
Fast, Quality, Segmentation of Large
Volumes – Isoperimetric Distance Trees

Leo Grady

Siemens Corporate Research,
Department of Imaging and Visualization,

755 College Rd. East,
Princeton, NJ 08540

Leo.Grady@siemens.com

Abstract. For many medical segmentation tasks, the contrast along
most of the boundary of the target object is high, allowing simple thresh-
olding or region growing approaches to provide nearly sufficient solu-
tions for the task. However, the regions recovered by these techniques
frequently leak through bottlenecks in which the contrast is low or non-
existent. We propose a new approach based on a novel speed-up of the
isoperimetric algorithm [1] that can solve the problem of leaks through a
bottleneck. The speed enhancement converts the isoperimetric segmen-
tation algorithm to a fast, linear-time computation by using a tree repre-
sentation as the underlying graph instead of a standard lattice structure.
In this paper, we show how to create an appropriate tree substrate for the
segmentation problem and how to use this structure to perform a linear-
time computation of the isoperimetric algorithm. This approach is shown
to overcome common problems with watershed-based techniques and to
provide fast, high-quality results on large datasets.

1 Introduction

Modern medical datasets are often so large that only the most simple, efficient
segmentation algorithms may be employed to obtain results in a reasonable
amount of time. Consequently, the present body of sophisticated, global seg-
mentation algorithms are typically unsuitable in this context. In practice, thresh-
olding, region growing [2] and watershed [3] algorithms appear to be the only
approaches that are feasible under these circumstances.

Often, especially with CT data, simple intensity thresholding (or region grow-
ing) is almost sufficient to segment the entire object. However, the problem fre-
quently occurs that the thresholded object is weakly connected to (i.e., touching)
another object of equal intensity, leading to the common “leaking” problem asso-
ciated with region growing. Therefore, an important problem for medical image
segmentation is the fast segmentation of a mask into constituent parts via bot-
tleneck detection within the mask. We will refer to this problem as the mask
segmentation problem, where the mask is assumed to have been given by a sim-
ple thresholding or region growing process. Watershed algorithms, based either

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 449–462, 2006.
© Springer-Verlag Berlin Heidelberg 2006

450 L. Grady

on intensity or the distance transform of the mask, are usually the algorithm of
choice for breaking the mask into desired parts. Although this approach can be
successful, watershed algorithms have a few common problems: 1) Small amounts
of noise in the mask may lead to an overabundance of watershed regions (requir-
ing a subsequent merging procedure), 2) Two objects may be included inside a
single watershed region, 3) No measure of segmentation quality is included in
the algorithm.

The recent isoperimetric algorithm for graph partitioning [1] has been suc-
cessfully applied to image segmentation [4] and is specifically designed to use
global information to cut a graph (mask) at bottlenecks, while remaining robust
to noise, requiring only foreground seeds for initialization and offering a measure
of partition quality. Although the isoperimetric algorithm is efficient enough for
images or small volumes, ultimately requiring solution to a sparse linear system
of equations, the size of medical volumes demands a faster approach. In this pa-
per we show that the linear system associated with the isoperimetric algorithm
may be solved in low-constant linear time if the underlying graph is a tree, pro-
pose an easily-computable tree from input data (which we call a distance tree),
and show that our use of the isoperimetric algorithm with distance trees pro-
vides a fast, global, high-quality segmentation algorithm that correctly handles
situations in which a watershed algorithm fails. For the remainder of this work,
we shall refer to the approach of applying the isoperimetric graph partitioning
algorithm to the mask-derived distance tree as the IDT (Isoperimetric Distance
Tree) algorithm.

This paper is organized as follows: Section 2 gives context for the present al-
gorithm by reviewing previous work. Section 3 recalls the isoperimetric algorithm
for graph partitioning, shows how an underlying tree offers a linear-time solu-
tion, introduces the distance tree concept and summarizes the IDT algorithm.
Section 4 compares the present algorithm to watersheds on several illustrative
examples and provides results and runtimes for the IDT algorithm on real-world
medical data. Section 5 draws conclusions and outlines future work.

