal is to compute the minimum distance to all features in
PNS(Oi|P), but ignore the features on Oi as part of this com-
putation. During this stage, we compute the feature level PNS for
a subset of features in object Oi, as explained below. We use the
upper bound on the separation distance of object Oi to cull away
features in Oi that do not contribute to closest site computation.

We compute ṼD
2

(P) for all the points on f i
k and use it to compute

the approximate separation distance of f i
k, denoted S̃D(f i

k), to its
closest feature. Based on Lemma 2, the lower bound on the sepa-

ration distance of f i
k is given as Dl(f

i
k) = S̃D(f i

k) − δ. We cull

away a feature f i
k, if Dl(f

i
k) > Du(Oi), as the closest object to f i

k

is further away than the separation distance between Oi and P\Oi.

Finally, for each feature f i
k with Dl(f

i
k) ≤ Du(Oi), we compute

a set of features in PNS(Oi|P) which are at a distance less than
the separation distance of Oi. This is illustrated in figure 8. This
computation is performed by expanding the AABB of each feature
by Du(Oi) and performing overlap tests as mentioned in Stage I.
In the end we compute the PNS for each object and its features.

5.2.2 Intra-Object Queries

Our goal is to perform the N-body distance query on all the features
of an object. Given a feature, we ignore its adjacent features and
compute the closest among the non-adjacent features. In order to
classify the features into adjacent and non-adjacent, we define the
notion of 1-ring and 2-ring for each feature, f i

k. The 1-ring, denoted
as I(fi), is the set of features that are adjacent to f i

k (i.e share a

vertex with f i
k). The 2-ring is the set of features that are adjacent to

the features in the 1-ring, excluding fi and I(fi).

We first compute the minimum distance between f i
k and the set of

features in the 2-ring of f i
k. This minimum distance provides an

upper bound to the separation distance of f i
k. This computation can

be performed in O(ni) time for all the features in the deforming
object, where ni is the number of features in the object.

Our next goal is to refine the upper bound computed using the 2-
ring based on 2ndorder Voronoi diagrams. The set of sites is the set
of features in an object, P = {f i

1, . . . , f
i
ni
}. Then f i

k and P\I(f i
k)

Figure 11: Multiple deformable object simulation: In this simu-
lation, many deforming letters are falling inside a funnel and will
eventually slide through a ramp. Each object is composed of nearly
175 triangles and there are a total of 200 letters in many close-
proximity scenarios. Our algorithm is able to perform both inter-
object and intra-object queries in this simulation within a second.

are mutually independent sets. We perform proximity computations

on f i
k by using the discrete Voronoi diagram ṼD

2

(P \ I(f i
k)) and

compute the PNS, PNS(f i
k|P\I(f i

k)). This process is repeated for

all the features f i
k. In practice, we do not compute O(ni) 2ndorder

Voronoi diagrams. Rather, we store the adjacency information of
each feature in a texture. For a grid cell on a feature f i

k, we per-
form vector comparisons on programmable graphics hardware to
avoid distance computations to I(f i

k). This computes the discrete

Voronoi region Ṽ2(P \ I(f i
k)) at all points on a feature f i

k, and the

approximate separation distance S̃D(f i
k|P \ I(f i

k)) is computed

using the distance values at these points. An upper bound Du(f i
k)

on the separation distance of feature f i
k is computed from the ap-

proximate separation distance using Lemma 2. Eventually all non-
adjacent features, f i

l , whose distance to f i
k is less than Du(f i

k) are

added to PNS(f i
k|P \ I(f i

k)).

5.3 Stage III: Exact Proximity Tests

Given a feature f i, we perform exact queries between f i and the
features in PNS(f i). In order to perform discrete collision de-
tection or penetration depth computations, we check whether two
triangles overlap. In order to perform continuous collision test be-
tween two triangles whose prisms overlap, we perform 15 elemen-
tary tests described in [Bridson et al. 2002]. We use the triangle-
triangle distance computation algorithm described in [Larsen et al.
2000] to compute the separation distance between the primitives.
We also compute the local penetration depth between the overlap-
ping features.

6 Implementation and Performance

In this section we describe the implementation of our N-body dis-
tance query algorithm and highlight its application to perform vari-
ous proximity queries between multiple deformable models.

6.1 Implementation

We have implemented our algorithm on a PC running Windows XP
operating system with an AMD Athlon 4800 X2 CPU, 2GB mem-
ory and an NVIDIA GeForce 7800 GPU . We used OpenGL as the
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Figure 12: This graph highlights the average time spent in the three
stages of our algorithm for the five benchmarks described in Section
6.2. Due to the high culling efficiency obtained during stage II, we
observe that the average time spent in performing exact overlap
tests is lower than 300ms.

graphics API and Cg language for implementing the fragment pro-
grams. The discrete Voronoi diagram and discrete distance field are
computed using a flat 2D render texture with 32-bit floating point
precision. The 2nd order DVD computation is done in 2 passes. In
the first pass, we scan convert each object, and store the object id in
the stencil buffer for all pixels that lie on the object. The feature id
is stored in the red channel of the color buffer. In the second pass,
we perform distance field computation. For inter-object queries,
the reference value and function for stencil test are set to discard
the fragment if current object id is equal to the value in the stencil
buffer. This avoids distance computation to an object Oi on grid
points that belong to Oi. The nearest object and triangle ids are
stored in the green and blue channels of the color buffer, and dis-
tance values are stored in depth buffer. For intra-object queries,
we store the list of adjacent feature ids in a texture. During dis-
tance field computation, a dependent texture lookup is performed
to query this list, and the fragment is discarded if the current fea-
ture id is present in the adjacency list.