2 Previous Work

The prior literature on segmentation is extremely large. Additionally, the special
properties of trees have resulted in their use in many different contexts. Here,
we attempt to review only those most relevant previous works in the context of
segmentation on large datasets.

Level sets have attracted recent interest in the computer vision literature for
general-purpose image segmentation [5]. However, in the context of segmenting
large medical volumes, recent approaches still range from minutes to hours [6].
Furthermore, levels set techniques have not, to our knowledge, been applied to
our present problem of mask segmentation.

For the task of mask segmentation, there is really only one option that is
currently employed on a full resolution mask: the watershed algorithm [3]. De-
spite the speed of watershed approaches, there are several common problems, as

Fast, Quality, Segmentation of Large Volumes 451

outlined in the previous section. In Section 4 we show that the proposed IDT
algorithm does not suffer from these problems, which maintaining the speed of
a watershed approach.

Minimal/maximal spanning trees have seen extensive use in the computer
vision literature since as early as Zahn [7] and Urquhart [8]. Despite the speed of
these techniques, they are often insufficient for producing high-quality segmen-
tations of a weakly-connected graph, as illustrated by the authors themselves.
Although some papers have used gradient-based minimal spanning trees for seg-
mentation [9] and others have used distance map-based maximal spanning trees
for centerline extraction [10] the use of such a tree as the setting for computing
a linear-time isoperimetric segmentation is novel. We note that the intense com-
putations associated with finding solutions to Markov Random Fields have also
led to approximations defined on trees (Bethe trees) instead of a full lattice [11].
Additionally, the use of quadtrees is ubiquitous in split-and-merge segmentation
techniques [12] but, unlike the present approach, the algebraic or topological
properties of the tree are typically not of any particular significance.

The recently-developed isoperimetric method of graph partitioning [1] has
demonstrated that quality partitions of a graph may be determined quickly and
that the partitions are stable with respect to small changes in the graph (mask).
Additionally, the same method was also applied to image segmentation, showing
quality results [4]. Other methods of graph partitioning have gained prominence
in the computer vision literature, most notably the normalized cuts algorithm
[13], max-flow/min-cut [14] and the random walker algorithm [15]. However, each
of these algorithms is far too computationally expensive to be applied on the
full medical image volume, even after thresholding a mask. Additionally, using
a tree as the underlying graph is not suitable in any of these algorithms, since
normalized cuts would still require an expensive eigenvector computation (albeit
somewhat faster on a tree [16]), max-flow/min-cut will cut at the weakest edge
in the tree (making it equivalent to Zahn’s algorithm [7]) and random walker
would simply return a cut such that voxels with a shorter distance to each seed
(with respect to the tree) would be classified with the label of that seed.

3 Method

In this section, we review the isoperimetric algorithm of [1], show that the com-
putations may be performed in linear time if the underlying graph is a tree,
introduce the distance tree and summarize the entire IDT algorithm.

The isoperimetric algorithm is formulated on a graph where, in the image
processing context, each node represents a voxel and edges connect neighboring
voxels in a 6-connected lattice. Formally, a graph is a pair G = (V, E) with
vertices v ∈ V and edges e ∈ E ⊆ V × V . An edge, e, spanning two vertices, vi

and vj , is denoted by eij . Let n = |V | and m = |E| where | · | denotes cardinality.
A weighted graph has a value (here assumed to be nonnegative and real)
assigned to each edge called a weight. The weight of edge eij , is denoted by
w(eij) or wij and represents the strength of affinity between neighboring voxels.

452 L. Grady

3.1 Isoperimetric Graph Partitioning

The isoperimetric graph partitioning algorithm of [1] was motivated by the solu-
tion to the classical isoperimetric problem, namely: Given an area of fixed size,
what shape has the minimum perimeter? In �2, the answer has been known since
ancient times to be a circle. However, on an arbitrary manifold, particularly with
an unusual metric, the solution is not always obvious. In particular, it is known
that the solution to the isoperimetric problem often partitions the manifold at
bottleneck points, as exhibited in Cheeger’s classic paper on the subject [17].

Unfortunately, on a discrete manifold (represented as a graph), the solution
to the isoperimetric problem is known to be NP-Hard [1]. However, one may give
a sense of how close a particular partition is to the solution of the isoperimetric
problem by defining the isoperimetric ratio as the ratio of the perimeter of
a node set to the number of nodes in the set and looking for a partition that
minimizes this ratio [1].

The isoperimetric algorithm for graph partitioning may be developed by writ-
ing the isoperimetric ratio as

hG(x) = min
x

xT Lx

xT r
, (1)

subject to xT r ≤ n
2 , where r is the vector of all ones, x represents a vector

indicating node membership in a set S ⊆ V , i.e.,

xi =

{
0 if vi ∈ S,

1 if vi ∈ S.
(2)

The n × n matrix L is the Laplacian matrix [18] of the graph, defined as

Lvivj =

⎧⎪⎨
⎪⎩

di if i = j,

−w(eij) if eij ∈ E,

0 otherwise.
(3)

where di denotes the weighted degree of vertex vi

di =
∑
eij

w(eij) ∀ eij ∈ E. (4)

The notation Lvivj is used to indicate that the matrix L is indexed by vertices
vi and vj .

With these definitions, the numerator of the ratio in (1) represents the sum
of the weights of the edges spanning S and S, while the denominator gives the
cardinality of S.

By relaxing the binary definition of x and minimizing the numerator of (1)
with respect to x, given the cardinality constraint |V |−xT r = k, one is left with
a singular system of equations. The singularity may be overcome by arbitrarily

Fast, Quality, Segmentation of Large Volumes 453

assigning one node, vg, (termed the ground in [1] by way of a circuit analogy)
to S, resulting in the nonsingular system

L0x0 = r0, (5)

where the subscript indicates that the row corresponding to vg has been removed
(or the row and column, in the case of L0).

Given a real-valued solution to (5), one may convert this solution into a
partition by finding the threshold that produces a partitioning with minimal
isoperimetric ratio, which requires trying only n thresholds. When trying thresh-
olds in order to measure the isoperimetric ratio of the resulting segmentation,
we employ a denominator of xT r if xT r < n

2 and
(
n − xT r

)
otherwise. It was

proved in [1] that this strategy produces a connected object and shown that the
ground node behaves as a specification of the foreground , while the background
is determined from the thresholding of the solution to (5).

In the present context, we are only interested in the geometry of the graph
(mask), and therefore, during the solution to (5) we treat all wij = 1.

3.2 Trees

Although the solution of the linear system in (5) is fast, since the matrix is
sparse, symmetric and positive-definite (allowing for the use of such memory
efficient methods as conjugate gradients), the enormity of data that comprises
current medical volumes demands an even faster approach.

Since it is known that a matrix with a sparsity pattern representing a tree
has a zero-fill Gaussian elimination ordering [19], we propose to replace the

Original 1st elimination 2nd elimination 3rd elimination Final elimination

Fig. 1. Gaussian elimination of the Laplacian matrix of a tree with ordering given by
the numbers inside the nodes. Note that the resulting Gaussian elimination has the
same sparsity structure as the original matrix when a no-fill ordering is used (e.g., as
computed by Algorithm 1). This is why we need only compute the no-fill ordering,
and not the full Gaussian elimination, in order to solve the linear system required by
the isoperimetric algorithm. Note that the Laplacian matrix is singular — the last
elimination produces a row of all zeros. Once the graph has been grounded, as in
(5), this is no longer a concern e.g., if node 5 were grounded, the elimination would
stop after the third elimination and x5 = 0 would be used to recover the remaining
values of the solution. Top row: Elimination of the tree — the figures depict the graph
represented by the lower triangle of the matrix. Bottom row: Laplacian matrix of the
tree after each elimination step.