We maintain a sorted list of intervals corresponding to the projec-
tion of an AABB along each axis. We compute the PNS used for
the exact distance computation using the distance bounds computed
from 2ndorder Voronoi diagrams. We expand the sorted intervals
with the distance bounds and compute features that overlap along
the three axis. Next, we perform exact feature level distance tests.
We used the code from [Larsen et al. 2000] for computing the sep-
aration tests. The average time to perform one separation distance
query between two triangles is 1–2 microseconds.

We have implemented PD computation by first computing the inter-
secting triangles using AABB hierarchies. We then perform a local
walk to compute the overlapping features. Finally, we perform the
N-body query to compute local PD.

In order to perform CCD tests, we compute tight prisms that en-
close the swept volumes of the primitive [Govindaraju et al. 2005].
We then perform distance computations among the prisms and cull
away primitive pairs not in close proximity. Finally, we perform
elementary tests among the primitives in close proximity. The av-
erage time for performing a CCD test among two primitives is 50
microseconds.

6.2 Benchmarks Used

We now highlight the performance of our algorithm on various
benchmarks with multiple deformable objects. The set of bench-
marks include: (1) a cloth simulation of a skirt (figure 7), (2) a
cloth folding on a rotating sphere (figure 2), (3) ten deforming let-
ters falling in a bowl (figure 10), (4) two hundred deforming objects
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Figure 13: In this log-scale plot, we show the average number of
exact triangle-triangle distance queries performed using an AABB-
based algorithm and using Voronoi diagrams. We observe a 5−100
times higher culling efficiency using Voronoi diagrams on the five
benchmarks. The high culling efficiency is due to the tight distance
bounds obtained using the 2ndorder Voronoi diagrams.

falling through a funnel and sliding over a ramp (figure 11) and, (5)
fourteen objects undergoing dynamic topological fractures (figure
1). Our algorithm involves no pre-processing and is able to com-
pute the separation distances, inter-object and intra-object proxim-
ity queries.

Benchmark Tris Resolution AABB(s) Voronoi(s)

1. Skirt 12K 200× 175× 45 1.8 0.53

2. Cloth-Ball 15K 190× 200× 60 3.8 0.70

3. Bowl 4.5K 150× 100× 30 1.1 0.07

4. Ramps 38K 45× 300× 40 13.5 1.10

5. Breaking 5.5K 100× 100× 60 2.6 0.12

Table 1: Timings on deformable simulation benchmarks: Average
time per frame (in seconds) to perform proximity queries on differ-
ent benchmarks. AABB = Avg time/frame using an efficient AABB-
based algorithm. Voronoi= Avg time/frame using our Voronoi-
based algorithm.

A comparison of the performance of our Voronoi-based algorithm
against an efficient AABB-based algorithm is provided in table 1.
The grid resolution is a function of the bounding box of the envi-
ronment. We use a different resolution along each axis to ensure
that the resulting voxels have the same dimension along the 3 axes.
As noted from figure 14, the resolution is chosen such that the total
computation time is minimized.

7 Comparison with Prior Approaches

In this section, we compare our algorithms with prior methods.
These include distance and penetration depth computation, as well
as continuous collision detection.

Separation distance and penetration depth: Most of the algo-
rithms for inter-object queries use N-body techniques for the broad
phase and bounding volume hierarchies for the narrow phase. How-
ever, prior N-body techniques are limited to collision or penetra-
tion queries, and may not provide sufficient culling for distance
queries. Algorithms based on hierarchies for deformable models
typically use AABBs or spheres [van den Bergen 1997; Larsson
and Akenine-Möller 2001] as bounding volumes, because the com-
putation or update cost of hierarchies of OBBs or k-DOPs can be
high. In Fig. 15, we compare the performance our Voronoi-based
culling algorithm with AABB hierarchies for separation distance
computation in Benchmark 4. We observe more than an order of
magnitude performance improvement in the query timings. This is
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Figure 15: This graph highlights the performance improve-
ment obtained using our Voronoi-based algorithm over an effi-
cient AABB-based algorithm on the deformable simulation with
200 objects. Due to the high culling efficiency obtained using
Voronoi diagrams, we are able to achieve nearly one order of
magnitude performance improvement over AABBs.

due to the fact that Voronoi-based culling results in 5− 100x times
reduction in the number of exact primitive tests as compared to the
AABBs (shown in Fig. 13). The higher culling efficiency also re-
duces the additional overhead of hierarchy traversal for performing
exact distance tests. As the number of objects in the scene increase,
we obtain higher culling efficiency and performance improvement.
Furthermore, hierarchical approaches may not work well for objects
with changing topologies. The entire hierarchy has to be computed
from scratch during each frame.

Collision detection: We compared the performance of our contin-
uous collision detection algorithm with the one proposed by Govin-
daraju et al. [2005]. In particular, we performed self-collision
queries on Benchmark 1 and found that the performance of both
algorithms was comparable and in the range of 400 − 800 msec
per frame. However, the algorithm proposed by Govindaraju et al.
[2005] assumes that the mesh connectivity is fixed and precom-
putes a chromatic decomposition. As a result, such an approach
would not work on a scene with breaking objects (e.g. Benchmark
5). On the other hand, our approach involves no preprocessing and
is applicable to all deformable models.

Distance field based algorithms: As compared to prior distance
field algorithms [Fisher and Lin 2001; Hoff et al. 2002; Sud et al.
2006a], our approach is more accurate and we can perform queries
at object-space precision. Furthermore, we can handle N-body,
inter-object and intra-object queries. On the other hand, prior al-
gorithms are restricted to performing these queries at image-space
precision on a pair of objects.

Spatial hashing: Spatial grid and hashing techniques have been
used to accelerate collision detection and penetration depth queries
between a pair of objects [Teschner et al. 2003; Heidelberger et al.
2004]. They work well when the models are represented as a union
of tetrahedra or on queries involving points. In our benchmarks,
spatial hashing-based methods resulted in a higher number of exact
primitive tests as compared to AABB-based hierarchies. Moreover,
the overhead of scan-converting the polygons among 3D grids can
be high as compared to updating the hierarchies.

8 Analysis and Limitations

Voronoi diagram in computational geometry is considered as one
of the most powerful data structure for proximity queries. Our
algorithm computes a tight superset (PNS) of potential Voronoi

neighbors of primitives using discrete Voronoi diagrams and dis-
tance bounds. We use the PNS to perform N-body distance culling
in complex environments composed of multiple deforming objects.
Moreover, we show that other proximity queries such as continuous
collision detection and penetration depth computation can also be
efficiently performed using N-body distance culling. The overall
benefit of our approach is due to two reasons:

• Culling efficiency: The 2ndorder discrete Voronoi diagrams
and tight distance bounds are used to cull away a high frac-
tion of primitives that are not in close proximity. As a result,
we have observed 30 − 50 times improvement in culling ef-
ficiency over prior methods based on AABBs in complex de-
formable simulations.

• Runtime performance: We use the rasterization power
of current GPUs for fast computation of 2ndorder discrete
Voronoi diagrams. We also localize the region for distance
field computation. Our algorithm can compute the Voronoi
information in a few hundred milli-seconds for complex en-
vironments. Moreover, our algorithm involves no hierarchy
computation or update.

Based on these two reasons, we obtain considerable speedups over
prior methods based on hierarchies. Moreover, we are able to per-
form various queries at almost interactive frame rates.

Limitations: Our approach has a few limitations. The computation
of discrete Voronoi diagrams has overhead, in terms of rasterizing
the distance functions and reading back the color and depth buffer.
Even for small environments, the readback overhead can be 20−30
msec. As a result, our current implementation would take at least
50 − 60 msec to perform these queries, even on a simple environ-
ment. The main benefit of Voronoi-based culling arises in complex
environments with a high number of primitives (e.g. a few thou-
sand triangles). Our PNS computation can be conservative if the
resolution of the discrete 3D grid is low. This can result in a high
number of exact tests between the triangle primitives. Finally, our
PD algorithm only computes a local PD. Our approach only works
well if there is an isolated contact between the two objects. Many
deformable simulations can result in deep penetrations or multiple
contacts [Baraff et al. 2003; Heidelberger et al. 2004]. Our local
PD algorithm may not work well in such situations.



9 Conclusions and Future Work

We present a unified and general approach to perform collision
and distance queries in complex environments composed of mul-
tiple deforming objects. We use properties of Voronoi diagrams to
perform N-body culling and conservatively compute the Voronoi
neighbors using discrete Voronoi diagrams and distance bounds.
We have used our algorithms to perform different proximity queries
in complex deformable models composed of tens of thousands of
triangles. The performance of our collision detection algorithms is
comparable to prior approach, except our algorithm can also handle
models with changing topologies. Moreover, we observe one or-
der of magnitude improvement over prior distance and penetration
depth computation algorithms.

There are many avenues for future work. We would like to reduce
the overhead of Voronoi-based culling. Instead of computing the
discrete Voronoi diagrams along a 3D grid, we may only compute
them along a set of points that lie on the 2D-surface [Sud et al.
2006b]. This could result in faster computation and reduce the over-
head of readback and scan conversion. We would like to use our
algorithms for other applications such as surgical or finite-element
simulation, where the mesh connectivity or topologies of the ob-
jects may change. It may be useful to extend our PD computation
algorithm to robustly handle deep penetrations and multiple con-
tacts.
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