454 L. Grady

Algorithm 1. Produce a no-fill ordering of a tree
1: void compute ordering(degree, tree, ground, ordering)
2: k ⇐ 0
3: degree[root] ⇐ 0 {Fixed so that ground is not eliminated}
4: ordering[N − 1] ⇐ ground
5: for each node in the graph do
6: while degree[current node] equals 1 do
7: ordering[k] ⇐ current node
8: degree[current node] ⇐ degree[current node]−1
9: current node ⇐ tree[current node]

10: degree[current node] ⇐ degree[current node]−1
11: k ⇐ k + 1
12: end while
13: k ⇐ k + 1
14: end for

standard lattice edge set with a tree. A zero-fill Gaussian elimination ordering
means that the system of linear equations may be solved in two passes, with
storage equal to n, since all entries in the matrix that were initially zero remain
zero during the Gaussian elimination. Specifically, the ordering may be found in
linear time by eliminating the nodes with (unweighted) degree of one (i.e., leaf
nodes in the tree) and recursively eliminating nodes which subsequently have
degree one until a root node is reached. In this case, a convenient root node
is the ground. Algorithm 1 accomplishes the ordering in linear time, where the
array tree contains, for each node, the index of one neighbor (with no edges
overrepresented) and the array degree contains the degree of each node in the
tree. This representation is possible since a tree has n − 1 edges (where the root
would contain a ‘0’).

Figure 1 illustrates a small tree with corresponding L and elimination. Once
the elimination ordering is computed, the system in (5) may be solved by taking
a forward pass over the nodes to modify the right hand side (i.e., the elimination
of Figure 1) and then a backward pass to compute the solution. Algorithm 2
finds a solution to (5) in linear time, given a tree and an elimination ordering.
Note that, as stated above, we assume that all wij = 1 and that the graph
geometry (i.e., mask shape) encodes the pertinent information.

Consequently, when the graph is a tree, a low-constant linear time algorithm
is available to compute a no-fill Gaussian elimination ordering, solution of (5)
and subsequent thresholding to produce a partition. We note also that Branin
has shown how to produce an explicit inverse for the Cholesky factors of a
grounded Laplacian matrix [20]. Recall that the Cholesky factors are the results
of Gaussian elimination for a symmetric, positive-definite matrix, i.e., from an
LU matrix decomposition, L = U = C for a symmetric, positive-definite matrix,
where C is the Cholesky factor. However, the above procedure is simpler and
more memory efficient than explicitly constructing the inverses of the Cholesky
factors.

Fast, Quality, Segmentation of Large Volumes 455

Algorithm 2. Given a tree, solve (5)
1: solve system(ordering, diagonal, tree, r, output)
2: {Forward pass}
3: k ⇐ 0
4: for each non-ground node do
5: r[tree[ordering[k]]] ⇐ r[ordering[k]]/diagonal[ordering[k]]
6: k ⇐ k + 1
7: end for
8:
9: output[ordering[N−1]] ⇐ r[ordering[N−1]]/diagonal[ordering[N − 1]]

10:
11: {Backward pass}
12: k ⇐ N−2 {Last non-ground node}
13: for each non-ground node do
14: output[ordering[k]] ⇐ output[tree[ordering[k]]] +

r[ordering[k]]/diagonal[ordering[k]]
15: k ⇐ k − 1
16: end for

3.3 Distance Trees

In the above section, we have shown that by using a tree as the underlying graph
structure (instead of the usual lattice), a very fast, linear-time solution to (5)
may be obtained. We take the position that the desired cut will be a solution
to the isoperimetric problem (i.e., the cut will minimize the isoperimetric ratio)
and therefore we want to select a tree such that a threshold of the solution to
(5) will produce the desired cut.

The most important property of a tree, such that the solution will examine
the desired cut is: The path within the tree between the foreground point and
the remaining voxels in the foreground object do not pass through any voxels in
the background. i.e., the foreground is connected within the tree. If this condi-
tion is satisfied, and the background is also connected within the tree, then the
foreground and background are connected with a single edge (since there may
be no loops in a tree).

A tree satisfying the above desiderata may be constructed if the following
conditions are satisfied: 1) The foreground object is connected, 2) Gradient as-
cent on the distance map from each node stabilizes at a node in the same set
(i.e., foreground nodes stabilize on a foreground node and background nodes
stabilize on a background node), 3) The distance value at all neighboring nodes
that stabilize to different peaks is smallest along the true foreground/background
boundary. The tree may be constructed by assigning to each edge in the lattice
the weight

wij = D(vi) + D(vj), (6)

where D(vi) denotes the distance map [12] at node vi, and then compute the
maximal spanning tree [21]. The above desirable situation may also be restated
in terms of the watershed algorithm [3]. If the foreground/background boundary

456 L. Grady

occurs on the boundary of watershed basins and the height (in terms of D)
of the basins separating the foreground/background boundary is larger than
the basin boundaries internal to the foreground or background regions then
the MST will span the foreground/background with a single edge. We note,
however, that the above condition is simply sufficient to produce a tree with a
connected foreground, although not necessary. Since a watershed algorithm also
requires that the desired boundary lie on a watershed boundary, the isoperimetric
algorithm is expected to work whenever a watershed algorithm would work, given
a simply connected mask, but may additionally work in more difficult cases.

We term the maximal spanning tree of the image with weights given by (6)
as the distance tree. We note that, as with a watershed algorithm, it would
also be possible to employ different choices of function in (6). With respect to
the watershed literature, the most common choices would be a distance map
[12] of a masked part of the image, image gradient strength or image intensity.
Furthermore, these different choices may be combined via multiplication of their
respective weights. For purposes of the mask segmentation problem considered
here, we restrict ourselves to distance maps.

3.4 Summary of IDT

The IDT algorithm proposed here may be summarized in the following steps:

1. Obtain a mask from the image data (e.g., via thresholding or region growing).
2. Compute a distance map on the mask.
3. Obtain a problem-specific ground (foreground) point.
4. Compute the maximal spanning tree (using Kruskal, Prim, etc.) on the lat-

tice with edge weights given by (6).
5. Compute a no-fill ordering using Algorithm 1.
6. Solve the system in (5) using Algorithm 2.
7. Check n thresholds of the solution to (5) and choose the one such that the

resulting segmentation minimizes the isoperimetric ratio of (1).

All of the above steps have a O(n) complexity, except for computation of
the maximal spanning tree, which has a complexity of O(n log(n)) (for a lat-
tice). However, as demonstrated in Section 4, the algorithm performs quickly in
practice.

We note that several nodes may be used as the ground points, requiring their
removal from the L matrix in (5) and fixing their values to zero in the solution
procedure of Section 3.2. If desired, background seeds may also be incorporated
by only considering thresholds below the x values of the background seeds. Since
the x value of the ground will be zero, which will be the smallest x value of any
node [1], the threshold will be guaranteed to separate the foreground from the
background. Note also that the checking done by the algorithm for partition
quality (i.e., the last step in the above summary) is done using the original
graph (mask), not simply the tree.

Fast, Quality, Segmentation of Large Volumes 457

4 Results

In this section, we first show several synthetic examples of mask segmentation
problems where a region-growing or watershed algorithm would fail but the IDT
algorithm succeeds. Finally, several examples are given with real data.

4.1 Synthetic Examples

In Section 1, several common problems with watershed algorithms were outlined.
Specifically, a watershed approach fails if both objects fall in the same watershed
region and produces an overabundance of watershed regions in noisy images
(requiring an additional merging process).

In Figure 2 the problem of two touching circles is examined. Figure 2 illus-
trates the distance map and distance tree for two touching circles both with
and without noise. Despite the small amount of noise added to the shape and
the obviousness of the bottleneck, a watershed approach is left with many wa-
tershed regions, requiring an additional merging process to find the correct
solution. However, the distance tree is relatively unchanged with noise and

(a) Touching circles (b) Distance map (c) Segmentation (d) Segmentation

(e) Noisy circle (f) Distance map (g) Segmentation (h) Segmentation

Fig. 2. A simple case of two touching circles with noise. Although the distance map of
the two circle image in (a) has one watershed basin corresponding to each circle, the
small amount of noise associated with figure (e) results in many watershed basins within
each circle. Consequently, an additional merging process would need to be employed
by a watershed approach in order to obtain the desired segmentation. In contrast, no
modification is necessary for the IDT approach. Figures (c,d,g,h) give segmentation
results of the IDT algorithm. Each figure shows the user-supplied foreground point
represented by a small black dot and the resulting foreground segment outlined in
black. Note that no shape assumption was used — The IDT algorithm effectively
segments the mask at bottlenecks.

458 L. Grady

Fig. 3. A thin bar strongly connected to a circle (i.e., the width of the intersection
exceeds the width of the bar). A watershed approach is incapable of separating the bar
from the circle, since they both fall in the same watershed region. In contrast, the IDT
algorithm is capable of finding a correct segmentation with a variety of ground points
and noise. a) Original image, b) Distance tree, c–f) Various ground points (black dot)
with corresponding segmentation (indicated by black line). Note that placement of the
ground node near the desired boundary does not disrupt the segmentation. g) Noise
was added to the mask to produce this multiply-connected example of the bar/circle.
h) Segmentation of noisy mask.

Figure 2 illustrates that the IDT approach correctly segments the mask, re-
gardless of noise or ground point. We note that this touching circles example
strongly resembles the “dumbbell” manifold described by Cheeger [17] for which
there is a clear solution to the isoperimetric problem, i.e., an algorithm based
on minimizing the isoperimetric ratio should be expected to handle this problem
well.

Figure 3 describes an entirely different scenario. Again, two objects (a circle
and a bar) are weakly connected, requiring a sophisticated bottleneck detec-
tor. However, since the width of the circle/bar connection exceeds the width
of the bar, both objects occupy the same watershed basin. Therefore, even a
sophisticated basin-merging procedure (necessary for the situation of Figure 2)
is incapable of assisting in the present situation, since both the circle and the
bar occupy the same basin. However, as shown in Figure 3, such a situation
is not a problem for the IDT algorithm. Specifically, choosing a ground (fore-
ground point) in either the circle or the bar will produce the same circle/bar
separation.

Fast, Quality, Segmentation of Large Volumes 459

4.2 Real-World Volumes

The above results on synthetic examples suggest that the IDT algorithm should
be expected to produce fast, quality results on large volumes. In this section, we
explore the questions of quality and speed for large medical volumes. Segmen-
tation examples were chosen to highlight the versatility of the IDT approach.
All computation times reflect the amount of time required to perform all steps
of the IDT algorithm given in Section 3.4. Since a Euclidean distance map was
unnecessary for our algorithm, we employed a fast L1-metric distance map [22].
The maximal spanning tree was computed using a standard algorithm [21].

We first apply the IDT approach to a set of 2D examples with notoriously
unreliable boundaries — ultrasound images. The mask was generated by thresh-
olding out the dark regions and placing a ground point in the desired chamber.
Note that no background seeds were placed. The results of the segmentation
are displayed in Figure 4. Although the touching circles example of Figure 2

Fig. 4. Application of the IDT segmentation to 2D examples with notoriously unre-
liable boundaries — ultrasound images. The mask given to the IDT consisted of all
pixels with an intensity below a given threshold. The ground (foreground) point was
in the center of each object. Note the similarity of this problem to the touching circles
example of Figure 2, since the heart chambers are weakly connected to each other
through the open valve. All images were 240× 320 with approximately 92% of the pix-
els inside the mask and required approximately 0.3s to process. Note that the top-row
represents the images with their original (input) intensities, while the intensities in the
bottom row were whitened to enhance the visibility of the contours.

460 L. Grady

Fig. 5. The IDT algorithm applied to left ventricle segmentation of a mask produced
by thresholding the volume to separate the blood pool from the background. A single
ground point was placed inside the left ventricle and the IDT algorithm was run in 3D.
No background seeds were given. Note that, with the open valve to the left atrium (and
the aorta), this problem resembles the touching circles scenario of Figure 2. Top row:
Slices from the original volume. Bottom row: Segmentation (outlined in black). The
time required to perform the segmentation on this 256×256×181 volume with 1,593,054
voxels inside the mask was 7.37s. Note that the papillary muscles were excluded from
the blood pool mask.

was synthetic, this type of bottleneck detection is also the essence of these ul-
trasound segmentations since the heart chambers are weakly connected to each
other through open valves and noisy boundaries.

The CT volume of Figure 5 is also suited to this segmentation approach. By
thresholding the volume at the level of the blood pool, a mask was produced such
that each chamber was weakly connected to each other by open or thin valves.
Consequently, it was possible to apply the IDT to the mask with a ground point
inside the desired chamber (in this case, the left ventricle). Figure 5 shows several
slices of the segmentation of the left ventricle, using a ground (foreground) point
inside the chamber. As with the ultrasound data, the mask contains weakly
connected objects (i.e., the left ventricle blood pool is weakly connected to the
atrium and the aorta through the thin valves, which are frequently open), making
this task analogous to the touching circles example, for which the IDT was shown
to behave robustly. Note that no background seeds were necessary to produce
these segmentations.

Although it is possible to threshold bone in CT data, calcified blood vessels
frequently also cross threshold and, more importantly, are pressed close against
the bone. Consequently, the separation of bone from vessel inside the mask is
a challenging task. However, as was shown in the bar/circle synthetic exam-
ple of Figure 3, the IDT approach is capable of separating two tightly pressed

Fast, Quality, Segmentation of Large Volumes 461

(a) Input (b) Seeds (c) Vessel

Fig. 6. The IDT algorithm applied to interactive vessel/bone separation. This prob-
lem is difficult because bone and vessel have similar intensities and strongly touch each
other (i.e., have a weak boundary) in several places, as in the bar/circle separation
problem of Figure 3. (a) Original 3D mask obtained by thresholding. (b) User-specified
seeds (ground) of vessel (foreground) and bone (background). (c) Resulting vessel seg-
mentation shaded in gray.

structures, even in noisy masks and when the point of contact is larger than
the bar (vessel). Figure 6 shows the results of applying the IDT interactively
to separate a blood vessel from bone. In this case, multiple grounds (i.e., vessel
seeds) were placed and, additionally, background seeds (i.e., bone seeds) were
also used to constrain the thresholding procedure.

5 Conclusion

The challenge of quickly segmenting regions of interest within large medical
volumes frequently forces the use of less-sophisticated segmentation algorithms.
Often, thresholding or region growing approaches are nearly sufficient for the
required segmentation task, except that one is left with a weakly connected
mask that a smart bottleneck detector is capable of parsing. Since watershed
algorithms are used almost exclusively in this setting, and there are signifi-
cant concerns with this approach, we have proposed a new algorithm based
on operating the recent, sophisticated isoperimetric algorithm [1] on a tree
derived from the mask geometry. This approach is shown to be fast, widely-
applicable, high-quality, robust to noise and initialization, require specification
of only a foreground seed and is not bound by the limitations of the watershed
algorithm.

Further work includes investigation of other useful tree structures (e.g., based
on functions other than a distance map), determining the suitability of graph
structures with a level of connectivity between the lattice and the tree and
domain-specific applications of this general approach to mask segmentation.

462 L. Grady

References

1. L. Grady and E. L. Schwartz, “The isoperimetric algorithm for graph partitioning,”
SIAM Journal on Scientific Computing, 2006, in press.

2. C. R. Brice and C. L. Fennema, “Scene analysis using regions,” Artificial Intelli-
gence, vol. 1, no. 3, pp. 205–226, 1970.

3. J. Roerdink and A. Meijster, “The watershed transform: definitions, algorithms,
and parallellization strategies,” Fund. Informaticae, vol. 41, pp. 187–228, 2000.

4. L. Grady and E. L. Schwartz, “Isoperimetric graph partitioning for image segmen-
tation,” IEEE Trans. on Pat. Anal. and Mach. Int., vol. 28, no. 3, pp. 469–475,
March 2006.

5. J. A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge Uni-
versity Press, 1999.

6. K. Krissian and C.-F. Westin, “Fast sub-voxel re-initialization of the distance map
for level set methods,” Pattern Rec. Let., vol. 26, no. 10, pp. 1532–1542, July 2005.

7. C. Zahn, “Graph theoretical methods for detecting and describing Gestalt clus-
ters,” IEEE Transactions on Computation, vol. 20, pp. 68–86, 1971.

8. R. Urquhart, “Graph theoretical clustering based on limited neighborhood sets,”
Pattern Recognition, vol. 15, no. 3, pp. 173–187, 1982.

9. P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmen-
tation,” Int. J. of Computer Vision, vol. 59, no. 2, pp. 167–181, Sept. 2004.

10. M. Wan, Z. Liang, Q. Ke, L. Hong, I. Bitter, and A. Kaufman, “Automatic center-
line extraction for virtual colonoscopy,” IEEE Trans. on Medical Imaging, vol. 21,
no. 12, pp. 1450–1460, December 2002.

11. C.-H. Wu and P. C. Doerschuk, “Tree approximations to Markov random fields,”
IEEE Trans. on Pat. Anal. and Mach. Int., vol. 17, no. 4, pp. 391–402, April 1995.

12. A. Jain, Fundamentals of Digital Image Processing. Prentice-Hall, Inc., 1989.
13. J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. on

Pat. Anal. and Mach. Int., vol. 22, no. 8, pp. 888–905, Aug. 2000.
14. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary & region

segmentation of objects in N-D images,” in Proc. of ICCV 2001, 2001, pp. 105–112.
15. L. Grady and G. Funka-Lea, “Multi-label image segmentation for medical appli-

cations based on graph-theoretic electrical potentials,” in Computer Vision and
Mathematical Methods in Medical and Biomedical Image Analysis, ECCV 2004,
no. LNCS3117. Prague, Czech Republic: Springer, May 2004, pp. 230–245.

16. P. E. John and G. Schild, “Calculating the characteristic polynomial and the eigen-
vectors of a tree,” MATCH, vol. 34, pp. 217–237, Oct. 1996.

17. J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian,” in Prob-
lems in Analysis, R. Gunning, Ed. Princeton, NJ: Princeton University Press,
1970, pp. 195–199.

18. R. Merris, “Laplacian matrices of graphs: A survey,” Linear Algebra and its Ap-
plications, vol. 197, 198, pp. 143–176, 1994.

19. K. Gremban, “Combinatorial preconditioners for sparse, symmetric diagonally
dominant linear systems,” Ph.D. dissertation, Carnegie Mellon University, Pitts-
burgh, PA, October 1996.

20. F. H. Branin, Jr., “The inverse of the incidence matrix of a tree and the formula-
tion of the algebraic-first-order differential equations of an RLC network,” IEEE
Transactions on Circuit Theory, vol. 10, no. 4, pp. 543–544, 1963.

21. A. Gibbons, Algorithmic Graph Theory. Cambridge University Press, 1989.
22. A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture processing,”

J. of the Assoc. for Computing Machinery, vol. 13, no. 4, pp. 471–494, Oct. 1966.

	Introduction
	Previous Work
	Method
	Isoperimetric Graph Partitioning
	Trees
	Distance Trees
	Summary of IDT

	Results
	Synthetic Examples
	Real-World Volumes

	Conclusion

